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Abstract There is an increasing interest in RGBT tracking recently because of the complementary benefits

of RGB and thermal infrared data. However, the reliability of each modality will change over time quite

possibly, and the modality with bad reliability will disturb tracking performance. Thus, we propose a

novel reliability-based feature configuration approach in the correlation filter framework for robust RGBT

tracking. Specifically, we configure a feature set based on RGB, thermal, and RGBT data. To measure the

reliabilities of different feature configurations, we equip each feature configuration with a tracker and design

a guideline judging whether the tracker is reliable. We use the tracker with the best reliability for tracking.

Experimental results show that the proposed tracker achieves promising performance against other RGBT

tracking methods.
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1 Introduction

In computer vision, visual tracking has become a hot topic, which tracks an arbitrary object where
the initial state is given. Many efficient and effective tracking methods, such as deep learning-based
methods [1–6] and correlation filtering-based methods [7–10], have been proposed. Numerous visual
tracking methods belong to discriminative models, which take object tracking as a binary classification
task in distinguishing the target from the background. As an important branch of discriminative models
and owing to its good accuracy and efficiency, correlation filter-based trackers, for example, MOSSE [7],
KCF [8], and DSST [11] trackers, are receiving a lot of attention. Visual tracking has been applied to
many fields, such as video surveillance, navigation, human-computer interaction, and medical diagnosis.

Visual trackers based on RGB images are easily drifted and lose targets because of the influence of
various complex circumstances, such as bad weather, low illumination, and cluttered background. To
alleviate these problems, many researchers proposed multi-modal object tracking algorithms [12–17] by
fusing thermal infrared data with RGB data, as thermal infrared imaging has a strong penetration force
to overcome the effects of the aforementioned complex circumstances. Most existing RGBT tracking
methods usually adopt different strategies to fuse different modalities, where all modalities are used
in tracking all the time. For example, some RGBT methods [14, 16] pursue sparse representation for
each modality and then optimize them in a joint learning framework. Some other methods [13, 15, 17]
introduce modality weights to achieve adaptive fusion of different source data. However, the robustness
of weight computation affects tracking performance much. Deep RGBT trackers [17, 18] use powerful
feature representations to improve tracking performance greatly, but the tracking speed is generally slow.
However, always adopting both modalities in existing methods might not be optimal for RGBT tracking
as the modality with low reliability on some occasions will disturb tracking performance.
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Figure 1 (Color online) Comparison of different trackers based on different feature configurations. Trackers 1–3 are configured

with RGB, thermal infrared, and RGBT data, which are used in our tracking framework, and we update their predictions by the

result with the most reliability, denoting them as Trackers 1′–3′, respectively.

To handle this problem, this paper presents a novel reliability-based feature configuration approach
in the correlation filter framework for robust RGBT tracking. In the tracking process, we do not know
which modality is good or bad, and the reliabilities of different modalities might also change over time.
Therefore, we configure a feature set based on RGB, thermal, and RGBT data, aiming to dynamically
select the best feature representation over time to exploit more reliable cues in tracking. Thus, we design a
guideline judging the reliability of a feature in the feature set by evaluating the tracker with this feature as
input. We adopt the correlation filter tracker as the baseline because of its good balance in robustness and
efficiency, and other trackers can also be used in our framework. First, consistency indicates whether the
tracker is stable. The higher the consistency between different trackers, the more reliable the algorithm
is. Hence, we calculate the similarity between pairs of the tracker with the current feature configuration
and other trackers. Second, the smoothness represents whether the tracker itself is reliable, evaluating
the tracker’s trajectory continuity. The trajectory continuity can represent the reliability of the tracker’s
results to some extent. Third, the robustness expresses whether the tracker is anti-jamming, which adds
backward tracking to punish the damaged forward tracking. The damage degree of the tracker can be
obtained by calculating the residual between forward tracking and backward tracking.

Comparison of the proposed method against trackers with different feature configurations is shown in
Figure 1, in which it shows that single feature configuration is not robust to challenging environments
while selecting the most reliable tracker in each frame to predict the tracking result by our guideline
makes the best use of complementary benefits of different feature configurations.

The main contributions of our work are as follows.

• We propose a novel approach based on reliable feature configuration for robust RGBT tracking,
handling the effects of noisy modalities by dynamically selecting the most reliable feature configuration
in RGBT tracking.
• We propose a guideline consisting of consistency, smoothness, and robustness for evaluating the

trackers with different feature configurations over time.
• We perform extensive experiments on two large-scale benchmark datasets, suggesting that our

method achieves superior performance over compared methods.

2 Related work

2.1 RGB trackers

Popular RGB tracking methods are mainly classified into deep learning-based methods [1–6] and cor-
relation filtering-based methods [8, 10, 11, 19, 20]. As a classic deep learning-based method, MDNet [1]
proposed a CNN-based multi-domain learning model separating domain-specific information from the
target. SiamFC [2] proposed a new tracking method based on a fully convolutional siamese network,
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in which its speed was very fast. Based on MOSSE [7], KCF [8] introduced a cycle structure and a
kernel function to increase the speed. CNT [19] extended the CSK [8] by using the color name (CN [21])
instead of targets’ original grayscale features. SAMF [22] proposed scale adaptation and fused multiple
features that are grayscale, CN [21] and HOG [23] for tracking. DSST [11] used the HOG [23] feature only
and designed two independent trackers in estimating the target’s position and scale, respectively, thus
achieving adaptive updating of the target. Many methods [24–26] combined deep features and correlation
filters for visual tracking because of the excellent feature representation performance of the deep neural
network. C-COT [24] and ECO [25] used three interpolations to fuse deep feature maps with different
resolutions and continuous domain learning to achieve accurate sub-pixel localization. ASRCF [26] used
the fusion of deep features and HOG [23] feature to estimate the location and used HOG [23] feature to
estimate the scale, thus improving location accuracy and reducing computation. According to the time
setting, RGB tracking can also be divided into long-term tracking [4,5,6] and short-term tracking meth-
ods [1–3, 8, 10, 11, 19, 20]. As the recent work of long-term tracking, LTMU [4] proposed a meta-updater
in controlling the tracker’s update to solve inaccurate updates in long-term tracking. Globaltrack [5]
proposed a new long-term target tracking method based on global search ideas to eliminate local location
assumption. It enabled the tracker to search the target at any location and scale, thus avoiding cumula-
tive error during long-term tracking. SPLT [6] proposed a long-term tracking method based on skimming
and perusal modules, which can accurately capture the tracked target in the local search area and select
the most likely candidate regions. In contrast to the aforementioned methods, the proposed method is a
short-tracking method.

2.2 Multi-model tracking methods

To improve tracking performance, many researchers proposed to fuse multiple models [27–29]. Tang et
al. [27] used different features to represent the target, adopted the online support vector machine (SVM)
classifier for each kind of feature, and adaptively fused the classifiers. Kwon et al. [29] proposed a visual
tracker sampler to achieve robust tracking by searching different components for the best trackers in each
frame. The above methods indeed boost tracking performance. However, a single tracker easily drifts
when the scenario is challenging. Some tracking frameworks based on multi-model selection [20, 30–32]
have been proposed. MTA [20] proposed multihypothesis trajectory analysis to select the most robust one
from multiple trackers. Also, MCCT [32] proposed to select the best expert for tracking from multiple
experts that can learn multiple appearance models.

2.3 RGBT trackers

Many RGBT tracking algorithms [12–18, 33] adopted different techniques to fuse modalities recently.
Some algorithms [12–15] adopted sparse representation to fuse different modalities. CMRT [16] proposed
a cross-modal ranking algorithm to suppress the background and then used the structured SVM for
RGBT tracking. Lan et al. [33] proposed an optimal discriminative learning framework to collaboratively
learn a classifier for each modality and the reliability weight of each modality to realize modality fusion.
Combining RGB and thermal modality with deep convolution neural networks is very popular in achieving
high performance. For example, Zhu et al. [17] proposed a quality-aware feature aggregation network to
integrate features from different modalities. Li et al. [18] proposed a multi-adapter convolutional network
for RGBT tracking. Different from the aforementioned multi-modal fusion methods for RGBT tracking,
we construct a reliability-based feature configuration by a guideline for RGBT tracking.

3 Proposed approach

3.1 Overview

There are many challenging scenarios in visual tracking, such as occlusion, haze, low illumination. Herein,
we propose a new framework to select the most suitable tracker according to the reliability guideline,
including robustness, smoothness, and consistency from multiple trackers, as shown in Figure 2. In
the proposed framework, we adopt the HOG [23] and CN [21] features, and we form three kinds of
feature configurations based on RGB, T (thermal infrared), and RGBT data. We use the correlation
filter for each configuration to predict the tracking bounding box because of its good balance of accuracy
and efficiency. Then, several predicted bounding boxes are obtained after the forward tracking and the
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Figure 2 (Color online) Overview of our method. Three trackers with different inputs are obtained after configuring different

features. The final result is predicted by the most reliable tracker evaluated by the reliability guideline, including consistency,

smoothness, and robustness. Among them, the symbol t represents the t-th frame, and m represents the frame interval.

backward tracking. The forward trackers use the result of the best tracker from the previous frame every
time, in other words, each tracker is initialized to the same before starting tracking at each frame to
prevent the tracker from corruption. To select the most robust tracker, we employ backward tracking to
define some guidelines to evaluate tracking reliabilities. We select the tracker with the highest reliability
score and take the corresponding prediction as the final tracking result. Figure 2 shows an overview of
the proposed method.

3.2 Feature configuration

As the first step, different feature configurations from RGB image, thermal infrared image, and their
fusion are input into correlation filter-based tracker, whose procedure is described in Subsection 3.4.
Specifically, the feature configuration input to the first tracker is from RGB images, and the calculation
is given as follows:

XR = XR
h ⊕XR

c , (1)

where XR
h and XR

c denote the matrices of HOG [23] and CN [21] features respectively from RGB images,
and ⊕ is a concatenation operation.

The feature configuration to the second tracker is from thermal infrared images. The formula is similar
to (1):

XT = XT
h ⊕ βXT

c , (2)

where XT
h and XT

c denote the matrices of HOG [23] and CN [21] features respectively from thermal
infrared images. Since the role of color information is not very significant in thermal infrared images, it
is assigned a low weight as β.

The feature configuration to the third tracker is from a fusion of RGB and thermal infrared image pair,
combining advantages of RGB and thermal images. The formula is written as follows:

XF = XR ⊕XT . (3)

Since the advantage of the CN [21] feature in thermal infrared images is not obvious, we design a
parameter to balance the proportion of color features in RGB and thermal infrared images. The more
detailed formula of (3) is as follows:

XF =
(

XR
h ⊕XT

h

)

⊕
(

(1− σ)XR
c ⊕ σXT

c

)

, (4)
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where σ is a balance parameter. Other feature configurations, such as the combinations of different
modalities with different weights obtained by learning, can also be used in the proposed framework,
whereas simple combination is used to demonstrate the effectiveness of the proposed framework.

3.3 Reliability guideline

To deal challenges in various scenes, we design three trackers. However, we ultimately choose the most
robust one by evaluating the reliability of each tracker with the following considerations.

Consistency. A more stable tracking is achieved when there is more consistency between trackers.
As discussed previously, we design three kinds of feature configurations. We adopt specifically the same
calculation way for consistency score as in the MCCT [32]. The consistency score reflects the similarity
between trackers written as

Sk
cons(t) =

∑J
j=0 wj

1
N

∑N
n=1M

k
(n,[t−(J−j)+1])

∑J
j=0 wjO

k
(n,[t−(J−j)+1]) + µ

∑J
j=0 wj

, (5)

where N and t denote the number of trackers and the current frame, respectively, and J indicates the pe-
riod of calculation to increase the stability of the consistency score. Mk

(n,[t−(J−j)+1]) and Ok
(n,[t−(J−j)+1])

indicate the mean overlap ratio and standard variance of the overlap ratio of the k -th tracker and the
n-th tracker in the [t− (J − j) + 1]-th frame, respectively. wj = (1.1)j represents the weight of (j+1)-th
element in the period of calculation. Sk

cons(t) is the consistency score of the k -th tracker in the t-th frame.
As the frame is closer to the current frame, j and wj become larger. µ is a constant for avoiding the zero
as the denominator.

Smoothness. A big smoothness score means the trajectory has a small fluctuation during tracking,
indicating that the tracking is more accurate. Following the MCCT [32], the smoothness score reflects
the smoothness of the trajectory of the tracker during tracking. The formula is written as follows:

Sk
smoo(t) =

∑J

j=0 wj exp(−
2||Bk

t−(J−j) − B
k
t−(J−j)+1||

2

(W k
t−(J−j)+1

+ Hk
t−(J−j)+1

)2
)

∑J
j=0 wj

, (6)

where Bk
t−(J−j) and Bk

t−(J−j)+1 can be regarded as the center of the bounding box in the [t− (J − j)]-th

frame and [t− (J − j)+1]-th frame of the k -th tracker, respectively. W k
t−(J−j)+1 and Hk

t−(J−j)+1 are the

width and height of the bounding box of the k -th tracker in the [t − (J − j) + 1]-th frame, respectively.
Sk
smoo(t) is the smoothness score of the k -th (k ∈{1, 2, 3}) tracker in the t-th frame.

Robustness. In addition to using the consistency and the smoothness to evaluate the stability of the
trackers in specific scenarios, we also adopt the robust score to evaluate the robustness of the trackers
themselves in the course of backward tracking [20]. The formula is as follows:

Sk
rob(t) = exp

(

−
||
−→
Bk

t −
←−
Bk

t ||
2

δ2

)

, (7)

where
−→
Bk

t and
←−
Bk

t indicate the center of the bounding box for forward tracking and backward tracking
in the k -th tracker of the t-th frame, respectively, and δ2 = 500. Sk

rob(t) is the robust score, and it should
be 1 without any deviation.

Overall reliability guideline. The overall reliability guideline of a tracker is derived from the
aforementioned three parts, and the formula is as follows:

Sk
rel(t) = ξSk

cons(t) + (1− ξ) Sk
smoo(t) + γSk

rob(t), (8)

where ξ is a balanced parameter to control the sum of consistency score and smoothness score to be
no more than 1. γ is a score weight that controls the ratio of three parts, preventing one of the scores
becoming meaningless.
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3.4 Tracking procedure

In this work, we adopt the standard discriminative correlation filter model, DCF [8], for each tracker,
aiming to minimize the following problem:

argmin
w

∥

∥

∥

∥

∥

y −

D
∑

d=0

xd ∗wd

∥

∥

∥

∥

∥

2

+ λ

D
∑

d=0

‖wd‖
2
2, (9)

where xd and wd are the d -th (d ∈ {0, 1, . . . , D− 1}) channel of the feature data and filter, respectively,
and ∗ is an element-wise multiplication operation. y is the sample’s response obtained from the Gaussian
distribution, and λ is a regularization parameter to overcome the overfitting. As same as the DCF-based
methods [8,22], we use the adaptive template online training to acquire features from the current frame.
We crop the ROI (region of interest) of object position in the previous frame to obtain the feature map
zk
d and then obtain the response map rk of multiple features as follows:

rk =
D
∑

d=1

F−1(F(wk
d)⊙ (F(zk

d ))
H), (10)

where wk
d represents the d -th (d ∈ {0, 1, . . . , D− 1}) channel of the filter in the k -th tracker. The target

location is determined by finding the maximum value of rk. The position and scale estimation of the
object is determined as the same as DSST [11]. In each frame, we first predict an optimal position and
then compute the scale with the maximum response value by adjusting the scale of the bounding box.

Model update. After selection, we update the correlation filter online to adapt changes of target and
background at any time. The adopted hand-crafted features (HOG [23] and CN [21]) have fast calculation
speed and high resolution. The online adaptive updating model is described as follows:

F⋆ (wt) = (1 − η)F⋆
(

w(t−1)

)

+ ηF (wt) , (11)

where F⋆ (wt) is the updated model of the t -th frame, F⋆(w(t−1)) is the model of the (t− 1)-th frame,
F (wt) is the current model, and η is the learning rate. However, it is inevitable that the model will
drift as it learns background information when occlusion occurs. As the same as MCCT [32], we use the
average reliability score as the threshold. When the current trackers average reliable score is higher than
the threshold, the learning rate will not change, otherwise it will be updated. The learning rate is given
as follows:

η =

{

ǫ,

ǫ · [Rt/ (α · Pt)]
θ,

if Rt > α · Pt,

otherwise,
(12)

where Rt = 1
K

∑K

k=1 S
k
rel(t) is the average reliability score of trackers, which becomes very small when

there is an occlusion or severe deformation of the target. Pt = 1
t

∑t

i=1 Ri is the average of the total
reliability score of the trackers from the first frame to the current frame. α and θ represent the threshold
of reliability and the power exponent of the weight function, respectively. ǫ is the learning rate of the
model. The sample will be considered unreliable when there is a low robustness score of Rt, and then
this weight function will punish it and prevent corruption of the model.

4 Experiments

In this section, we present an extensive experimental evaluation for the proposed method. First, we
describe the implementation details and evaluation setting. Then, we validate the effectiveness of each
component of the proposed model through ablation studies.

4.1 Evaluation setting

We conduct experiments on the MATLAB 2016b (MathWorks, Natick, MA, USA) platform with Intel I5-
7500K 3.40-GHz CPU of 16 GB RAM with a performance of 10 fps. There are three large RGBT tracking
benchmark datasets: GTOT [13], RGBT210 [15], and RGBT234 [34]. Since the RGBT234 [34] dataset
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Table 1 PR/SR (%) of the proposed method with different parameters on the GTOT dataset [13]

Parameter Setting PR SR

β

0.01 84.5 69.2

0.1 86.4 70.7

1 84.8 69.4

σ

0 84.6 69.3

0.1 86.4 70.7

0.5 84.2 69.0
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Figure 3 (Color online) PR/SR curves on GTOT [13], where the representative PR/SR scores are presented in the legend.

(a) PR; (b) SR.

is a large RGBT tracking dataset extended from the RGBT210 [15] dataset, we validate the effectiveness
of the proposed method on RGBT234 [34] and GTOT [13], covering various challenging scenarios for
visual tracking. We use precision rate (PR) and success rate (SR) for quantitative evaluation. PR is the
percentage of frames whose location of the tracked object is within the threshold distance of the ground
truth, whereas SR is the percentage of successful frames whose overlap exceeds the given threshold.

Parameters. The parameter setting of the proposed method is as follows. From the extensive
experiments, we set the score balanced parameter ξ to 0.2 and set α = 0.6, θ = 3, and the learning
rate ǫ = 0.01 for the adaptive model updating. β and σ are the feature configuration parameters. β is
a weight reduction parameter for reducing the influence of the noise from the thermal infrared modality
on the whole tracking. σ is a balance parameter to control the proportion of color features in different
modalities. According to the results with different reduction weights shown in Table 1, we set the weight
reduction parameter β = 0.1, and the color feature balance parameter σ = 0.1. To make a fair comparison,
we fix all remaining parameters and other settings by changing the parameters within a certain range in
all experiments so that all parameters are the most optimal in the end.

4.2 Evaluation on GTOT dataset

Overall performance. We perform evaluations on GTOT [13] with 50 RGBT challenging videos, and
compare our method with 11 state-of-the-art trackers, including SGT [15], CMRT [16], DSST [11], L1-
PF [14], MCCT-H [32]+RGBT, SiamDW [35]+RGBT, MDNet [1]+RGBT, KCF [8]+RGBT, SCM [36]+
RGBT, Struck [37]+RGBT and CNT [19]+RGBT. We extend some RGB methods to RGBT meth-
ods by concatenating the images of RGBT because of the small number of RGBT trackers, including
SCM [36]+RGBT, SiamDW [35]+RGBT, MDNet [1]+RGBT, CNT [19]+RGBT, Struck [37]+RGBT
and MCCT-H [32]+RGBT. Figure 3 shows the evaluation results of our method against other state-of-
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Ours                                   MCCT-H+RGB                       DSST                              KCF L1-PF

Figure 4 (Color online) Visual comparison of our method with four state-of-the-art trackers on GTOT [13].

Table 2 PR/SR (%) results with different RGBT trackers under different challenges on GTOT [13]a)

SGT CMRT SCM+RGBT Struck+RGBT MCCT-H+RGBT SiamDW+RGBT KCF+RGBT MDNet+RGBT Ours

DEF 91.9/73.3 84.7/65.2 59.7/50.0 75.6/60.4 89.8/70.2 69.1/58.2 55.3/43.7 81.7/68.8 93.4/76.0

LI 88.4/65.1 88.7/67.8 66.9/56.1 74.0/55.3 85.7/66.6 69.9/58.8 53.8/41.0 79.5/64.3 90.1/73.7

TC 84.8/61.5 81.1/62.2 68.8/55.6 67.9/51.0 82.2/62.1 63.5/51.7 49.9/36.7 79.5/60.9 85.7/69.3

SO 91.7/61.8 86.5/61.0 72.1/53.1 74.5/52.7 88.1/63.1 76.4/58.5 47.9/31.5 87.0/62.2 92.1/70.3

FM 79.8/55.9 83.5/65.0 69.1/58.9 63.9/51.8 71.7/56.9 71.1/57.6 48.1/34.6 80.5/59.8 79.6/64.9

LSV 84.1/54.7 85.3/66.7 79.6/64.7 66.0/49.6 82.5/63.4 68.9/56.5 60.5/42.2 77.0/57.3 83.6/68.3

OCC 80.9/56.7 82.5/62.6 49.2/50.7 71.7/51.6 74.8/58.8 67.5/53.6 53.8/36.4 82.9/64.1 79.1/63.5

All 85.1/62.8 82.7/64.3 67.4/56.2 68.1/53.3 83.8/65.2 68.0/56.5 55.6/41.8 80.0/63.7 86.4/70.7

a) The best results are shown in bold.

the-art trackers on GTOT [13]. Our algorithm adopts hand-crafted features only, but it is superior to
some deep learning methods like SiamDW [35] and MDNet [1], as shown in Figure 3. Specifically, our
method is 0.013/0.026 higher than SGT [15]/MCCT-H [32]+RGBT respectively in PR, and 0.079/0.055
higher than SGT [15]/MCCT-H [32]+RGBT in SR. Experimental performances prove that selecting the
best tracker for the current scene is effective. More visual comparisons are given in Figure 4.

Challenge-based performance. GTOT [13] has 7 challenges: deformation (DEF), low illumination
(LI), thermal crossover (TC), small object (SO), fast motion (FM), large scale variation (LSV), and
occlusion (OCC). We compare our approach with other state-of-the-art methods on these challenges on
GTOT [13], as shown in Table 2. The results show that our approach performs best under DEF, LI, SO,
and TC, proving the effectiveness of our feature configuration and reliability guideline. The proposed
method does not perform best when facing the challenges of FM, LSV, and OCC. OCC has always
been a difficult problem for visual tracking (not only in RGBT tracking). The model based on standard
DCF [8] in our method may not be able to perfectly deal with these problems when the partial target is
occluded. Some comparative methods, including SGT [15], CMRT [16], and MDNet [1]+RGBT, design
the reliable appearance model that can successfully track the target according to the local feature of the
target. However, they do not make good use of the complementary properties of the modalities on LI
and TC. For LSV, our method locates the target first and then refines the scale of the target. As location
and scale refinement are locally optimal, the result may not be globally optimal when the scale varies
greatly. Besides, FM often brings boundary effects to DCF [8] and thus produces wrong samples, which
will weaken the discriminant ability of the classifier. However, the proposed method does not specifically
deal with this problem. We will continue to improve the aforementioned shortcomings by learning the
filter coefficients of different patches and improving the model’s representation capability in future work.
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Figure 5 (Color online) PR/SR curves on RGBT234 [34], where the representative PR/SR scores are presented in the legend.

(a) PR; (b) SR.

4.3 Evaluation on RGBT234 dataset

We also perform a comparison with RGBT234 [34] dataset, which contains 234 RGBT challenging videos
with 12 attributes. We compare our method with 10 tracking algorithms, including SGT [15], L1-PF [14],
MCCT-H [32]+RGBT, SiamDW [35]+RGBT, KCF [8]+RGBT,MEEM [30]+RGBT, CFNet [38]+RGBT,
DSST [11], SAMF [22] and CSR-DCF [39], where DSST [11], SAMF [22] and CSR-DCF [39] are RGB
methods. Figure 5 shows the results of our method and other state-of-the-art trackers on RGBT234 [34].
Compared with MCCT-H [32]+RGBT, the performance of our method increases by 0.043/0.031 in
PR/SR, respectively. Although MCCT-H [32]+RGBT uses seven different trackers per frame, our method
with three configurations has better tracking performance when we add backward tracking to three track-
ers, thus greatly improving the reliability. Besides, SGT [15] performs well in PR on account of using
weighted sparse representation to fuse different modalities. However, their optimization process is too
complicated. Our method performs better than SGT [15] in SR.

Challenge-based performance. RGBT234 [34] has 12 challenges: low resolution (LR), TC, no
occlusion (NO), heavy occlusion (HO), LI, motion blur (MB), DEF, FM, scale variation (SV), camera
moving (CM), partial occlusion (PO) and background clutter (BC). We compare our approach with
other state-of-the-art methods on these challenges on RGBT234 [34] in Figure 6. The results show that
our approach performs best in most challenges except for TC and MB. As thermal modality has the
weakness of TC sometimes, it will invalidate the reliability guideline when thermal modality obtains
large reliability. Hence, we will design some penalties to reduce modal noise in future work. For the
challenge of MB caused by high-speed movement of camera or target, compared with CSR-DCF [39] and
MCCT-H [32]+RGBT, the advantage of our method is not obvious. CSR-DCF [39] considers spatial
reliability and channel reliability, and MCCT-H [32]+RGBT uses seven experts for tracking at the same
time, taking full advantage of the consistency and difference between experts, both of them improve
the adverse effect of motion blur. We will alleviate it by adding contextual information to improve the
target’s appearance in our future work.

4.4 Ablation study

To verify the validity of the selection system in our tracker, we implement and evaluate three variants
of our method on GTOT [13]. Two variants and our method are constructed as follows. (1) “Ours-1F”
means that we remove the two trackers for RGB and thermal data. (2) “Ours-3F” means that we fuse
three trackers (RGB+thermal infrared, RGB, and thermal infrared) as one tracker. (3) “Ours” represents
our tracker, which designs a selection system for three trackers (RGB+termal infrared, RGB, and thermal
infrared). As shown in Table 3, the experimental results indicate that our method is superior to these
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Figure 6 (Color online) SR curves under 12 challenges on RGBT234 [34], where the representative SR scores are presented in the

legend. (a) Low resolution; (b) partial occlusion; (c) heavy occlusion; (d) deformation; (e) camera moving; (f) background clutter;

(g) low illumination; (h) no occlusion; (i) motion blur; (j) scale variation; (k) fast motion; (l) thermal crossover.

variants, verifying that the selection strategy in our method is better than fusing multi-trackers directly.
To verify the validity of the reliability guideline in our tracker, we implement and evaluate two variants

versions and our method on GTOT [13]. We construct three methods: “Baseline”, “Ours-BA” and
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Table 3 PR/SR (%) of the proposed method and the variants with different fusion ways on the GTOT dataset [13]

Ours-1F Ours-3F Ours

PR 84.9 84.8 86.4

SR 69.3 69.1 70.7

Table 4 PR/SR (%) of the proposed method and the variants with different selection strategies on the GTOT dataset [13]

Baseline Ours-BA Ours

PR 83.8 83.4 86.4

SR 65.2 68.6 70.7

Table 5 PR/SR (%) of the proposed method where the trackers are composed of different feature configurations on the GTOT

dataset [13]

Feature configuration Tracker PR/SR

HOG, CN(RGB)

Ours+2 83.7/68.4

HOG, CN(T)

HOG, σCN(RGBT)

HOG, σ1CN(RGBT)

HOG, σ2CN(RGBT)

HOG, CN(RGB)

Ours 86.4/70.7HOG, CN(T)

HOG, σCN(RGBT)

HOG, CN(RGB)
Ours–1 73.3/61.1

HOG, CN(T)

HOG, CN(RGB) Ours–2(1) 72.0/60.5

HOG, CN(T) Ours–2(2) 71.5/59.6

“Ours”. (1) “Baseline” means that we extend MCCT-H [32] to the RGBT method, which has seven
trackers with a selection strategy. (2) “Ours-BA” indicates that we remove the reliability guideline and
use a selection strategy as (1). (3) “Ours” represents our tracker, which uses the reliability guideline to
choose the best one. As shown in Table 4, the experimental results indicate that our reliability guideline
is superior to the selection strategy in MCCT-H [32].

To verify the optimality of the number of feature configurations adopted by our tracker, we implement
a comparative analysis of three variant versions and our method: “Ours+2”, “Ours–1”, “Ours–2(1)”,
“Ours–2(2)” and “Ours”. (1) “Ours+2” is a representation of five feature configurations. On the basis of
our method, it adds two new feature configurations from RGBT fusion modality, one is the concatenation
of HOG [23] and CN [21] features with σ1 weight (0.7*CN(RGB), 0.3*CN(T)), and the other is the
concatenation of HOG [23] and CN [21] features with σ2 weight (0.5*CN(RGB), 0.5*CN(T)). (2) “Ours”
is our method, as mentioned earlier, composed of three feature configurations. (3) “Ours–1” is the
remaining feature configurations after the RGBT feature configuration is removed. It just uses the
concatenation of HOG [23] and CN [21] features from two modalities. (4) “Ours–2(1)” is the remaining
feature configuration after removing the RGBT feature and T feature configurations. It just uses the
concatenation of HOG [23] and CN [21] features from the RGB modality. (5) “Ours–2(2)” is the remaining
feature configuration after removing the RGBT feature and RGB feature configurations. It only uses the
concatenation of HOG [23] and CN [21] features from T modality. Table 5 shows the detailed feature
configuration. As shown in the table, we emphasize RGB data as more reliable than T data, and the
adopted feature configuration achieves the best performance against other configurations. If fewer features
are used, the representation capacity of these features will limit the performance of the tracker. If the
number of feature configurations increases (“Ours+2” in Table 5), the performance might not be better
because the consistency among trackers would make the evaluation of our reliability criteria not reliable
in challenging scenarios. For this problem, we will research it in future work.

4.5 Limitation and future work

There are two major limitations in our method. (1) The speed of our tracking method is not real-time.
(2) Performance is not improved when we use more feature configurations. Given these two limitations,
we will make the following improvements in future work. First of all, we will use multi-thread and other
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parallel calculations to improve the speed of the backward tracking because backward tracking is the
most time-consuming part. We will then adopt more discriminative and powerful features such as the
context feature and the deep feature to improve the consistency among trackers.

5 Conclusion

In this paper, we propose an efficient reliability-based feature configuration approach based on the cor-
relation filter. Our method designs multiple trackers by various feature configurations. It then uses the
new reliability guideline to select the best tracker with the least noise and the most robust appearance
representation. Compared with many RGBT tracking algorithms, our method is simple, efficient, and
superior to most compared trackers.
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