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Abstract The number of sensory nodes in the Internet of everything continues to increase rapidly and
generate massive data. The generated information from sensory nodes is much larger than the total collective
human sensory throughput. It is quite challenging to send all of the data produced at sensory terminals to the
“Cloud” computation center, especially for those time-delay sensitive applications. This situation demands
a dramatic increase in the computation near or inside sensory networks. Inspired by biological sensory
systems with a high data compression ratio, neuromorphic sensory computing provides a way to efficiently
acquire and process a large volume of data from complex environments. Researchers have been investigating
emerging materials, devices, circuits, and computing architectures to implement an artificial sensory system
with high energy efficiency, speed, and density. Here we summarize the important features of biological
systems and their hardware implementations. Electrons and photons are two representative information
carriers, in which electron carrier allows high integration density for complex computing and photon carrier
has high connectivity, high speed, wide bandwidth, and low power consumption. We overview the electronic
and optical neuromorphic sensory computing and hybrid opto-electronic sensory computing, and present
advances on multimodal sensory computing and their potential challenges.
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1 Introduction

Sensory systems are indispensable parts for acquiring information from complex environments. The
collected raw data are perceived and computed for high-level intelligence, e.g., memorizing, learning,
making decisions, which constructs the base of our interactions with the environments. The sensory
system has a general architecture composed of receptors (data acquisition), pathway (data transmission),
and processing units (computing and memory) [1,2], as illustrated in Figure 1. The performance of
receptors is under steady progress in terms of feature size, speed, power consumption, sensitivity, detecting
range, and cost, benefiting from the development of new materials and processing technology. Nowadays,
various high-performance receptors (e.g., vision, audio, pressure, chemicals, etc.) keep producing a large
volume of data, which are further encoded, transferred, and processed. As the number of sensory nodes
increases, the huge amount of raw data (containing lots of redundant data) become a heavy burden to the
transmission network and processing units. In addition, the computing units and memory in conventional
von Neumann architecture are separated in physical space. The physical separation between receptors,
computing units, and memories gives rise to frequent data movement along the interconnects, degrading
the overall performance in terms of speed and energy efficiency [3,4].

In sharp contrast, biological counterparts can efficiently process the sensory information from com-
plex environments with high energy efficiency, owing to the well-developed hierarchy architecture, co-
localization of computing and memory, and complex neural network. For example, the human retinas
consist of various functional cells arranged layer-by-layer, in which the raw data from the photo-receptors
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Figure 1 (Color online) The schematic of the sensory system. The system acquires information from environments through
various types of receptors (e.g., visual, olfactory, auditory, tactile sensation, etc.). Then the outputs of receptors are transmitted
to the complex processing units through the pathway.

are pre-processed before they are transferred to the complex central nervous system [5]. By conducting ef-
fective feature extraction close to the receptors, the biological sensory system effectively reduces the data
that requires a long-distance transfer, greatly improving the energy efficiency and speed. This strategy
has been implemented in artificial sensory systems by analog very large scale integration (VLSI) [6-9].
As the feature size of Si-based transistors shrinks, more complex CMOS-based elements can be integrated
very close to the receptors, making the receptors output a more efficient representation of the external
stimuli. However, there are inherent distinctions between CMOS-based processing units (logical gates,
SRAM, DRAM) and biological counterparts (neurons and synapses). For example, a single neuron or
synapse has complex dynamics for computing and memory [10-12]. To emulate a corresponding function,
it requires hundreds of transistors, which restricts the integration density, energy efficiency, and speed.

A biological neural network relies on ion dynamics to transmit information and works at a relatively slow
speed (hundreds of Hz). Comparatively, modern computers based on Si-based transistors use electrons
to carry information, exhibiting much higher speed. They are more suited to running sequential, digital,
procedure-based programs [13]. However, neuromorphic computing requires distributed and massively
parallel architecture, which is hard to realize in conventional electronic computers with low connectivity.
Although time-division multiplexed communication bus sacrifices the bandwidth for connectivity, this
trade-off in speed and interconnectivity restricts the overall performance. Apart from electrons, light
is another information carrier for high-speed communication. The optical interconnects have intrinsic
high connectivity, which makes photonic neuromorphic computing potential candidates for realizing low
latency, high bandwidth, and low energy. However, optical modules are quite bulky and have limited
computing complexity, which restricts the integration density. To achieve high efficiency, it is appealing
to design a hybrid optical-electronic computing architecture, exploiting their respective advantages.

In this review, we will first introduce the important functions that contribute to the high efficiency of
the biological sensory system and corresponding electronic hardware. In the third part, we summarize
the optical implementations of neuromorphic computing. Then, we review the essential optic-electronic
devices that conduct signal transduction. Next, we discuss multimodal sensory computing, in terms of
the fundamental mechanism and hardware implementations. At last, we propose some figure-of-merits
that are important for evaluating the performance of a sensory system.

2 Electronic sensory computing

Electronic devices with diverse and complex functions at the back-end of sensory systems can process
the output signals from various receptors. Inspired by the high efficiency of biological sensory systems,
researchers have adopted various electronic devices and circuits to emulate the basic modules and ar-
chitecture of biological counterparts. In this section, we summarize a few key features of neuromorphic
sensory computing with electronic devices.
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Figure 2 (Color online) (a) Three-layer model of a human retina, corresponding dynamic vision sensor (DVS) pixel circuitry
and waveforms [15] @Copyright 2014 IEEE. (b) Schematic of the frequency-based visual sensor [14]@Copyright 2014 IEEE.
(c) Short-term memory can be used to construct filters. The initial states influence the types of filters (low-pass, high-pass,
and band-pass). CF, PF, and SC are climbing fibre, parallel fibre, Schaffer collateral synapses, respectively [10] @Copyright 2000
JNeurosci. (d) Pair-pulse facilitation [27] @Copyright 2017 Wiley. (e) Pair-pulse depression [25] @Copyright 2017 Springer Nature.

2.1 Event-driven sensory outputs

Biological sensory systems work in an event-driven way. Only when the stimuli exceed a threshold, an
event is triggered and transmitted to the following units asynchronously, which allows to efficiently extract
useful information. For example, conventional frame-based image sensors can produce a large volume of
redundant data, imposing a strict requirement on the bandwidth, energy, speed, and storage capacity
of the system. Instead of depending on external control signals, the bio-inspired visual sensors (e.g.,
dynamic vision sensor, asynchronous time-based image sensor, etc.) capture the information depending
on the individual pixel intensity [14,15]. As shown in Figure 2(a) [15], when the change of pixel light
intensity exceeds a threshold (positive-ON event, negative-OFF event), the comparator outputs an event
spike, in which the timing of spike encodes the light intensity. After that, a reset signal pulls the Vg back
to the reset level, starting another cycle. This time-domain spike encoding scheme has the advantage
of high efficiency and immunity to voltage degradation, because the spike timing encodes information.
However, it is sensitive to noise, caused by the variation of devices and electrical disturbance during the
transmission. To improve the robustness, an alternative way is to use the number of spikes in a period of
time (rate-encoding), yet at the cost of energy efficiency (Figure 2(b) [14]). After the event-driven sensors,
the output sparse spike trains transmit according to address event representation (AER) protocol and
are computed by corresponding event-driven processors (e.g., spiking neural network), exhibiting high
energy efficiency and speed.

2.2 Low-level processing

Usually, there are a few pre-processing steps before the data are transmitted to the central nervous
systems for high-level perception. In this hierarchical architecture, the raw data from the sensors are pre-
processed to extract useful information, greatly reducing the volume of data that requires long-distance
transmission. Researchers have adopted the so-called near-sensor computing scheme to perform informa-
tion pre-processing with the advancement of analog VLSI, especially in visual and auditory sensors [16-24].
Recently, various emerging devices (e.g., resistive random access memory (RRAM), electrolyte-based tran-
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sistors, ionic cable, etc.) show diverse and intriguing dynamics, which can be exploited to pre-process the
data in a small footprint [25,26]. In addition, they can be integrated with sensors and directly process
the analog outputs, eliminating the power-consuming ADC/DAC modules.

Filtering is a common method in the data processing. The data in a specific frequency range can be
suppressed through the design of filters. Some devices (e.g., RRAM, electrolyte-based transistors, etc.)
exhibit short retention of their conductance change when excited by a stimulus. Once the stimulus is
removed, its conductance gradually relaxes to the initial value. This short-term memory can be exploited
to design different kinds of filters. As shown in Figure 2(c) [10], when the device is initially at a high
conductance state, the stimulus induces conductance decrease. And the high-frequency stimulus leads to
more decrease. This relationship between conductance change and frequency can realize a low-pass filter.
On the contrary, when the device is initially at a low conductance state, the excitatory stimulus can
emulate the function of a high-pass filter [27]. Since the effect of stimulus has a close relationship with
the initial state of devices, a band-pass filter can be constructed by setting the device at an intermediate
state. Many devices show the high-pass filtering feature in the form of pair pulse facilitation (PPF). Due
to the residual conductance change induced by the previous stimulus, the following stimulus can give rise
to a larger response (A2 > A;), as shown in Figure 2(d). When the sensors have a transient response
to the sensory stimulus, with this short-term memory, the duration of the sensory stimulus can also be
recorded.

Some diffusive memristors exhibit short-term depression in the form of pair pulse depression (PPD) [25],
as shown in Figure 2(e) [25]. During the longer interval, the device relaxes to a lower conductance state,
which means the decay effect is stronger than the stimulus. Therefore, this device shows PPD under
a low-frequency stimulus, realizing a high-pass filter. This feature has a significant role in the data
processing. By decreasing the response to high-frequency signals, the original signal is scaled, the degree
to which is defined by the signal itself [10,11]. Through this dynamic gain control, the output signal
represents the relative values instead of the absolute values. Therefore, the noise, which is relatively
small compared to signals, can be precisely differentiated. Notably, the state of the short-term memory
reflects the scale degree, which means the original signal can be restored. Taking inspirations from the
above-mentioned dynamic adaptation, we can realize sensory computing unit with high sensitivity and
wide dynamic range.

Feature extraction is important for information pre-processing. By extracting useful information and
building a more concise representation, the data transfer can be greatly reduced. Convolution is a common
method widely used in spatial feature extraction, in which the multiplication and accumulation (MAC)
operation is the core. The convolution kernel can be mapped into various hardware devices, among
which the RRAM crossbar array has been widely used to accelerate the MAC operation in convolutional
neural network (CNN) for image pattern classification (Figure 3(a)) [28]. The conductance of the RRAM
multiplies with the voltage input, outputting current based on Ohm’s law. Then the current is summarized
naturally according to Kirchhoft’s current law. Therefore, the RRAM array can be programmed to
produce different convolution kernels. Apart from that, the axon, or the pathway between receptors and
processing units, can execute convolution, leveraging the signal degradation along with the transmission.
Due to the decay of excitatory post-synaptic current (EPSC), the signals travelling through longer ionic
cable have smaller amplitude when they reach the synapse (Figure 3(b)) [29]. In the multi-gate electrolyte-
based transistor, the gates with different distances to the channel have different impacts on the channel
conductance [30]. The spatial distribution of gates defines a convolution kernel. However, these pathways
are fixed after the fabrication, which means the kernel cannot be trained. An alternative method is to
replace the fixed resistor or capacitor with programmable devices, like transistors [31].

2.3 High-level processing

Through the above-mentioned design, the raw data from the sensor outputs can be processed into a
more concise form. To process these data for high-level perception, complicated processors are essential.
The artificial neural network (ANN) is especially suitable for data-intensive tasks. To build a hardware
neural network and reproduce the high efficiency of biological systems, it requires devices with intrinsic
similarity to the synapses. RRAM is a promising candidate in neuromorphic computing, which can dy-
namically change its conductance under external stimuli. Meanwhile, the conductance change of RRAM
can retain over a long time, mimicking the in-memory computing nature of synapses (Figure 3(c) [32]).
With the compact design of hardware, RRAM-based neural network has shown great performance in
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Figure 3 (Color online) (a) The schematic of convolution and its mapping to the RRAM array [28] @Copyright 2020 Springer
Nature. (b) The EPSC amplitude decreases as the distance between inputs and synapses [29] @Copyright 2020 Springer Nature.
(c) RRAM with in-memory computing characteristic can emulate the synapses [32] @Copyright 2017 Springer Nature.

various fields, e.g., pattern classification [28,32-36], associative memory [37-39], temporal sequence pro-
cessing [40], and forecasting [40-42]. Based on the outputs of the neural network, one can make reactions
to the environments, such as muscle control.

3 Optical sensory computing

Photon is another information carrier that exhibits high speed and low power consumption, which is
suitable for constructing a highly efficient neural network. It has different working principles compared
to electronic processing units. In this section, we summarize the optical implementations of important
neuromorphic modules, such as synapses and neurons.

3.1 Matrix multiplication

Matrix multiplication is of most importance in the artificial neural network, consisting of basic mul-
tiplication and accumulation operations. There are several methods to implement matrix multiplication
in optical elements, which are based on different optical effects, such as transmission, diffraction, in-
terference, coupling, and scattering. With the image patterns as the input, the light intensity is used
for information representation. The transmission-based method executes multiplication through mod-
ulating light intensity via space light modulators (SLM), which represents an interconnection weight.
After the SLM, the light signals are collected by photodetectors for accumulation, in which light inten-
sity is transformed to photo-current values. The details of other methods are referred to more coherent
papers [13,43].

Although matrix multiplication is a core operation in convolution, there are some optical elements
that are customized for convolution to reduce the cost of sliding convolution kernels. Passive diffraction
layer by angle sensitive pixel (ASP) can perform optical edge filtering for the CNN first layer. Chen et
al. [44] proposed the concept of ASP-vision in CNN for the first time in 2016. The ASP is a CMOS sensor
that is typically composed of two gratings (a diffraction grating and an analyzer grating) above a single
photodiode and has a sinusoidal light sensitivity on the basis of the Talbot effect. The Talbot effect refers
to that when a plane wave is an incident upon a periodic diffraction grating, the image of the grating is
repeated at regular distances away from the grating plane, and the image generated by the Talbot effect
shifts horizontally with the angle of the incident light. If the second grating is placed one Taber length
after the first one, the intensity of incident light can be adjusted periodically. For a two-dimensional
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ASP, the sinusoidal angular response induced by the Talbot effect can be described according to [45]
i@ (9) = 1+ mcos(B(cos(7)0 + sin(7)6,) + a), (1)

where 6, and 0, are incident angles, « is the phase shift of the two gratings, 8 is frequency, and - is
grating orientation. They designed two differential pixels of phase o and phase a + 7 (pixels A and B
of Figure 4(c)), and subtracted their responses, to obtain the sinusoidal term of (1). During the capture
process, impulse responses are convolved optically with objects in the scene, achieving edge filtering, as
shown in Figure 4(d) [44,46]. ASPs can receive and filter the image at the same time. This function layer
significantly saves the power consumption of the system and reduces the data bandwidth. Whereas, ASPs
will greatly reduce the image resolution and have a great loss of light after the diffraction processing.

Another method of image convolution is using an ordinary lens to produce the Fourier transform (FT)
of the complex amplitude of an incident electro-magnetic field. The convolution theorem points out that
a convolution in one domain corresponds to a product in another domain, and the FT can convert a
signal between time domain and frequency domain. Weaver et al. [47] demonstrated the application of
the joint-transform correlator in 1966. Chang et al. [48] reported optical convolutional processing based
on diffracted optical elements. In linear optical systems, the 4 f system of two convex lenses with the focal
length of f can realize the Fourier and inverse Fourier transforms in a cascade. By placing a phase plate in
the Fourier plane in the middle of the 4 f system, they modulated the amplitude and phase of the incident
light. In order to realize the multiple convolution kernels, the phase plate can be divided into several
tiled convolution cores. However, the image resolution of this system also decreases correspondingly, and
only non-negative convolution can be obtained. LeCun et al. [49] presented a silicon photonics-based
architecture with Mach-Zehnder interferometer (MZI) array in 1995. It similarly exploited the optical
Fourier transform and allowed complex data to be encoded in a 2-dimensional grid. Shen et al. [50]
demonstrated a programmable nanophotonic processor featuring a cascaded array of 56 programmable
MZIs in a silicon photonic integrated circuit in 2017. However, the signals need to be first preprocessed to
a high-dimensional vector on a computer and then encoded in the amplitude of optical pulses propagating
in the photonic integrated circuit.

3.2 Nonlinear activation functions

Neural networks require continuous differentiable nonlinear activation functions to fit arbitrary complex
functions. The types of nonlinear activation functions mainly include a step function, sigmoid function
and Tanh (hyperbolic tangent function), threshold linear function, or others [51]. For single nonlinear
optical devices, the output power is much lower than the input power and cannot drive even a single
neuron, because the nonlinear output comes from the high order terms of the electrical susceptibility. In
addition, the output of optical interconnections from one to N computing elements is accompanied by an
N-fold loss of light power for each connection [52]. Therefore, nonlinear functions are usually implemented
electronically in most hybrid optical neural networks (ONNs). To solve this problem, researchers adopt
carrier regeneration approaches for optical amplification in ONNs [53], and propose different nonlinear
optical components with the development of optics and materials science.

Since the steady-state power transfer curve of semiconductor optical amplifier (SOA) resembles the
upper part of the tanh-curve, SOA is suitable for implementing all-optical nonlinear activation [54].
Hill et al. [53] demonstrated the system of two coupled lasers with SOA, which can provide a useful
sigmoid or thresholding function in the optical domain. Kerr effect (a nonlinear variation in the refractive
index of a material in response to an applied electric field) in microring resonators [55] and nonlinear
fibers [56] can also provide optical power-dependent nonlinear responses. Photorefractive effect is a
special phenomenon of photoinduced refractive index change. Photorefractive crystals can produce a
great variance in refractive index with a much lower light intensity due to the photoinduced electric field,
which is considered as nonlinear activators, but its response time is much longer than the Kerr effect [57].
In addition, Zuo et al. [58] implemented nonlinear optical activation functions with laser-cooled 85Rb
atoms in a dark-line two-dimensional magneto-optical trap (MOT) on the basis of electromagnetically
induced transparency (EIT), a light-induced quantum interference effect among atomic transitions, in
which the atomic medium is opaque to the resonant probe beam without a coupled beam.

Phase change materials (PCM) can be switched between crystalline and amorphous by the input
light transmitted in waveguides, which has been adopted in emulating the behavior of spiking neurons.
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Figure 4 (Color online) (a) Schematic diagrams of the conventional ANN architecture and the passive neural computing through
a nanophotonic medium. (b) Schematic illustration of nanophotonic neural medium (NNM) trained to recognize handwritten
digits [61] @Copyright 2019 OSA. (c) Differential pixel’s impulse responses across an ASP tile. (d) An edge filtered image of a
scene after optical convolution [44,46] @Copyright 2016 IEEE.

Chakraborty et al. [59] proposed an integrate-fire spiking neuron utilizing a GeaSboTes(GST)-ring res-
onator system to replace rectified linear unit (ReLU) activation function in spiking neural network (SNN).
They set the GST elements initially in a crystalline state. The intensity of a single pulse is insufficient to
amorphize the GST. When the membrane potential accumulates a few write pulses over a period of time
and crosses its threshold, leading the GST to full amorphization. Then the photonic circuit generates a
spike. After the neuron fires, a RESET pulse will be passed to reset the states of the devices to their
initial states. Feldmann et al. [60] also realized all-optical spiking neurosynaptic networks by PCM and
achieved nonlinear activation function by microring resonators integrated with PCM cells. When the
PCM element is in the crystalline state, no output can be observed. Conversely, if the instantaneous
summed power of the weighted input pulses is high enough to cause the PCM cell to switch to an amor-
phous state, the light in the output waveguide no longer couple into the ring resonator and the output
can be generated satisfying the ReLLU function.

In addition, Khoram et al. [61] demonstrated artificial neural computing through a continuous and
layer-free nanophotonic medium by leveraging optical reflection and scattering, which enables ultra-high
computing density. Light signals come from the left side and interfere strongly by nanostructures (air
holes or inclusions) in the SiOy host medium, as shown in Figure 4(a). Then they would be guided
toward one of several light receivers. The different output positions represent the different numbers in
input images. According to the position of the highest share of energy intensity on the right side of the
medium, they realized image digital recognition (Figure 4(b) [61]). And the spatial scattering implements
the nonlinear operation (ReLUs function) via dye semiconductors or graphene saturable absorbers.

4 Optic-electronic sensory computing

Electrons and photons are two representative information carriers with different properties. Electron
carrier allows high integration density for complex computing, based on which diverse processing units
can be constructed, such as nonlinear activation functions. However, electronic units suffer from low
connectivity and relatively high energy consumption, which restrict the network dimension and computing
capability. On the other hand, optical computing exhibits superior performance in connectivity, speed,
bandwidth, and power consumption, which is a promising candidate in the artificial neural network. By
combining the advantages of electronics and optics, a highly efficient and complex neural network can
be obtained. To construct a hybrid optic-electronic hardware platform, optic-electronic devices which
transduce light to electronic signals or vice versa are essential.

Optoelectronic devices transduce light to electronic signals, for example, photodiode, optoelectronic



Wan T Q, et al. Sci China Inf Sci  April 2022 Vol. 65 141401:8

resistive random-access memory (ORRAM), and phototransistor. The photodiode is widely used in
various fields of photo-detection, due to its simple device structure and fast response. However, the
photodiode has a linear relationship between optical input and electrical output, which exhibits optical-
to-electronic conversion without any nonlinear computing function. The processing of sensory information
requires the complex peripheral circuits or processing unit, which increases footprint, decreases speed,
and results in high-power consumption.

As emerging optic-electronic devices, ORRAM and phototransistors based on new materials (e.g., 2D
transition-metal dichalcogenides (TMDCs) materials and transition metal oxide) can output the elec-
tronic signals with a non-linear relationship to the input light, which enables simple computing functions.
The simple two-terminal ORRAM synaptic devices exhibit light-tunable synaptic behaviors. An output
image can realize image contrast enhancement through the ORRAM devices array for in-sensor non-
linear computing [62]. The three-terminal phototransistor enables to modulate the conductance of the
semiconductor channel by light and electrical stimuli. In phototransistors, light stimuli are regarded as
pre-synaptic spikes to trigger the synaptic responses. Researchers have mimicked basic synaptic response
and unique neural functions using phototransistors [63-65], including neuromorphic reinforcement learn-
ing [64], image contrast enhancement [66], colored and color-mixed pattern recognition [67]. The in-sensor
computing optic-electronic device provides the potential to simplify the circuitry of a neuromorphic visual
system.

5 Multimodal sensory computing

The processes of synthesizing and organizing various huge amounts of inputs are fundamental to ef-
fective perception and cognitive functioning. Human can detect and interpret the events from a complex
and dynamic environment, and then react depending on the perception results. A single sensory input
typically leads to inevitable uncertainties, including the randomness of the signal itself and the noise of
the signal processing. From a statistical point of view, a straightforward way of reducing uncertainty
and increasing perceptual sensitivity is to combine the information from multiple and independent mea-
surements. Human brains can integrate these inputs from multiple sensory systems, including vision,
audition, and somatosensation. This multisensory processing enables appropriate response under com-
plicated circumstances and is helpful for more rapid and accurate information acquisition, in which one
sensing channel is inadequate. For example, the integration of information enhances the recognition of
objects in the direction of the sound source and shortens the scan time.

5.1 Mathematical models of multisensory integration

The combined outputs of different stimuli rely on not simply linear superposition but the nonlinearity
(NL) of weight update. According to psychophysics, the mechanisms for integrating multimodal signals
in the brain generally follow two laws. (1) The principle of inverse effectiveness (PolE), integrated
multisensory stimuli are inversely proportional to the effectiveness of the best unisensory response. As the
responsiveness to individual sensory stimuli decreases, the strength of multisensory integration increases.
Highly prominent individual cues are easily detected, and their combination should have a moderate
effect on neural activity. While weaker individual cues elicit relatively few nerve impulses, and the result
of integration authentically enhances neuronal stimulation. This effect has a significant positive impact
on improving the speed and likelihood of detecting and locating events [68]. (2) The spatial/temporal
principle, multisensory integration is more likely or stronger when the constituent unisensory stimuli arise
at approximately the same time or the same location, while the combined response becomes suppressed
when two stimuli are far enough apart in time or space. This phenomenon can help organisms combine
and categorize clues for informed judgment [69]. The output of multisensory integration can be described
by additivity index, which is defined as

Tcombined
A— combine 9
Z?:l Iinputi , ( )

where Icombined represents the output intensity of integration of all input stimuli, finputi represents the
output intensity of single stimuli individually. When the additivity index > 1, it means the combined
response is greater than the sum of the unisensory responses (super-additivity); when the additivity index
< 1, it means the combined response is smaller than the sum of the unisensory responses (sub-additivity).
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Figure 5 (Color online) Schematic illustration of the normalization model of multisensory integration [72] @Copyright 2011
Springer Nature. (a) Unisensory neurons from separate populations send inputs to a topographically aligned multisensory neuron;
(b) the driving input to a particular multisensory neuron is generated by multiplying unisensory inputs by their corresponding
synaptic weights and then summing up.

Colonius et al. [70] proposed a time-window-of-integration model related to the spatial/temporal prin-
ciple from a saccadic experiment early. They found the reaction time to visual targets tends to be fast
when the stimuli from another modality are presented in close temporal or spatial proximity. From
the viewpoint of mathematics, Ohshiro [71] simulated both the principle of inverse effectiveness and the
spatial/temporal principle by a divisive normalization model. Each unimodal input to the spatial inte-
gration model is specified by its intensity ¢ and its spatial position in Cartesian coordinates, 8 = (zq, yg),
as shown in Figure 5 [72]. The spatial receptive field of each primary sensory neuron is modeled as
a two-dimensional Gaussian function. The stimulus intensities also follow the time-dependent Gaussian
function. The activity of each neuron is divided by the net activity of all multisensory neurons to produce
the final response, which can be represented according to

E =dy - Ii(x0,y0) + d2 - I2(x0,%0), (3)
E’n
R=—————x—% (4)

where F is the weighted linear sum of its unisensory inputs I (zo,yo) and I2(x0,y0). The parameters
that govern the response of each multisensory neuron include the modality dominance weights (d; and
ds), the exponent (n) of the output nonlinearity, the semi-saturation constant («), and the locations of
the receptive fields (zg,y0). The semi-saturation constant determines the overall neuron sensitivity to
stimulus intensity. A larger value will yield greater super-additivity for a fixed stimulus.

5.2 Multisensor and their integration

The multisensory integration mechanism has inspired the investigation of the devices with the capabil-
ities of sensing two or more physical parameters. In addition to vision, researchers also developed other
neural sensing networks, such as biomimetic audiomorphic devices for sound localization, biological semi-
circular canals for detecting rotational motion, and miniature artificial electronic nose for the detection
of mixed harmful gases [73].

Researchers integrated different types of sensor receptors (e.g., mechanoreceptors, thermoreceptors,
nociceptors, etc.) by multilayered design layout and connected sensory nodes by meandering wires to
achieve multifunctional sensing performance [74,75]. In this way, they realized highly sensitive detections
for seven different stimuli, including temperature, strain, humidity, light, magnetic, pressure, and prox-
imity [74]. Lu et al. [75] extended the same strategy to multimodal plant healthcare flexible sensor system
based on stacked ZnlnyS4(ZIS) nanosheets, which can detect both light and humidity. Bao’s research
team designed and fabricated a multimodal receptor based on the ion relaxation dynamics of a deformable
ion conductor, decoupling temperature, and strain sensing in a single unit through different kinds of out-
put signals. The relaxation time and capacitance can be respectively used as a strain-insensitive and
temperature-insensitive intrinsic variable for detecting temperature and strain [76].
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Yu et al. [77] and Wu et al. [78] demonstrated the integration of vision and touch, which greatly
improves the accuracy of handwriting recognition. They integrated flexible triboelectric nanogenerator
(TENG) in contact-separation mode on the phototransistor. The phototransistor could be prepared with
graphene/MoS, heterostructure or lead-free perovskite (CsyAgBiBrg). TENG can supply an equivalent
gate voltage to drive the synaptic transistor. The output integrated signal corresponding to the EPSC
was represented by the channel current of the phototransistor. This synaptic transistor with multi-modal
sensory functions realizes the long-term memory and consecutive neural facilitation. Especially, Wu et
al. [78] reported the super/sub-additivity under light and touch pulses with the same interval time, which
matches the inverse principle. They also observed enhanced EPSC when the temporal interval of these
two stimuli decreases, which obeys the temporal principle. This structure is expected to further mimic the
behavior of multisensory integration. Also, Wan et al. [29] developed a bimodal artificial sensory neuron
that collects optic and pressure information from the photodetector and pressure sensors, respectively.
The information is transmitted through two artificial sensory channels (ionic cables) to the electrolyte
gated synaptic transistors for further integration and processing. The weight of the input is dependent on
the distance between the transistor and the sensor unit. Integrating different stimulation via ion cables
is more suitable for universal multimodal signal integration when sensor systems involve more than two
different kinds of signals.

There are still challenges for multimodal sensory computing, including the underlying logic of multi-
modal integration computing and the integration techniques of artificial neurons. It is quite important
to control the reception and processing time hysteresis of multiple signals and coordinate the range and
precision of different sensory stimuli. Therefore, the raw multimodal data with great heterogeneity should
be firstly normalized before subsequent processing. In addition, it is also a grand challenge to identify
the direct relationships between the elements from two or more different.

6 Perspective

6.1 Benchmark

The sensory system plays an essential role in our interaction with the environments, in which we
acquire information, analyze, and make reactions. With the advances in microelectronics, algorithm, and
architecture [28,79,80], the performance of the sensory system is under stable progress. Here, we propose
some benchmarks to evaluate a sensory system.

The most common task for a sensory system is pattern recognition, e.g., image patterns, speech, odor
signal. The training stage consumes substantial power and time, which is usually conducted in the cloud.
After the optimization of synaptic weights, the network models are transferred to edge devices, which can
distinguish learned patterns. The practical hardware resources determine the size and complexity of the
network models, which in turn affect the capability to process high-dimensional patterns. The recognition
accuracy of a two-layer perceptron can severely decay as the number of input neurons increase. To
effectively process the sensory stimuli from complex environments, it is essential to increase the network
size and deepness in edge devices. However, the power consumption and area are two important merits
for practical use. The scaling down of feature size in the semiconductor industry enables a more compact
and powerful system in edge devices. To evaluate the energy efficiency of a sensory system, we can
calculate the average power consumption that the sensory system consumes to recognize one pattern.
Since the sensory system is a multi-discipline platform that relates to various signal types, the number of
operations varies greatly. In addition, this value can be normalized by the number of pixels or areas for
a more effective representation of energy efficiency. The energy efficiency of the sensory system depends
on several factors, e.g., the power consumption of the receptors, transmission line, and the architecture
of the processing units. In von Neumann computers, the frequent data transfer between computing units
and memory can greatly deteriorate the overall energy efficiency, especially for data-intensive tasks. To
overcome the bottleneck, optical computing and in-memory computing empowered by memristors are
potential candidates. The power-hungry matrix multiplication operations can be executed in a more
efficient and parallel way, compared to conventional digital and sequential processing units.

The working speed is of most importance for some interactive systems, which requires fast response
in some application scenarios, e.g., auto-driving. We define the working speed as the number of patterns
that the system can process in one second, similar to the frame rate in a vision sensor. It depends
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on the response time of receptors, transmission delay, and the working speed of processing units. The
photo-detectors based on conventional semiconductors and emerging 2D materials have a very fast light
response (in the timescale of picosecond) [81-88], which allows the realization of a fast vision sensor.
However, many chemical and haptic sensors work at a relatively slow speed, compared to the high-speed
transmission bus and processing units. As for the transmission, the outputs of slow receptors can be
transmitted in a time-multiplexing way, replacing dedicated one-to-one connections by a few metal wires
and switches [15]. The speed discrepancy between sensors and processing units allows multiple iteration
cycles of processing in one sampling period, which benefits the working speed of the whole system [79]. As
for the processing units, the data transfer in von Neumann architecture deteriorates the overall working
speed. Besides, the peripheral circuits for analog/digital signal conversion and control logic also play an
important role. For parallel computing, the working speed in our definition has a weak relationship with
the pixel array size. But the increase in pixel density indirectly influences the working speed due to the
subsequent data transmission and processing.

Apart from those basic merits to evaluate a hardware processor, there are some specific merits for a
sensory system. Since it interacts with a complex, noisy, and ever-changing environment, high robustness
is important for the correct and precise interpretation of sensory information. It depends on the sensitivity
of receptors and the tolerance to noise signals. Researchers have been developing emerging materials and
device structures for higher response to the sensory stimuli [89-91]. With higher sensitivity, the smaller
change in sensory stimuli can be detected and transformed into effective signals for further process.
Otherwise, those sensory stimuli will be mixed up with the noise signals, degrading the recognition
accuracy of the sensory system. The reluctance to noise signals depends on not only hardware devices
but also algorithms. The emerging optic-electronic devices can suppress the noise signals through short-
term memory, realizing in-sensor computing [62]. Besides, some pre-processing circuits can be placed
near the sensor to suppress the random and low-intensity noise signals. Those hardware implementations
greatly enhance the contrast of input patterns and reduce the pattern dimension, contributing to high
performance and energy efficiency. As for algorithm, although artificial neural network has relatively
high robustness to various noise signals, the performance can degrade quickly at high noise level. The
bio-inspired spiking neural network has better performance in recognizing noise-interfered patterns [79].
It can efficiently discriminate between random noise signals and coherent pattern signals, which is a
powerful candidate for processing complex sensory information.

Another important merit is the dynamic range, which indicates the intensity range that the sensory
system can effectively process. The dynamic range of the single receptor is determined by the minimal
and maximum intensity with an effective response. The dynamic range of a single receptor is usually
limited. Through circuit and algorithm design for wide-range adaptation, e.g., dynamic gain control, the
dynamic range of the whole sensory system can be effectively enlarged [10,11,92,93].

6.2 Outlook

Apart from the improvement in recognition accuracy, the sensory system is expected to deliver high-
level intelligence like human, such as the online learning capability. The sensory system should con-
tinuously adjust the network parameters to adapt to the ever-changing environments. The practical
circumstance can be very different from the training patterns, which possibly leads to serious failure.
First, the basic devices should be programmable so that their states can be modulated by external stim-
uli. Second, the architecture of the processing units should be carefully designed to execute training
algorithms, e.g., the loss functions and error backpropagation. However, the training stage can consume
lots of energy and time, which poses a trade-off between online learning capability and hardware con-
straints. In this sense, a spiking neural network that exhibits event-driven capability and local learning
rules is more suited for sensory system [79].

Many existing studies focused on performance improvement in the single-modal sensory system. How-
ever, it is more reliable to rely on multiple sensory channels. On the one hand, the performance of the
artificial sensory system is much weaker than that of humans. Combining multiple sensory stimuli can
greatly enhance the overall sensitivity and accuracy. On the other hand, a single sensory input leads to
inevitable uncertainties, which can induce serious accidents when applied in practice. Therefore, multi-
modal sensory computing that effectively processes different types of sensory stimuli is essential to react
to complicated circumstances.

Bio-inspired neuromorphic computing is a powerful tool for processing enormous data, especially for
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sensory stimuli that are unstructured, contain enormous random noise signals, and change continuously.
However, the performance of artificial sensory system still requires substantial improvement in accuracy,
speed, energy efficiency, footprint, and high-level intelligence. This field calls for collaboration between
researchers from different fields (e.g., materials, chemistry, biology, mechanics, engineering, neuroscience,
etc.), which is crucial for the practical application of the sensory system.
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