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Abstract A large number of deep learning classification methods for emotion recognition tasks based on

electroencephalogram (EEG) have achieved excellent performance, and it is implicitly assumed that all labels

are correct. However, humans have natural bias, subjectiveness, and inconsistencies in their judgment, which

would lead to noisy labels for the EEG emotion state. To this end, we propose a framework for multi-channel

EEG-based emotion recognition in the presence of noisy labels. The proposed noisy labels classification

method is based on the capsule network using a joint optimization strategy (JO-CapsNet) until convergence.

Specifically, the network parameters are updated based on the loss function of the capsule network, and the

pseudo label is updated by predicting the existence possibility of the class label based on the output of the

capsule network. In this way, the alternate updating strategy can promote each other to correct the noisy

labels. Experimental results demonstrate the advantage of our method.
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1 Introduction

Emotion is a general term for complex subjective cognitive experience, which includes human’s psycho-
logical response and physiological response to external stimuli or self-stimulation. Emotion recognition
occupies an important position in the field of artificial intelligence [1]. Correct emotion representation is
a key step in emotion recognition research, which can be divided into non-physiological signals and physi-
ological signals. Non-physiological signals include facial expressions [2], body movements [3], gestures [4],
speech [5]. Physiological signals include heart rate (HR) [6], respiration rate (RR) [7], galvanic skin re-
sponse (GSR) [8], electromyography (EMG) [9], and electroencephalography (EEG) [10–12]. EEG signals
have the strong correlation with people’s cognitive behavior and mental activities, and generally reflect
emotions more directly compared with other non-physiological signals [13]. Besides, the multi-channel
EEG signal has good time resolution [12], which can be used for emotion recognition more efficiently and
accurately [14, 15].

Many researchers divide the emotion model into the discrete model and continuous model [16]. The
discrete model points out that all emotions are composed of the eight basic emotions of anger, fear,
expectation, sadness, disgust, surprise, acceptance, and joy. The continuous model is more extensible to
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Figure 1 (Color online) Proposed joint optimization framework in the presence of noisy labels.

vectorize emotion, and the research using this theory is more and more dominant in this field. Generally
speaking, the steps of traditional EEG emotion recognition are to extract features from EEG signals and
then use a classifier to classify the emotion features extracted from EEG signals [17]. For example, Li et
al. [18] used the support vector machine (SVM) to classify features extracted from the gamma frequency
band. Patil et al. [19] extracted higher-order crossing features from the EEG signal for classification, Shi
et al. [20] used differential entropy (DE) features on different frequency bands, and combined K-nearest
neighbor (KNN) and SVM for classification [21]. Recently, many researchers have confirmed that deep
learning is superior to traditional methods in many fields, and many EEG emotion recognition methods
combined with deep learning have demonstrated excellent results. For instance, Yang et al. [22] grouped
DE features of multiple frequency bands, and used a continuous convolutional neural network (CNN)
for classification. Song et al. [23] considered the electrode position relationship to design DE features,
and used the graph convolutional neural network to recognize emotion. Besides, there are some data-
driven and end-to-end EEG emotion recognition methods, which do not need to extract hand-crafted
features. For instance, Alhagry et al. [24] presented LSTM-RNN to learn features from the original signal
to identify emotions and then classify them in the dense layer. Dose et al. [25] put forward CNN to learn
generalized features and adopted conventional fully connected layers to classify EEG signals. Fahimi et
al. [26] developed an end-to-end deep CNN to decode attention information from EEG time series by
feeding three different EEG representations into the network.

Owing to large-scale, well-labeled training data, the deep learning methods have achieved excellent
performance in computer vision, pattern recognition, medical image analysis as well as EEG emotion
recognition. However, humans have a natural bias, subjectiveness, and inconsistencies in their judgment,
which would lead to noisy labels in the ratings of EEG emotion state [27, 28].

To solve the problem of noisy labels in EEG emotion recognition, we raise a method based on the
capsule network using a joint optimization strategy (JO-CapsNet), which alternately updates network
parameters and pseudo labels until convergence. Figure 1 shows the conceptual diagram of JO-CapsNet.
Our goal is to automatically rectify noisy labels during iteration, and hence the performance of the
classification can be increased in the presence of noisy labels.

The main contributions of this paper are as follows.

(1) In this paper, we come up with a JO-CapsNet framework for multi-channel EEG emotion recognition
in the presence of noisy labels, which can avoid the accumulation of errors during the training process,
so that the classification accuracy can be improved. The JO-CapsNet is an end-to-end framework, which
can solve the task of extracting features from the original EEG signals and classifying the emotions
simultaneously.

(2) We experiment on the DEAP dataset and DREAMER dataset, and the results demonstrate the ef-
fectiveness of the proposed method, which can improve the classification accuracy. For the arousal/valence
dimension of DEAP, when the noise ratio is 10%, 20%, and 30%, classification accuracies of the JO-
CapsNet method are increased by 0.4%/1.03%, 2.33%/3.29%, and 4.64%/4.56% compared with these
of the original capsule network. For the arousal/valence/dominance dimension of DREAMER, when
the noise ratio is 10%, 20%, and 30%, classification accuracies of the JO-CapsNet method increased by
0.88%/0.73%/0.6%, 1.72%/3.55%/3.34%, and 6.95%/7.72%/8.32% compared with these of the original
capsule network.
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Figure 2 Flowchart of the JO-CapsNet.

The layout for the rest of this paper is as follows. Section 2 is the elaboration of the proposed method.
Section 3 is the specific experimental process, results and analysis. Section 4 is the serious discussions,
and Section 5 is the conclusion of our study.

2 Methods

In this section, we will recommend the steps of EEG emotion recognition based on JO-CapsNet, dataset
and preprocessing, the existence of noisy labels, emotion recognition via capsule network, joint optimiza-
tion strategy, respectively.

2.1 Steps of EEG emotion recognition based on JO-CapsNet

As shown in Figure 2, the steps of the proposed EEG emotion classification are mainly divided into three
parts: the generation of training and test samples, the training process, and the testing part.

(i) An emotion is stimulated by music or movies [29], and electrodes are used to collect the brain
electrical signals generated by the subject. EEG signals and other related information in the process
(number of people, gender, number of electrodes) are recorded. Use artifact removal methods (such as
independent component analysis and blind source separation) to preprocess the EEG signal [30]. Divide
the obtained data into the training dataset and test dataset. In order to show the availability of our
method, noise is introduced into the label of the training dataset to form a new training dataset with
noisy labels, and the test dataset remains unchanged.

(ii) Input the obtained training data and noisy labels into the JO-CapsNet framework, and we can
get the optimal solution via the joint optimization strategy. The network parameters are updated based
on the loss function in the direction of gradient descent, and the pseudo label is updated based on the
output of the capsule network.

(iii) Input the test data and true label into the trained model to obtain classification accuracy, and
compare the JO-CapsNet with some traditional methods and deep learning methods to display the
effectiveness.

2.2 Dataset and preprocessing

We show the advantage of the proposed method on the public datasets DEAP and DREAMER.
DEAP includes EEG and peripheral physiological signals recorded by 32 participants (16 males and

16 females) when watching 40 music videos [22, 24, 31]. The EEG signal containing 32 channels is used
for emotion recognition, while the peripheral physiological signals are canceled. In addition, the DEAP
dataset provides a preprocessed version that is used in this article. In preprocessing, the EEG signal is
down-sampled to 128 Hz, and the band-pass frequency filter of 4.0–45.0 Hz is applied. In our experiments,
the data of each subject contains 60 s test data and 1 s baseline data. EEG signals are easily affected by
many factors, there is instability and sensitivity. In order to fairly compare with some other compared
methods, we adopt the method to preprocess the dataset as same as [22, 32]. For the EEG emotion
recognition task, removing the baseline signal in the emotionally relaxed state (no stimulus) is often
used as a preprocessing step. The emotional music video consisted of 40 one-minute clips, and then the
participants were asked to record their emotional levels. Score emotional level from 1 to 9 on the arousal
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and valence dimensions. In our experiment, we divided every dimension of data into two classes with a
threshold of 5.

DREAMER includes EEG and peripheral physiological signals recorded by 23 participants (14 males
and 9 females) when watching 18 film clips. The EEG signal containing 14 channels is used for emotion
recognition and in preprocessing, the EEG signal is down-sampled to 128 Hz. The signal collected by
each subject lasted from 65 to 393 s. The artifact subspace reconstruction (ASR) method is used to
remove artifacts. The subjects rated their arousal, valence, and dominance levels from 1 to 5. Finally,
there are experimental signals, baseline signals, and labels in the DREAMER dataset. In our experiment,
we divided every dimension data into two classes with a threshold of 3.

We use the two datasets and 10-fold cross-validation to show the advantage of the proposed method as
same as the comparison methods. The final experimental result is the average performance of the 10-fold
cross-validation. That is, setting a threshold to divide each emotional dimension into two classes, such
as low/high dominance, low/high valence, and low/high arousal. In DEAP, when the score is less than
5, the label is low, and when the score is greater than or equal to 5, the label is high. In DREAMER,
when the score is less than 3, the label is low, and when the score is greater than or equal to 3, the label
is high. In this way, the problem of EEG emotion recognition is actually a binary classification task. The
experimental signal preprocessed by 1s segmentation contains a slicing window of 128 sampling points.
For DEAP, one-minute clips can be divided into 60 1s segmented experimental data. Since each subject
in DEAP has 40 experimental signals, we obtained 2400 [32 × 128] EEG experimental samples for each
dimension about every subject. For DREAMER, one clip lasted from 65 to 393 s. We obtained 3728
[14 × 128] EEG experimental samples for each dimension about every subject. In order to simulate the
situation of noisy labels, we inject symmetric noisy labels into the dataset, that is, the label is changed
in a certain proportion in each dimension (arousal/valence), such as high → low, low → high. Ensure
that the ratio of noisy labels is r, and the ratio of the true and pure label is 1− r.

2.3 The existence of noisy labels

Noisy labels widely exist in many different fields. For instance, in the field of computer vision, large-scale
datasets used for face recognition usually contain noisy labels, especially when they are automatically
collected through image search engines or movies [33]. In the field of hyperspectral image classifica-
tion, noisy labels are caused by limited light in various frequency bands, atmospheric, and instrumental
factors [34]. In the field of medical image analysis, datasets are usually small, labels require domain ex-
pertise, and the variability between and within observers is high, which leads to noisy labels [35]. In the
field of medical applications, the description language may be too limited, which reduces the amount of
available information. In some cases, the information is also poor or uneven. For example, the patient’s
recall may be incorrect [36]. Noisy labels may also exist in the field of data coding or communication.
For example, in spam filtering, sources of noisy labels include misunderstandings of feedback mechanisms
and accidental clicks [37].

In the field of EEG emotion recognition, humans have natural bias and inconsistencies in their judg-
ment, which creates noise in the ratings [38, 39]. Besides, it is generally acknowledged that emotions
are subjective, and studies have indicated that humans understand and perceive emotions varyingly [28].
Moreover, it would lead to a significant increase in mislabeled trials when participants become sleepy,
bored, or distracted [27]. The goal of the traditional method is to fit the objective function without con-
sidering noisy labels. The parameters obtained after optimization deviate from the true optimal value,
which leads to a decline in the classification result during testing. Therefore, it is necessary to take the
noisy labels problem of EEG emotion recognition into consideration.

2.4 Emotion recognition via capsule network

CNN-based neural networks have achieved excellent performance in many fields, such as computer vision,
pattern recognition, and medical image analysis. Nevertheless, in view of the pooling operation, CNN yet
has shortcomings. Pooling improves the important feature information, compresses the feature, reduces
the amount of calculation, and alleviates the overfitting. Unfortunately, it is likely to drop precise spatial
relationships between some high-level features. For some unique classification problems, good results
cannot be achieved. For example, in face recognition problems, the positional relationship of five facial
organs, such an advanced spatial relationship, is very important [40]. In order to overcome the defect
of the aforementioned CNN, a capsule network is proposed [41]. The capsule network uses encoding
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entity features and dynamic routing technology, and the core unit composed of it is called a capsule.
A capsule is a group of neurons that learn to recognize visual entities and encode their attributes as
vectors. The probability of entity existence is expressed by the length of the parameter vector of the
instance, and the attribute of the entity is expressed by the direction of the vector. Innovatively, capsules
of different layers are connected through the iterative dynamic routing-by-agreement mechanism, which
is expressed as lower-level capsules tend to send their output to more correlated higher-level capsules, and
the connection between the lower-level and higher-level is quantified by coupling parameters. In addition,
the transformation matrix is used to express the local and global position relationship of the object in
CapsNet. Based on these innovations, the shortcomings of CNN can be overcome [42]. Therefore, CapsNet
has achieved good results in many fields: hyperspectral image classification [43], speech recognition [44],
natural language processing [45], and medical image classification [46].

Besides, compared with CNN, the capsule network has a smaller training data scale and is equipped
to recognize the spatial relationship between local and global features in the spatial domain [42], which
is conductive to improve the performance of emotion recognition. The capsule network demonstrated
excellent performance in EEG emotion recognition [42], so we choose the capsule network as a classifier.
The capsule network in EEG emotion recognition is comprised of three modules, Conv1, PrimaryCapsules,
and EmotionCapsules as shown in Figure 3.

The first layer Conv1 is a convolutional layer that has 256 kernels, ReLU activation, and the stride is
1. The size of these convolution kernels depends on the shape of the input. We use 9× 9 for DEAP [29].
This layer converts the value of the sampling point into the activity of the local feature detector, which
is then used as the input of the PrimaryCapsules layer.

The second layer (PrimaryCapsules) is a convolutional capsule layer. In detail, the task of Prima-
ryCapsules is to combine the basic features detected by Conv1. Finally, we group 256 feature maps into
32× 8D feature maps. In other words, we have 32 primary capsules, and 8 groups of 32 9× 9 convolution
kernels with the stride of 2 which are used to further extract features, and 8 groups of feature maps
are obtained. PrimaryCapsules totally have [56 × 8 × 32] capsule outputs, and all capsules share their
weights.

The last module is EmotionCaps. We propose this framework for binary classification tasks, for
example, low/high arousal and low/high valence, EmotionCaps have n (n = 2) 16D capsules representing
two types of emotional states. The length of each capsule vector in the EmotionCaps layer expresses the
existence of the emotional states. Thus the loss of emotion classification can be calculated. In order
to ensure that the length of the EmotionCaps’ output vj is between 0 and 1, the non-linear function
“squashing” is introduced. This step can be expressed as

vj =
‖sj‖

2

1 + ‖sj‖
2

sj

‖sj‖
, (1)

where vj (j = 1, . . . , n) is the vector output of emotion capsule j (j = 1, . . . , n), n is the number of
emotion capsule as shown in Figure 4.

For all capsules except the first layer of capsules, the total input of capsule sj is the weighted sum
of all prediction vector ûj|i, which is obtained from the second layer of capsules. The weight matrix
Wij [8 × 16] is multiplied by the output ui (i = 1, . . . , k) of the lower layer capsule to get the prediction
vector ûj|i, where k is the number of primary capsules. Mathematically, sj and ûj|i are expressed as

sj =
∑

i

cij ûj|i, (2)

ûj|i = Wijui. (3)

Among them, cij is the coupling coefficient determined in the iterative dynamic routing process as follows:

cij =
exp(bij)

∑

n exp(bin)
, (4)

where bij is the log prior probability of capsule i being coupled to emotion capsule j as shown in Figure 4,
and the sum of the coupling coefficients between the i-th capsule of EmotionCaps layer and all capsules
in the PrimaryCaps layer is 1.
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Figure 3 (Color online) The construction of capsule network.
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Figure 4 (Color online) Routing by agreement mechanism.

The capsules are connected by dynamic routing as shown in Figure 4. In the routing process, the lower
capsule transmits the input vector to the upper capsule. The lower-level capsule calculates the prediction
vector by multiplying its output with the weight matrix, which can be routed to the higher-level capsule.
If the prediction vector and the output of the upper capsule have a large scalar product, there is top-down
feedback, which has the effect of increasing the coupling coefficient of the upper capsule and reducing the
coupling coefficient of other capsules. Conv1 output is one-dimensional and has no spatial direction, so
no routing is used.

In the general supervised learning of clean data sets, the optimization problem is expressed as

min
θ

L(θ|X,Y ), (5)

whereX = [X1, . . . , XN ] ∈ R
C×HN represents the training data matrix, N denotes the number of samples,

C is the number of EEG electrode nodes and H is the sampling frequency. Y = [Y1, . . . , YN ] ∈ R
M×N

represents the label matrix containing noisy labels, Yi (i = 1, . . . , N) is a one-hot vector representation
of the class label and M is the number of classes.

However, when training the network on noisy labels, the result will deviate from the optimal solution
after fitting the noisy labels. To this end, we propose JO-CapsNet to solve the problem of EEG emotion
recognition using joint optimization strategy in the presence of noisy labels as follows:

min
θ,Y

L(θ, Y |X). (6)

Therefore, we assume that the network under the same learning rate will have difficulty in adapting to
noisy labels compared with clean labels. In other words, the loss in (5) is higher for noisy labels and lower
for clean labels. Under this assumption, we obtain the clean label by updating the label in the direction
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of decreasing the loss function expressed as (6), so that it is theoretically feasible to update the label to
achieve the purpose of solving the problem of noisy labels. L is the total loss function as follows:

L(θ, Y |X) = Lm(θ, Y |X) + αLp(θ|X) + βLe(θ|X), (7)

where Lp and Le represent two regularization losses, α and β denote their corresponding hyperparameters,
which will be introduced later, and Lm is the classification loss using capsule network, which is the sum
loss of all emotion capsules as follows:

Lm =

n
∑

j=1

Lmj
, (8)

Lmj
= Tj max (0,m+ − ‖vj‖)

2 + λ(1− Tj)max (0, ‖vj‖ −m−)2. (9)

We use the length of the instantiation vector to indicate the probability that the capsule entity exists as
shown in (9), Tj (j = 1, . . . , n) means emotion class. If the emotion of class j exists Tj = 1, otherwise
Tj = 0, m+, and m− are used to reduce the loss when certain emotional states do not appear, and
to prevent the initial learning of all emotion capsules to compress the vector length. In order to allow
multiple emotions, we use a separate margin loss Lmj

(j = 1, . . . , n) for each emotion capsule. We set
m+ = 0.9 and m− = 0.1. That is to say, if there is j class, Tj must be no less than 0.9, otherwise Tj will
be no greater than 0.1. We use λ = 0.5 to adjust the loss percentage of the absent emotion class.

In the case of only minimizing (9), results fall into a trivial global optimal solution of the total network.
For any training data Xi (i = 1, . . . , N), the one-hot label Yi (i = 1, . . . , N) is always predicted as an
instant one-hot label. In order to prevent all labels from being assigned to a class, we will introduce the
regularization loss Lp, which is the KL-divergence from s̄j(θ,X) (j = 1, . . . ,M) to the prior probability
distribution pj (j = 1, . . . ,M) as follows:

Lp =

M
∑

j=1

pj log
pj

s̄j(θ,X)
, (10)

s̄j(θ,X) =
1

N

N
∑

i=1

sj(θ,Xi) ≈
1

|B|

∑

Xi∈B

sj(θ,Xi), (11)

where the pj is a prior probability distribution, which is the distribution of emotion states among the
whole dataset. If the prior distribution of the emotion states is known, the label updated in subsequent
iterations should follow the same distribution. Since it is hard to obtain the prior distribution of the class
in EEG emotion recognition, the average probability s̄j(θ,X) in the dataset is obtained by calculating
each small batch B as shown in (11).

When α = β = 0, the network parameters θ and label Y are both in the local optimum, we recommend
an entropy term to group the probability distribution of all pseudo labels to overcome the problem as
follows:

Le = −
1

N

N
∑

i=1

M
∑

j=1

sj(θ,Xi) log sj(θ,Xi). (12)

2.5 Joint optimization strategy

To solve the problem of noisy labels, we propose a framework using a joint optimization strategy, and
the network parameters θ and pseudo label Y alternately update to optimize each other. Pseudo-labels
are initially used to assign predictions from models trained on the clean dataset to unlabeled data. They
are a form of self-training, often used in semi-supervised learning [47–50]. In semi-supervised learning,
data is either labeled or unlabeled, then we complete the task of assigning pseudo-labels to unlabeled
data, and update the pseudo labels iteratively. Considering that the specific location of the noise is not
known in the task of EEG emotion recognition under noisy labels, we use the self-training method [51] to
update the pseudo label in the iterative process to achieve the effect of correcting the noisy labels. Below
we will elaborate on the update process and rules.

Update network parameters. In this step, we fix the pseudo label Y , optimize according to (7)
and update θ through the stochastic gradient descent (SGD) of the loss function in (7).
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Table 1 Detailed list of network paramrters

Modules/hyper-parameters Layers Parameters/routing Shape/value

Input Input –
DEAP: 32 × 128

DREAMER: 14 × 128

Conv1 Conv2D Kernel
DEAP: 9 × 9 × 256

DREAMER: 6 × 6 × 256

PrimaryCapsules Conv2D Kernel
DEAP: 9 × 9 × 256

DREAMER: 6 × 6 × 256

EmotionCaps Dynamic routing
Wij 8 × 16

cij –

Hyper-parameters –
α 0.01

β 0.02

Update label. In this step, we fix network parameter θ to update the pseudo label Yi (i = 1, . . . , N).
When the probability of the existence of the label is s(θ,Xi) (i = 1, . . . , N), the KL-divergence loss from
s(θ,Xi) to Yi is the smallest, so it is expressed as follows:

Yi = s(θ,Xi). (13)

3 Experiments

In this section, we first introduce the related experimental process and parameter settings at length.
Then, we introduce and analyze the experimental results on the DEAP and DREAMER datasets.

3.1 Experimental design

We use 10-fold cross-validation to evaluate our proposed method. The layer Conv1 parameters are set
to 9 × 9 convolution kernels, the stride of 1. The layer PrimaryCapsule parameters are set to 9 × 9
convolution kernels, the stride of 2. For our method, we set the learning rate to 10−5, and batch size to
100. The hyperparameters α and β of the two regularization losses in the loss function are set to 0.01 and
0.02, respectively. For DEAP and DREAMER, the total number of epochs to 70 and 36, respectively. In
order to simulate different levels of noise, we set the noise ratio r to 0.1, 0.2, 0.3. The following will give
a detailed list of network parameters, as shown in Table 1.

Partition of training/test sets. 10-fold cross-validation [52] is adopted in datasets.

3.2 Results of experiments

In order to demonstrate the effectiveness of JO-CapsNet in multi-channel EEG emotion recognition in
the presence of noisy labels, we conduct experiments consisting of three parts: (i) illustrate the effect
of different ratios of noisy labels on the original capsule network and other six compared methods;
(ii) demonstrate the advantage of JO-CapsNet using a joint optimization strategy in comparison with
the original capsule network and compared with other seven methods under different noise ratios; (iii)
verify the actual correction effect of JO-CapsNet on noisy labels. We conducted extensive experiments
on the arousal and valence dimensions of DEAP. In order to simulate the influence of different degrees
of noise on the model, we injected different proportions of symmetrical noisy labels, such as high→ low,
low→ high as follows:

Y =

{

clean label with probability of 1− r;

noisy labels with probability of r.
(14)

Furthermore, we compared the proposed method with the latest deep learning methods: the CNN-
RNN [32], and the multi-grained cascade forest (gcForest) [11]. CNN-RNN is a hybrid neural network,
in which CNN extracts spatial features for space expansion and RNN extracts the temporal feature for
time extension from EEG signal. Cheng et al. [11] put forward gcForest that the 2D frame sequences
are constructed by obtaining the spatial position, and then the 2D frame sequences are input into the
constructed classification model. In addition, we also used three traditional classifiers for comparison,
including SVM [53], multi-layer perceptron (MLP) [22], and decision tree (DT) [22]. All methods have
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Figure 5 (Color online) The classification accuracies of the original capsule network under different ratios of noisy labels on

(a) the arousal dimension and (b) the valence dimension.
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Figure 6 (Color online) The classification accuracies of the original capsule network under different ratios of noisy labels on

(a) the arousal dimension, (b) the valence dimension, and (c) the dominance dimension.

been processed in the same preprocessing as our method, namely removing the baseline signal and sliding
windows. For traditional classifiers, the input is DE feature, which is extracted from θ (4–7 Hz), α

(8–13 Hz), β (14–30 Hz), and γ (31−50 Hz) frequency bands, and is often used in EEG emotion recognition
with frequency domain features.

Figure 5 shows the classification accuracies of the original capsule network under different ratios of
noisy labels on the arousal and valence dimensions of DEAP, respectively. Figure 6 shows the classification
accuracies of the original capsule network under different ratios of noisy labels on the arousal, valence,
and dominance dimensions of DREAMER, respectively. It can be seen that when we inject different
ratios of symmetrical noisy labels into the training data of the dataset, it will lead the neural network
to overfit noisy labels, thereby reducing the classification accuracy. For different subjects, the impact of
classification accuracy under the same noise ratio is different, but the overall impact of different noise
on different subjects is similar. For different noise ratios, the degree of classification accuracy decline
is different, the higher the noise ratio, the lower the classification accuracy. Compared with the case of
no noisy labels, the classification accuracy of the capsule network on the arousal dimension of DEAP is
reduced by 1.21%, 4.83%, 12.78%, and the classification accuracy of the capsule network on the valence
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Table 2 Average accuracies and standard deviations (%) of different methods under different ratios of noise on the arousal of

DEAP

Method 10% 20% 30%

DT 68.45±5.15 65.26±3.50 60.94±2.81

SVM 86.60±8.45 85.90±6.21 82.52±6.69

MLP 83.35±7.53 78.84±7.30 73.76±2.60

CNN-RNN 87.27±6.79 84.23±3.04 77.38±2.93

gcForest 93.54±7.10 91.76±7.02 86.97±6.94

Original CapsNet 93.93±3.00 90.31±3.51 82.36±4.38

Ours (JO-CapsNet) 94.33±3.04 92.64±3.65 87.00±5.21

Table 3 Average accuracies and standard deviations (%) of different methods under different ratios of noise on the valence of

DEAP

Method 10% 20% 30%

DT 67.66±3.97 61.02±3.34 60.11±2.51

SVM 87.41±6.52 85.24±6.83 81.16±7.50

MLP 83.33±6.36 78.45±7.20 73.34±2.21

CNN-RNN 86.99±2.70 82.40±2.61 76.14±2.55

gcForest 94.07±2.02 92.03±2.69 87.42±4.45

Original CapsNet 93.35±3.11 88.86±4.01 80.70±4.97

Ours (JO-CapsNet) 94.38±3.22 92.15±3.89 85.26±5.26

dimension of DEAP is reduced by 1.51%, 6.01%, 14.17% under the noise ratio of 0.1, 0.2, 0.3, respectively.
Also compared with the case of no noisy labels, the classification accuracy of the capsule network on the
arousal dimension of DREAMER is reduced by 6.73%, 8.55%, 15%, the classification accuracy of the
capsule network on the valence dimension of DREAMER is reduced by 12.85%, 17.45%, 24.99% and the
classification accuracy of the capsule network on the dominance dimension of DREAMER is reduced by
5.77%, 9.6%, 15.8% under the noise ratio of 0.1, 0.2, 0.3, respectively. Therefore, the noisy labels in the
training data have a negative effect on the classification accuracy via the capsule network, which is due
to that the original network easily overfits the noisy labels.

In addition, we demonstrate the performance of different ratios of noisy labels on classification accura-
cies using six compared methods, i.e., three traditional methods (SVM, MLP, and DT) and three latest
deep learning methods (CNN-RNN, gcForest, and original CapsNet). All methods have been processed
through the same preprocessing as our method. Tables 2 and 3 show the average accuracies and standard
deviations of different methods under different ratios of noise on the arousal and valence dimensions of
DEAP, respectively. Tables 4–6 show the average accuracies and standard deviations of different methods
under different ratios of noise on the arousal, valence, and dominance dimensions of DREAMER, respec-
tively. We can see that both traditional classification methods and deep learning classification methods
are greatly affected by noisy labels. All supervised learning methods are driven by labeled data, and its
classification accuracy is strongly dependent on the clean label to a large extent. As the proportion of
noise increases, the classification accuracy gradually decreases that showing the huge influence of noisy
labels on the different classification models.

We will demonstrate the effectiveness of JO-CapsNet to update pseudo labels using a joint optimization
strategy. We input the preprocessed EEG data and noisy labels into the capsule network. After continuous
iterative training, the network has learned the clean information in the dataset as well as the noisy
information. When updating the noisy labels, it is expressed as a probability s, and we use the average
output network probability s̄ of the past 10 epochs. The averaging technique has a similar effect to
ensemble learning, which can be used to prevent incorrectly updating pseudo labels to a large extent.
First, we trained the network for dozens of epochs only to update parameters iteratively by fixing labels of
training data. Then, we update the parameters and the pseudo-label alternately by setting the maximum
epoch. In our method, we set the learning rate to 10−5, α = 0.01, and β = 0.02.

Figure 7 shows the average accuracies of JO-CapsNet and the original capsule network on each subject
on the arousal and valence dimensions of DEAP when the noise is injected with a percentage of 0.3, respec-
tively. We can see that the overall classification accuracy of the original capsule network has decreased
to about 82.36% and 80.70%. The accuracies are reduced by about 12.78% and 14.17% compared with a
noise-free state. After using a joint optimization strategy, the classification accuracy of JO-CapsNet has
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Table 4 Average accuracies and standard deviations (%) of different methods under different ratios of noise on the arousal of

DREAMER

Method 10% 20% 30%

DT 79.13±8.73 72.62±7.77 65.73±5.83

SVM 87.29±7.20 86.60±7.26 76.02±7.52

MLP 87.01±8.15 82.57±8.72 75.61±8.71

CNN-RNN 76.81±13.57 75.88±12.30 66.03±11.18

gcForest 86.60±5.37 78.96±5.16 70.07±13.5

Original CapsNet 87.56±8.98 85.74±10.33 79.29±11.74

Ours (JO-CapsNet) 88.44±9.30 87.46±9.64 86.24±10.14

Table 5 Average accuracies and standard deviations (%) of different methods under different ratios of noise on the valence of

DREAMER

Method 10% 20% 30%

DT 72.51±6.64 67.55±5.72 62.70±4.59

SVM 80.93±6.62 79.21±6.82 75.68±7.67

MLP 82.68±8.04 78.55±8.54 73.65±8.04

CNN-RNN 74.24±11.67 72.27±12.74 63.62±11.59

gcForest 85.52±5.57 79.06±5.61 68.15±8.95

Original CapsNet 81.09±8.88 76.49±9.24 68.95±7.94

Ours (JO-CapsNet) 81.82±8.67 80.04±8.76 76.67±9.51

Table 6 Average accuracies and standard deviations (%) of different methods under different ratios of noise on the dominance of

DREAMER

Method 10% 20% 30%

DT 80.82±7.86 73.63±6.93 66.52±4.98

SVM 88.70±5.90 86.14±5.96 77.79±6.41

MLP 88.51±6.88 83.33±7.80 76.32±7.52

CNN-RNN 78.33±11.34 75.11±12.30 66.27±12.07

gcForest 85.22±5.50 79.26±4.94 70.93±6.19

Original CapsNet 88.68±7.54 84.85±9.26 78.65±10.99

Ours (JO-CapsNet) 89.28±7.04 88.19±7.79 86.97±8.31
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Figure 7 (Color online) Average accuracies (%) on each subject of JO-CapsNet and the original capsule network on (a) the

arousal and (b) the valence of DEAP classification tasks when the noise ratio is 0.3.

increased by about 4.64% and 4.56% compared with the original capsule network as shown in Figure 7.
Among them, individual subjects, such as s11 and s28, did not perform well in the two dimensions of
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Figure 8 (Color online) Average accuracies (%) on each subject of JO-CapsNet and the original capsule network on (a) the

arousal, (b) the valence, and (c) the dominance of DREAMER classification tasks when the noise ratio is 0.2.

arousal/valence compared with other subjects. Compared with Figure 5, it can be seen that the average
classification accuracies of these subjects (s11, s28, etc.) are lower than other subjects in the noise-free
state via the original capsule network. Since EEG signals vary from person to person, the personal factors
of different subjects are quite different, and the EEG signals produced by them are also very different.
Therefore, the accuracy reduction is different after the noise is introduced. However, on the whole, the
classification accuracy of our method has greatly improved in the presence of noisy labels, with an average
improvement of about 4.64% and 4.56% compared with the original capsule network, which verifies the
effectiveness of JO-CapsNet using joint optimization strategy.

Figure 8 shows the average accuracies of JO-CapsNet and the original capsule network on each subject
on the arousal, valence, and dominance dimensions of DREAMER when the noise is injected with a
percentage of 0.2, respectively. The accuracies are reduced by about 8.55%, 17.45%, and 9.6% compared
with a noise-free state. After using a joint optimization strategy, the classification accuracy of JO-CapsNet
has increased by about 1.72%, 3.55%, and 3.34% compared with the original capsule network as shown
in Figure 8. Similarly, the classification performance of different subjects is different, and the influence of
noise on the valence dimension is greater than that on the arousal and dominance dimensions. However,
the classification accuracy of each subject in the three dimensions is significantly improved after using
JO-CapsNet, which proves the effectiveness of the proposed method.



Li C, et al. Sci China Inf Sci April 2022 Vol. 65 140405:13

In order to evaluate the performance of the JO-CapsNet under noisy labels with different degrees of
noise, we trained the network using a joint optimization strategy on two datasets under different ratios
of noisy labels (i.e., r = 10%, 20%, and 30%). Tables 2–6 present the average classification accura-
cies and standard deviations of JO-CapsNet using joint optimization strategy under different ratios of
noisy labels compared with the original capsule network on the arousal/valence dimensions of DEAP
and arousal/valence/dominance dimensions of DREAMER. When r is 30%, the increases of accuracies
are about 4.64%/4.56% and 6.95%/7.72%/8.32%; when r is 20%, the increases of accuracies are about
2.33%/3.29% and 1.72%/3.55%/3.34%; when r is 10% and 5%, the classification accuracies of JO-CapsNet
are close to that of the capsule network without noise, which means that the noisy labels can be roughly
rectified. Besides, Tables 2–6 also illustrate the average accuracies and standard deviations of different
ratios of noisy labels via JO-CapsNet and other six compared methods on the arousal/valence dimen-
sions of DEAP and arousal/valence/dominance dimensions of DREAMER, which fully demonstrates the
effectiveness of our method under various noise ratios, and the greater the noise in a certain range, the
more obvious the improvement of classification accuracy.

Besides, the proposed joint optimization strategy can be used for any differentiable classification model,
including SVM, MLP, CNN-RNN, and gcForest, but DT is not a differentiable classification model and
can not be used.

4 Discussions

In the multi-channel EEG emotion recognition field, many researchers have raised valid classification
models to achieve great results. There are still some shortcomings. For example, most of the existing
methods belong to supervised learning, and the performance of supervised learning relies on clean labels
to a large extent. However, labels tend to contain inaccurate labels that are termed as noisy labels under
the realistic circumstance. Therefore, how to solve the classification of multi-channel EEG emotion
recognition in the presence of noisy labels is particularly important. Our goal is to find a simple and
effective method to realize emotion recognition of multi-channel EEG under noisy labels. In this article,
we propose the JO-CapsNet method using a joint optimization strategy, which is customized for multi-
channel EEG emotion recognition. We compared the proposed method with the other seven methods.
Among them, DT, SVM, and MLP are traditional machine learning algorithms, and CNN-RNN, gcForest,
and original capsule network are deep learning models to demonstrate the effectiveness of JO-CapsNet.

The production of emotion is related to the functions of the various parts of the brain. Different
emotions lead to the different functional performance of various parts of the brain, and there are specific
connections between different brain regions that are also related to emotions. Taking into account the
ability of the capsule network to learn from special spatial information between the local part and the
whole of the object, the capsule network is correspondingly applied to the multi-channel EEG emotion
recognition. The capsule network can be used to characterize the connection among various channels of the
EEG. Specifically, the primary capsule encodes the brain regions and the transformation matrix encodes
the connections between various brain regions. These creative structures are conducive to extracting
the intrinsic features of multi-channel EEG emotion recognition tasks. As shown in Tables 2–6, the
original capsule network method can obtain significantly better performance than these of the three
methods (CNN-RNN, gcForest, and DGCNN). The length of each capsule vector in the EmotionCaps
layer expresses the existence of the emotional states and the classification loss can be calculated from
it. We use the length of the capsule as the probability of predicting each class, the average of the
probability of each class in the past 10 epochs is used as the pseudo label, and update the pseudo label
and network parameters alternately. After the optimization of the network, the possibility of capsule
prediction is more accurate, making the pseudo-label closer and closer to the clean label. Therefore, the
alternate updating of the network parameters and pseudo labels can rectify noisy labels to improve the
classification performance.

Among the seven methods of experimental comparison, the JO-CapsNet shows higher accuracy com-
pared with other methods under different ratios of noisy labels (i.e., r = 0.1, 0.2, 0.3) in most cir-
cumstances, which can alternately update the pseudo label and parameters of capsule network until
convergence. When the noise ratio is less than 0.3, they can correct the noisy labels to a certain extent,
and finally achieve a classification accuracy of more than 90% for DEAP. For DREAMER, the classifica-
tion accuracy is improved to the same extent, and the average classification accuracy in the dimensions
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of arousal and dominance can be improved to nearly 90%. In summary, the proposed JO-CapsNet is an
excellent framework to solve the problem of multi-channel EEG emotion recognition in the presence of
noisy labels.

5 Conclusion

We propose a framework using a joint optimization strategy based on a capsule network in the presence of
noisy labels. Our proposed JO-CapsNet can well identify the internal connections between various EEG
channels. With its good ability to “predict” class labels in the iterative process, the capsule network
can promote updating pseudo labels correctly. The pseudo label and parameters of network update
alternately until convergence during the training process, and hence improve the network’s classification
of multi-channel EEG emotion recognition. Besides, we conducted a lot of experiments on the DEAP
and DREAMER datasets, which confirmed the effectiveness of our method. Within a certain range of
noise ratios (r = 0.1, 0.2, 0.3), using our proposed JO-CapsNet can obtain better performance than these
of the original capsule network. When the ratio of noise is 10%, the classification accuracies of capsule
network using joint optimization strategy can increase to 94.33%/94.38% and 87.46%/80.04%/88.19%.
When the noise ratio is 20% and 30%, the improvement of classification accuracies is more than 2%
compared with the original capsule network under the same ratio of noisy labels, which also shows the
excellent performance of our method.
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