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Appendix A Algorithm

Algorithm A1 GTST-α Algorithm

Require: A, y, α, t=1, x0=0, r0=y, d0=A′r0, I0=∅, T 0=[1, n].
Ensure: The reconstructed signal x.
1: while stopping condition false do

2: xt = xt−1 + dt−1

3: It = {i : |xti| > α max |xtj|; i ∈ [1, n], j ∈ T t−1, α ∈ (0, 1]}
4: T t = [1, n] \ It

5: xtIt = A
†

Ity
6: xtT t = 0.
7: rt = y−Axt

8: dtT t = A′
T trt

9: dtIt = 0

10: t = t+ 1
11: end while

12: return x

Appendix B Experiments

In this section, we conduct numerical experiments via computer simulations to illustrate the effectiveness of the proposed approaches.

We implemented GTST-α, GraDes [1]and SDAR [2] in MATLAB running on Windows 10 with 2.8-GHz Intel i7-7700HQ Quad Core

CPU and 16-GB memory. The code of GraDes and SDAR is available on the author’s homepage. In all the experiments, the

unknown sparse signals were initialized with zero vectors. The nonzero entries of sparse signals were chosen as a random support

set of elements, and their values were sampled uniformly. The sampling/measurement matrix A was randomly generated from the

standard i.i.d. Gaussian distribution in each trial; each column was then normalized to have unit norm. The tested algorithms were

stopped upon the relative error fell below stopping tolerance 10−6 or the number of iterations is greater than 100. In all the cases,

the performance of the algorithms was quantified by the probability of exact reconstruction, i.e., the rate of exact reconstruction

on Monte Carlo simulation repeated 200 times. A relative error of less than 10−2 was counted as the exact reconstruction.

First, we present a demo of the signal reconstruction performed in [3]. The sparse signal was generated with sparsity k=25,

length n=200. We set m=60, created a m×n sampling/measurement matrix A, and set y := Ax. As observed by [3], a sparse signal

with 25 nonzeros cannot be easily reconstructed using only 60 measurements with signal dimension n=200. The top left panel of

Figure C1 shows the perfect reconstruction using GTST-α with α=0.8 in merely 14 iterations. However, SDAR exhibits a number

of false nonzeros and missed nonzeros when using the same setting as GTST (As shown in the top right panel of Figure C1). The

dynamic thresholding introduced in GTST-α is important since it allows GTST to exactly reconstruct the unknown sparse signal

using fewer measurements than SDAR.

We turn now to test the performance comparisons of GTST, SDAR, and GraDes in terms of the probability of exact recon-

struction. First, we fixed the signal dimension n=1000, and sample size m=400 and varied the sparsity level k=50:10:240. Here,

k =50:10:240 means the sparsity level ranges from 50 to 240 with an increment of 10. The results are plotted in the bottom left

panel of Figure C1. It is clear that the performance of all the three methods worsened as k increased. With smaller sparsity level

k=50:100, all three methods performed well in recovering the true signal. As k increased, GraDes was the first one that failed to

reconstruct signal and vanished when k > 160. However, GTST performed well even when k=160. Next, we tested the comparisons
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by fixing the signal dimension n=500, sparsity level k=20 and varying the sample size m=20:10:200. As shown in the bottom right

panel of Figure C1, the probabilities of the exact reconstruction of sparse signals of GTST and SDAR are higher than GraDes as

m increases. In summary, these experimental results indicate that GTST achieves better reconstruction performance with fewer

measurements than SDAR and GraDes.
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Figure C1 (Color online) Numerical experiments. A demo of sparse signal reconstruction using GTST (top left panel) and SDAR

(top right panel). Performance comparison in terms of the probability of exact reconstruction by varying sparsity level k (bottom

left panel) and sample size m (bottom right panel).
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