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Dear editor,

With the rapid development of robotics, flexible robotic ma-

nipulators have played an important role in industrial pro-

duction and manufacture because of their lightweight, higher

operation speed and better energy efficiency [1]. How-

ever, flexible materials will result in vibration. Besides, in

practical applications, external disturbances and constraints

caused by environmental factors or technique requirements

diffusely exist, which will affect the operation accuracy of

the manipulators. Thus, we focus on the angle tracking and

vibration problem of the flexible robotic manipulator with

external disturbances and output constraints.

Disturbance observers have been widely recognized as

a valid way to eliminate the effect of disturbances [2–6].

In [3], an adaptive neural control with disturbance observers

was designed for uncertain nonlinear systems. Chen et

al. [5] proposed anti-disturbance control based on distur-

bance observers for hypersonic flight vehicles. Most of the

aforementioned methods require strong assumptions about

the first time derivative of disturbances, which is not so

pratical.

Many researches have been done to deal with the con-

straint problems, and diverse control approaches have been

proposed. In [7], an adaptive neural control was proposed

to deal with output constraints. He et al. [8] developed a

vibration controller for a flexible manipulator with input

deadzone. However, the foregoing studies only discussed

the effects of the symmetric constraints for the control sys-

tems, but the asymmetric constraints are crucial to practical

requirement.

Thus, in this study, boundary control schemes that can

trace the prescribed position and suppress the vibration are

developed based on a partial differential equation (PDE)

model. An asymmetric barrier Lyapunov function is in-

troduced to handle the asymmetric constraints. Novel dis-

turbance observers are proposed to attenuate the effects of

boundary disturbances. The well-posedness and the stabil-

ity of the control system are discussed.

Problem formulation. Notations (·) = (·)(t), (·) =

(·)(x, t), ˙(·) =
∂(·)
∂t

and (·)′ =
∂(·)
∂x

are used throughout

the study. Define the displacement of the manipulator as

z = xθ + y, where y is the elastic deformation and θ is the

angular position. Let e = θ− θd be the tracking error of the

angle and ze = xe+y be the offset of the manipulator, where

θd is the desired angle. Besides, d1 and d2 represent the

boundary disturbances, and u and τ are the designed con-

trol laws. Let a1, a2 > 0 be the end-point displacement out-

put constraints, b1, b2 > 0 be the angle output constraints,

such that the output constraints −a1 < ze(l, t) < a2 and

−b1 < e < b2 are guaranteed by u and τ , where l represents

the length of the flexible manipulator.

According to [9], consider the flexible manipulator system

model as

ρz̈ +EIy′′′′ − Ty′′ + cż = 0, (1)

∀x ∈ (0, l) and t ∈ [0,∞), where the tension, bending stiff-

ness, density and damping coefficient are represented by T ,

EI, ρ and c respectively.

The boundary conditions are presented as






Ihθ̈ − Ty(l, t)− EIy′′(0, t) = τ + d1,

T y′(l, t) −EIy′′′(l, t) +mz̈(l, t) = u+ d2,

y(0, t) = y′(0, t) = y′′(l, t) = 0,

(2)

∀t ∈ [0,∞), where the inertia of the hub is represented by

Ih and m is the mass of payload.

Assumption 1. Suppose that there is a positive constant

D satisfying |d̈i| 6 D (i = 1, 2).

Control design. Define a disturbance matrix D =

[d1, d2]T. Then Ḋ = [ḋ1, ḋ2]T is the time derivative of D,

and D̂ = [d̂1, d̂2]T and ˆ̇
D = [

ˆ̇
d1,

ˆ̇
d2]T are the estimates of D

and Ḋ, respectively. We propose the following disturbance
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Figure 1 (Color online) (a) Elastic deformation y; (b) position response z; (c) output tracking errors; (d) estimates of distur-

bances.

observers






D̂ = −Ψ1 + [γ1Ihθ̇, γ2mż(l, t)]T,

ˆ̇
D = −Ψ2 + [γ1Ihθ̇, γ2mż(l, t)]T,

Ψ̇1 = Ψ̇2 − ˆ̇
D,

Ψ̇2 = [γ1(PΦ1 + d̂1 + τ), γ2(PΦ2 + d̂2 + u)]T,

(3)

where γ1, γ2 > 0, P = [EI,T ]T, Φ1 = [y′′(0, t), y(l, t)]T and

Φ2 = [y′′′(l, t),−y′(l, t)]T.

Define the estimate errors of D and Ḋ as




D̃ = [d̃1, d̃2]

T = [d1 − d̂1, d2 − d̂2]
T,

˜̇
D = [

˜̇
d1,

˜̇
d2]

T = [ḋ1 −
ˆ̇
d1, ḋ2 −

ˆ̇
d2]

T.
(4)

The boundary control laws are designed as






τ = −d̂1 −
J(e)e

b22 − e2
− k1θ̇ −

(1− J(e))e

b21 − e2
− k2e,

u = −d̂2 −
J(ze(l, t))ze(l, t)

a22 − z2e(l, t)
− k3ż(l, t)

−
(1 − J(ze(l, t)))ze(l, t)

a21 − z2e(l, t)
− k4ze(l, t),

(5)

where k1, k2, k3, k4 > 0. The function J(χ) is

J(χ) =

{
1, χ > 0,

0, χ 6 0.
(6)

Well-posedness. Define the state space as






L2=

{

f : [0, l]×[0, T ] → R

∣∣∣∣ sup
t∈[0,T ]

∣∣∣∣

∫ l

0
f2dx

∣∣∣∣<∞

}

,

H2
l ={f ∈L2|f ′, f ′′∈L2, f(0, t)=f ′′(l, t)=0}.

(7)

The inner product of H is considered as

〈Y1, Y2〉H

= βEI

∫ l

0
g′′1 g

′′

2dx+ σρ

∫ l

0
(v1 +w1)(v2 + w2)dx

+ σ(c − ρ)

∫ l

0
v1v2dx+ ρ(β − σ)

∫ l

0
w1w2dx

+ βT

∫ l

0
(g′1 − g′1(0, t))(g

′

2 − g′2(0, t))dx

+ σIh(v
′

1(0, t) +w′

1(0, t))(v
′

2(0, t) + w′

2(0, t))

+ σm(v1(l, t) +w1(l, t))(v2(l, t) + w2(l, t))

+ Ih(k1σ + k2β)v
′

1(0, t)v
′

2(0, t) + βmT11T12

+m(k3σ + k4β)v1(l, t)v2(l, t) + βIhT21T22

− σmw1(l, t)w2(l, t) − σIhw
′

1(0, t)w
′

2(0, t), (8)

where β, σ > 0, and Yi = [gi, vi, wi, T1i, T2i]
T ∈ H, i = 1, 2.

We can defind a linear operator A which satisfys that A

is dissipative in H and its inverse is compact in H, so that

the closed-loop system can be described as

∂Y

∂t
= AY + F, Y (x, 0) = Y0(x), (9)

where Y = [z, ze, ż, ż(l, t), θ̇]T, F = [0, 0, 0, d̃1
m

,
d̃2
Ih

]T, and

Y0(x) is the system initial state. The details of A are shown

in Appendix A.

Combining the Lumer-Phillips theorem, A is a generator

of contraction C0-semigroup. From Assumption 1, it can

be concluded that F is locally Lipschitz continuous. Hence,

the well-posedness of the proposed control system is veri-

fied. If Y0(x) ∈ H, there will be a unique solution for the

closed-loop system, which can be expressed as

Y = TY0(x) +

∫ t

0
T (x, t− s)F (x, s)ds, (10)

where T is the semigroup associated with A.

Uniform ultimately bundedness. Define the asymmetric

barrier Lyapunov function as

V = Vs + Va + Vb + Vm + Vu + Vd, (11)
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where






Vs = σ(mze(l, t)ż(l, t) + Ihθ̇e) + σρ

∫ l

0
zeżdx,

Va =
β(1− J(ze(l, t)))

2
ln

a21
a21 − z2e (l, t)

+
βJ(ze(l, t))

2
ln

a22
a22 − z2e (l, t)

,

Vb =
β(1 − J(e))

2
ln

b21
b21 − e2

+
βJ(e)

2
ln

b22
b22 − e2

,

Vm =
βρ

2

∫ l

0
ż2dx+

βEI

2

∫ l

0
(y′′)2dx

+
σc

2

∫ l

0
z2edx+

βT

2

∫ l

0
(y′)2dx,

Vu =
σk1 + βk2

2
e2 +

βIh

2
θ̇2 +

βm

2
ż2(l, t)

+
σk3 + βk4

2
z2e(l, t),

Vd =
1

2
D̃TD̃ +

1

2
[D̃ − ˜̇

D]T[D̃ − ˜̇
D].

(12)

Theorem 1. By applying the control schemes (5) and the

Lyapunov function (11), it can be concluded that the sys-

tem is uniformly ultimately bounded and the tracking errors

ze(l, t) and e never violate the prescribed asymmetric con-

straints. That is, −a1 < ze(l, t) < a2 and −b1 < e < b2.

The proof is shown in Appendix B.

Simulations. Figure 1 presents the simulation results. It

is shown that the vibration is suppressed and the end-point

is controlled to the prescribed position with the proposed

control. Besides, external disturbances are estimated pre-

cisely by observers and both angle and displacement track-

ing errors obey the constraints −a1 < ze(l, t) < a2 and

−b1 < e < b2. The simulation settings are shown in Ap-

pendix C.

Conclusion. Boundary control laws with disturbance ob-

servers have been constructed to restrain the vibration and

regulate the position of the flexible robotic manipulator sub-

ject to external disturbances and asymmetric output con-

straints. The stabilities and well-posedness of the system

have been demonstrated. Numerical simulation results have

illustrated the feasibility of control schemes.
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