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Dear editor,

In Asiacrypt 2016, Todo et al. [1] proposed a nonlinear in-

variant attack, a new type of distinguisher that covers any

number of rounds for a substitution-permutation network

(SPN) cipher under weak keys. The main idea of the nonlin-

ear invariant attack is to find a Boolean function g : Fn
2 → F2

such that the evaluation of g(x) ⊕ g(Ek(x)) is constant for

any x, where Ek(x) is a block cipher. The function g is called

the nonlinear invariant of Ek and the keys k that satisfy the

condition are called weak keys. In addition, Todo et al. [1]

proved that the nonlinear invariants of an SPN cipher can

be found exactly as long as the cipher satisfies three condi-

tions: the cipher is LS-design, the transformation matrix of

the linear layer is orthogonal, and the S-box has quadratic

nonlinear invariants.

Previous studies have focused mostly on the influence of

round constants on nonlinear invariant attacks. Beierle et

al. [3] showed that the success of a nonlinear invariant at-

tack depends mainly on the selection of round constants,

and presented some strategies to find round constants as a

countermeasure against the nonlinear invariant attack. In

order to eliminate the influence of round constants, Wei et

al. [4] proposed a generalized nonlinear invariant attack to

use a pair of constants in the input of nonlinear invariants.

By introducing the useful concept of closed-loop invariants

of the S-box, Wei et al. also proposed a new method for

selecting round constants that improves upon the strategy

proposed by Beierle et al.

In this study, we study the equivalence of nonlinear in-

variants in S-boxes and propose an improved nonlinear in-

variant attack with an application to attack full FIDES-80

under 232 weak keys.

Equivalence of nonlinear invariants in S-boxes.

Proposition 1 ([5]). Let S and S′ be two 4-bit S-boxes.

If S is bijective, and the differential uniformity and nonlin-

earity are both 4, then the S is called a optimal S-box. S

and S′ are called affine equivalent if there exist two invert-

ible 4 × 4 matrices A,B over F2, and constants a, b ∈ F
4
2

such that S′(x) = B(S(A(x) ⊕ a)) ⊕ b. If S is an optimal

S-box, S′ is also an optimal S-box.

On the basis of Proposition 1, several results on the clas-

sification of 4-bit optimal S-boxes have been presented [5,6].

Affine equivalence preserves differential uniformity and non-

linearity, and an interesting point of research is whether it

also preserves nonlinear invariants. However, our results

show that by introducing a new definition of equivalence, the

algebraic degree of nonlinear invariants can be preserved.

Definition 1 (Q-equivalence). Two n-bit S-boxes, S and

S′, are called Q-equivalent if there exists an n×n invertible

matrix Q over F2 such that S′(x) = Q−1S(Q(x)).

Definition 2 (Category). We use DS to denote a set of

algebraic degrees of invariants contained in the space of non-

linear invariants, with the exception of trivial invariants, of

an n-bit S-box S, i.e., DS = {deg(g)|g ∈ U(S)}, where U(S)

is a nonlinear invariant space of S. A set that contains all

the n-bit S-boxes with the same elements in DS is called a

category.

Here we demonstrate that the invariants of the S-boxes

belonging to the same Q-equivalence class have the same

algebraic degree.

Theorem 1. Let S denote an n-bit S-box. For any S-box

S′ that is Q-equivalent to S, DS′ = DS .

According to the above theorem, one can classify 4-bit

S-boxes into different Q-equivalent classes according to the

elements in DS . Additionally, we propose the following the-

orems to efficiently retrieve the representative of each Q-

equivalent class in negligible time.

Theorem 2. Without constant addition, suppose that

two 4-bit optimal S-boxes, S1 and S2, belong to the affine

equivalence class whose representative is Gi (0 6 i 6 15).

Let

S1(x) = B1Gi(A1(x)), S2(x) = B2Gi(A2(x)),

where A1, A2, B1, B2 are 4 × 4 invertible matrices. S1 and

S2 belong to the same Q-equivalence class if and only if

A1B1 = A2B2. In addition, this theorem holds for other

affine equivalence classes.

Corollary 1. Let S = QGi(x), whereQ is a 4×4 invertible

matrix and Gi is one of the representatives of the 16 affine

equivalence classes of optimal 4-bit S-boxes. By taking all
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possible values of Q, we can directly calculate the repre-

sentative of each Q-equivalence class in the S-boxes that is

linearly equivalent to Gi.

We classify 232.6 4-bit S-boxes in different affine equiv-

alence classes separately and give the distribution of Q-

equivalence classes (Tables A1 and A2 in Appendix A). Ob-

viously, the S-boxes of the Q-equivalence classes in cate-

gories with DS = {4}, {3, 4} have no quadratic nonlinear

invariants; so it is impossible to determine the nonlinear in-

variants of ciphers according to Lemma 1 (in Appendix B).

Improved nonlinear invariant attack. Here we recall a

certain type of AES-like SPN cipher. Assume that the in-

ternal state can be expressed as an n × m matrix over F
b
2.

The internal state is updated iteratively by R round func-

tions, and the input and round key states of the r-th round

are denoted by s(r) and k(r), respectively. Particularly, a

cell of s(r)(or k(r)) is denoted by s
(r)
i,j (or k

(r)
i,j ). The round

function can be expressed as MC ◦ SR ◦ SB ◦ AddKey.

AddKey: The state s(r) is bitwise XORed with the

n × m × b-bit roundkey k(r) generated by the key sched-

ule. SB: The SubBytes (SB) step is the S-box layer. A b-bit

S-box S is applied to every b-bit cell of the state s(r) in

parallel. SR: This transformation is a cell shift, which can

be defined as a permutation πSR = (l0, l1, . . . , ln−1) acting

on Zn = {0, 1, . . . , n − 1} that moves cell s
(r)
i,j by li posi-

tions to the left in its original row. MC: The MixColumns

(MC) transformation is applied to m columns of s(r) in par-

allel. More precisely, the state s(r) is left-multiplied by an

n× n orthogonal binary matrix M . After the last round of

encryption, the final ciphertext is obtained as s(R) ⊕ k(R).

We introduce an improved nonlinear invariant attack.

The main idea is to replace the n-bit S-box S by Q−1 ◦

S ◦ Q ⊕ c where Q is an n × n invertible matrix in F2 and

c ∈ F
n
2 , so that the replaced S-box has quadratic nonlinear

invariants. In addition, we can prove that the original block

cipher EK is changed to Q−1 ◦ EK′ ◦ Q after replacing the

S-box.

Proposition 2. Consider an R-round SPN block cipher

Ek of the type mentioned before. If its b-bit S-box S(x) is

replaced by S′ = Q−1S(Q(x)) ⊕ c, where Q is a b × b bi-

nary invertible matrix and c is a constant over F
b
2, then the

changed round function MC ◦ SR ◦ SB’ ◦ AddKey1) is equiv-

alent to Q−1M ◦ MC ◦ SR ◦ SB ◦ AddKey’ ◦ QM where Q(or

Q−1)M acts to left-multiply each cell of the current internal

state s(r) by Q (or Q−1), and AddKey’ is to bitwise XOR

the internal state with the modified round keys k
(r)
m whose

specific forms are

k
(r)
m =

{
QM(k(0)), r = 0,

QM(k(r) ⊕MC(C)), 1 6 r 6 R,
(1)

where C is an n×m matrix over F
b
2 with c cells.

Because Q−1M ◦QM is equal to an identical transforma-

tion, only QM at the input and Q−1M at the output of the

cipher are preserved in the iterative process of the round

function, assuming that the block cipher Ek is transformed

to Êk after the S-box substitution. From the above analysis,

we can conclude that Êk is equivalent to Q−1M ◦Ek′ ◦QM,

where k′ indicates that the round key k(r) is replaced by

k
(r)
m . Note that Ek′ is equivalent to changing the key sched-

ule of the original block cipher Ek. The relationship between

Ek, Q
−1M ◦Ek′ ◦QM, Ek′ , and Êk is depicted in Figure 1.

In conclusion, if an appropriate matrix Q and a con-

stant c are selected such that Q−1S(Q(x)) ⊕ c has

quadratic nonlinear invariants that are linear (or con-

stant) in some of the inputs, then by Lemma 1 we can

obtain the nonlinear invariants of Q−1M ◦ Ek′ ◦ QM.

From the quadratic nonlinear invariants, we can directly

obtain the weak key form of k(r). Finally, we can

E
k

E
k

E
k′

Q−1M○E
k′
○QM

Replace
the S-box

Change the key schedule

Add linear 
transformation

Equivalent
^

Figure 1 Relationship between Ek, Q
−1M◦E

k′ ◦QM, E
k′ and

Êk.

calculate the set (denoted by K) of weak keys of k
(r)
m using

the relationship between k
(r)
m and k(r). Thus, if the round

keys k(r) ∈ K, we can execute a distinguishing attack on the

block cipher Ek.

Application to full FIDES-80. Bilgin et al. [7] pre-

sented a lightweight authentication cipher FIDES at CHES

2013. The round function of FIDES-80 can be described as

CA ◦MC ◦ SR ◦ SB. Let

Q =




0 0 0 0 1

0 0 0 1 1

0 0 1 0 0

0 1 1 0 1

1 0 0 0 0




, c = 1.

We can calculate the bases of nonlinear invariants of

Q−1S(Q(x)) ⊕ c (Table A3 in Appendix A). By observ-

ing the combinations of these bases, we find that g0(x) =

x[4] ⊕ x[2] ⊕ (x[1] ∧ x[4]) ⊕ (x[0] ∧ x[3]) ⊕ (x[0] ∧ x[1]) is

a quadratic invariant where the third bit is not included in

the nonlinear component. The 5-bit nibble of the round con-

stant RC(r) in row i and column j is denoted by rc
(r)
i,j . The

weak constant form of RC(r) can be obtained immediately

according to the specific form of the function g0(x), which

is rc
(r)
i,j = (0, 0, 0, 0, 0) or (0, 0, 1, 0, 0). Thus, from (1), we

can discern whether each 5-bit cell of RC
(r)
m is (1, 1, 1, 0, 0)

or (1, 1, 0, 1, 0), RC
(r)
m is a weak constant. Therefore, the

density of weak constants corresponding to the nonlinear

invariant g of a round transformation of FIDES-80 is 2−128,

i.e., there are 232 weak constants.

Our method can be used to mount a distinguishing at-

tack under a weak constant, assuming that the plaintext

and ciphertext of the R-round FIDES-80 transformation are

s(0) and s(R), respectively, and that all the round constants

RC
(r)
m are weak. The relation between s(0) and s(R) is given

as

g(Q−1M(s(0))) = g(Q−1M(s(R))) = const,

which always holds for arbitrary s(0) when the weak con-

stants RC
(r)
m are fixed.

1) SB’indicates that the S-box S is replaced by S
′.
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Conclusion. We have proved that the introduction of Q-

equivalence preserves the algebraic degree of the nonlinear

invariants. Using this property, we partially classify 4-bit

affine equivalent optimal S-boxes into four different cate-

gories according to their Q-equivalence. Furthermore, we

propose an improved nonlinear invariant attack based on a

new technique to substitute the S-box, and apply it to at-

tack full FIDES-80 through nonlinear invariants with 232

weak constants.

Detailed proofs of all the above theorems, corollary, and

proposition can be found in Appendix B.
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