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Dear editor,

In recent years many supervised video pose estimation meth-

ods have achieved growing successes based on well-labeled

training datasets. Nonetheless, when facing roughly-labeled

training data, it still remains challenging to intrinsically en-

code the video contents’ spatial-temporal coherency for ro-

bust video pose estimation.

Some researches aimed to directly improve and refine the

existing confidence maps by combining the spatial-temporal

structure models [1, 2]. Li et al. [2] suggested that fixing

some reliable estimations and formulating propagation pro-

cessing as a 3D trajectory completion problem. Differently,

Moon et al. [1] assumed that state-of-the-art 2D human pose

estimation methods have similar error distributions. Zhou

and Torre [3] first learned a codebook from the motion cap-

ture dataset, and then they employed a bi-linear model to es-

timate poses by matching the movement mode and the dense

trajectory tracing result. It enables related patterns to be

expressed using sub-patterns instead of a uniform probabil-

ity distribution. In [3], this flexible codebook based frame-

work still requires a lot of extra annotated data to ensure

the models’ dataset-specific applicability.

To overcome this drawback, we advocate a new hier-

archical hyper-graph approach based on intrinsic spatial-

temporal subspace exploration and propagation. Those

“mis-matched” hyper-graph subspaces, which result from

imperfect data, could be adaptively improved by taking ad-

vantage of visual contents’ intrinsic continuities. At the the-

oretic level, the key idea for subspace exploration is to de-

sign a maximum matching subspace (MMS) operator, which

help propagate highly correlated action information from lo-

cal video frames to all video sequences in spatial-temporal

subspaces. The hyper-graph is solely built based on our

MMS metric, and it could synchronously encode cross-video

action similarity, inner-video temporal coherency, and syn-

ergetic relationship of different body joints.

In contrast to normal “explicit hyper-graph”, we con-

struct an “implicit hyper-graph” by hierarchically repre-

senting different-level relationships. We conceptually split

“explicit hyper-graph” into a series of sub-graphs (struc-

ture), which are formulated as optimized maximum match-

ing subspaces. Then, these subspaces (“sub-graphs”) will

re-contact with each other via a global MMS operator based

affinity matrix (metric).

Given a set of videos belonging to the same action cate-

gory, each video is divided into a group of overlapping short

video segments. The initial pose extractor ResNet50 [4], and

such segments are represented as NP pose sequences P =

{P1,P2,P3, . . . ,PNP
}. For a pose sequence Pi ∈ Rnk×nf ,

it covers nk body joints and nf consecutive frames. To

align two pose sequences, similar to [3], we apply Procrustes

analysis to get a spatial transition matrix Q, which conducts

an affine transformation, including translating, rotating and

uniformly scaling. We mark it as Qi(Pj) : Pi
Qi← Pj , which

means the pose sequence Pj is aligned to Pi by the transfor-

mation Qi, and Qi(Pj) represents the transformed matrix.

αi,j = argmin
αi,j

||Pi − αi,jPj ||F. (1)

Here αi,j is the scaling coefficient, and it is the only param-

eter that needs to be optimized. αi,j may not equal αj,i,

and thus ||Pi − αi,jPj ||F is not equal to ||Pj − αj,iPi||F as

well. The transformed affinities of the two pose sequences

are asymmetric.

MMS. Most methods measure pose sequence affinities

with a simple Frobenius-norm ||Pi − Pj ||F, which misses

a synergetic relationship analysis over joints and frames. It

means that, two adjacent pose sequences in a video may

be greatly different in the pose space because of temporal

topology dislocation.

ψM (Pi,Pj |Θ) = ||Pi(K,Fi)−Qi(Pj)(K,Fj)||F. (2)

Here Θ = {K,Fi, Fj}, (K,Fi), and (K,Fj) are the subspace

parameters, which actually is the sub-matrix index and is de-

termined by the specific sequence pair. {K,Fi, Fj} respec-

tively denotes the set (indexes) of joints, frame in Pi and Pj .
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Figure 1 (Color online) The pipeline of our framework. (a) Input video sequences within the common action category; (b) the

MMS metric governed subspace-specific hyper-graph construction; (c) generating the action pattern which consists of a series of

clustered action sub-patterns; (d) the dense trajectory tracing for local details capturing; (e) detecting and improving existing

mis-matched (inaccurate) poses by incorporating the semantic guidance from the action patterns and local feature tracing from the

dense trajectories.

Both of the two sequences have the same number of frames

(|Fi| = |Fj |). As a result, ψM partitions the difference of Pi

and Pj into aligned matching sub-matrix Θ and unmatched

sub-matrix. In this study, f/F indicates frames, k/K in-

dicates body joints, and Θ represents both of them. The

Θ can be efficiently computed via a simple path searching

algorithm. The searching space encodes spatial-temporal

affinity in a 3-dimension matrix Di,j ∈ Rnf×nf×nk . Its

element is defined as

D(k, fi, fj) = Dk,fi,fj = ||Pi(k, fi)−Qi(Pj)(k, fj)||2. (3)

Then, the path is partitioned at the steepest point with the

maximum gradient. The first half of the path indexes the

maximum matching subspaces. On the other hand, the rest

of the subspaces denotes those dissimilar parts of pose se-

quences.

Action pattern generation. The action expression en-

coded in our hyper-graph is comprehensive but losing gen-

erality. Thus, we explore some mid-level semantic sub-

patterns (sub-actions) to describe a complete action. These

sub-patterns can be considered as certain words in “action

codebook” to describe the pose sequences.

To begin with, we build an affinity matrix A ∈ RNP ×NP

for all the input pose sequences, with

A(i, j) = A(j, i)

=
1

2
ψM (Pi,Qi(Pj)|Θ) +

1

2
ψM (Pj ,Qj(Pi)|Θ). (4)

Based on A, we cluster all the pose sequences into NB

groups via spectral clustering. For the c-th group, we con-

duct hierarchical clustering and orderly merge the pose se-

quences one by one to construct a sub-pattern Bc. Yet, in

the following step, we also need to trade off the contribution

of those densely sampled trajectories [5] for the local detail

tracing. Therefore, we adopt the 2D Gaussian function to

define motional joint models.

As for “mean” pattern (pose sequence) µ ∈ Rnk×nf ,

it has the same formulation as a pose sequence Pi. Bc is

built by aggregation processing over nc pose sequences Pn

included in Bc, as

B
(n+1)
c (Θ) = B

(n)
c (Θ) + λ(n) · Pn(Θ), n ∈ [1, nc]

s.t. B
(0)
c = 0nk×nf and Θ ∈ ψM (B

(n)
c ,Pn |Θ).

(5)

Here λ(n) denotes the hierarchical clustering distance from

sub-pattern Bc to pose sequence Pn. Θ is computed

by MMS operator, which changes dynamically correspond-

ing to current B
(n)
c and Pn. After constructing all sub-

patterns Bc, we can obtain a complete action pattern as

B = {B1,B2, . . . ,BNB
}.

We have defined our MMS operator ψM (Pi,Pj |Θ) for

two pose sequences in Eq. (2), and we also need to use it

on action sub-patterns as ψM (Pi,Bc |Θ). Therefore, we re-

define the distance matrix in (3) for adapting MMS to the

probabilistic sub-patterns Bc = {Pµ, ρ}, with

d = ||Pi(k, fi)−Qi(Bc)(k, fc)||1,

Dprob(d |Bc) = Dk,i,c =
1

2π|ρ|−
1
2

exp

(
−
1

2
(dTρ−1d)

)
,
(6)

where d ∈ R2×1 denotes the distance of joint Pi(k, fi) to the

mean joint position of sub-patterns Bc(k, fc). Di,c shows

the 2D Gaussian function based affinity. In Eq. (3), D is

a distance (dissimilarity) matrix, but in (6), D shows the

probabilistic affinity (similarity).

Considering the confused spatial-temporal continuity

over initial poses, frame-wisely refining the pose is more ro-

bust than global sequence-wise processing. The f -th frame

error E(pf ) is gotten by averaging the reconstruction error

overall pose sequences covering the f -th frame (pf ∈ Pi).

The error E of f -th frame’s pose pf is defined as

E(pf ) = Etra(pf | Ḃc) + β · Eact(pf | Ḃc), (7)

where Etra denotes the trajectory tracing error and Eact

means the action pattern governed reconstruction error.

The matched sub-pattern Ḃc guides the computation proce-

dure of Etra and Eact. To compute Etra, Ḃc determine the

weight of each trajectory around the joints. As for Eact, Ḃc

measures the action fitting error. We find the best matched

sub-pattern for each pose sequence, with

(Pi, Ḃc) = argmin
Pi,Bc

ψM (Pi,Bc |Θ), (8)

where Bc ∈ B and all the related pose sequences Pi should

cover the f -th frame, Pi(Θ) ∋ pf . Θ indexes a sub-matrix

of Pi, and Pi may cover pf but Pi(Θ) not.
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T is a local feature tracing function, and it gives the tra-

jectory tracing results t ∈ Rnk×1 related to pf from the last

(f − 1)-th frame t(0) to the current f -th frame t(1). Etra is

formulated as

Etra(pf ) =
1

|T(pf )|
·

∑
t∈T(pf )

||Dprob(t
(1) | Ḃc)

−Dprob(t
(0) | Ḃc)||2, (9)

where Etra is able to detect the errors caused by drastic

pose location changes. Moreover, we define the action pat-

tern based reconstruction error as

Eact(pf ) =
1

nm

∑
Pi∋pf

ψM (Pi, Ḃc |Θ(f)). (10)

Here Θ(f) denotes the frame-specific parameter, which only

indexes the matching joints set K at the f -th frame. nm is

the size of the candidate matching set. In practice, we do not

use all eligible Pi and only pick 5 (nm = 5) pose sequences

with the minimum matching errors (Eq. (8)).

Finally, as shown in Figure 1, we formulate an iterative

pose estimation framework, which alternately conducts pose

improvement and action pattern refinement. The interme-

diately improved poses facilitate pattern amending. We fix

the top 5% frames (sorted by their errors E(pf )) for pose

improvement in each loop.

Conclusion. We have detailed a spatial-temporal sub-

space involved hyper-graph method for human pose estima-

tion in video analysis. The method can indeed improve the

existing estimated results even without the need for labeled

ground-truth poses. All the exhibited advantages of the new

method result from the MMS operator, which enables in-

trinsic encoding of the action similarity between videos, the

intra-video temporal coherency, and the collaborative rele-

vance over different body joints.
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