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Abstract The rapid development of machine learning and wireless communication is creating a new

paradigm for future networks, namely edge-intelligent networks. Specifically, data generated by terminal

devices is processed via machine learning at the edge of wireless networks, but not at the cloud. Owing to

the growing concern for privacy information sharing, federated learning, as a new branch of machine learning,

is appealing in edge-intelligent networks. For federated learning, the wireless transmission capabilities under

practical conditions, e.g., imperfect channel state information (CSI), have a great impact on the accuracy

of global aggregation of local model updates. Therefore, it is very important to enhance the robustness of

communication for federated learning. In order to realize robust communication in the presence of channel

uncertainty, we propose a robust federated learning algorithm for edge-intelligent networks, including device

selection, transmit power allocation, and receive beamforming. Simulation results validate the robustness

and effectiveness of the proposed robust federated learning algorithm in edge-intelligent networks.
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1 Introduction

In order to provide various advanced wireless services, the wireless network is undergoing a paradigm shift
from traditional cloud computing architectures to mobile edge computing architectures [1, 2]. Through
mobile edge computing, a large volume of data generated by massive terminal devices do not need to
be sent to a data server at the cloud, but are processed at the edge of wireless networks, e.g., the base
station (BS). Hence, the transmission latency can be decreased significantly. Recently, machine learning
techniques are applied to mobile edge computing to improve the processing capability of wireless networks.
As a result, wireless networks evolve to edge-intelligent networks [3, 4].

To realize edge intelligence based on machine learning, the BS needs to build a computation model. In
general, there are two approaches to build the computation model at the BS, namely data sharing and
model sharing. Specifically, data sharing collects the data from terminal devices to train the model based
on deep learning, while model sharing exchanges model parameters between the BS and the terminal
devices based on federated learning [5]. Since model sharing can protect the data privacy and reduce the
communication burden, it is commonly adopted in edge-intelligent networks. Generally speaking, model
sharing based on federated learning iteratively updates the model at the BS by averaging the parameters
trained at the terminal devices. The authors in [6] proposed a practical method called federated averaging
(FedAvg) for the federated learning based on iterative model averaging by using the aggregation of locally
updated parameters with non-independent and identically distribution. Ref. [7] proposed some practical
scheduling policies to further improve the performance of federated learning in wireless networks. Ref. [8]
computed the summation part of the target function utilizing the superposition property of wireless
channels. To accelerate the model aggregation, Ref. [9] proposed a novel federated learning framework
based on over-the-air computation (AirComp). By exploiting the signal superposition property of a
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Figure 1 (Color online) Model update process of federated averaging (FedAvg) algorithm in t-round.

wireless multiple-access channel, AirComp can realize accurate aggregation via jointly designing transmit
and receive schemes [10–13]. Especially, since the BS is usually equipped with multiple antennas, it is
possible to further improve the aggregation accuracy. For AirComp-based federated learning over fading
channels, the collection of participated devices has a great impact on the aggregation accuracy and the
running efficiency. Ref. [14] proposed a device selection algorithm based on a metric termed as the age
of update. Furthermore, the authors in [15] investigated the impact of noise in communications on the
performance of federated learning. Previous studies commonly assumed full channel state information
(CSI), to design AirComp-based federated learning algorithms. In practice, it is difficult to obtain full
CSI about a large number of terminal devices and the aggregation error will become larger due to channel
uncertainty. It has been proved in [16] that the aggregation error caused a notable drop of the prediction
accuracy of federated learning. Hence, it is necessary to design robust federated learning algorithms to
minimize the aggregation error in the presence of channel uncertainty.

In this paper, we consider a practical edge-intelligent network where the BS only has partial CSI by
estimation or feedback. In such an adverse but practical scenario, we investigate the federated learning
algorithm. The contributions of this paper are as follows:

(1) We provide an AirComp-based federated learning framework for edge-intelligent networks in the
presence of imperfect CSI.

(2) We propose a robust federated learning algorithm, including device selection, transmit power
allocation and receive beamforming to achieve accurate model aggregation.

The rest of this paper is organized as follows: Section 2 gives a brief introduction of an edge-intelligent
network. A robust federated learning algorithm based on AirComp is proposed in Section 3. Simulation
results are provided in Section 4. Finally, Section 5 concludes the paper.

Notations. Let upper (lower) case letters denote matrices (column vectors), (·)H denote conjugate
transpose, ‖ ·‖ denote the L2-norm of a vector, | · | denote the absolute value, E{·} denote the expectation
value.

2 System model

We consider an edge-intelligent network, which comprises a BS equipped with N antennas and K single-
antenna intelligent devices, as shown in Figure 1. The BS deploys an edge server, which can iteratively
construct a computation model based on the local models trained at the intelligent devices. During each
iteration, the BS adopts the Fedavg algorithm [6] to update the computation model as follows.

At the t-th round iteration, the BS first selects a part of devices S [t] from all devices with a given
condition; then, the BS sends the global models w[t−1] currently being trained to the selected devices;
next, the i-th selected device updates its local model based on its own dataset Di with the following
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stochastic gradient descent method:

w
[t]
i = w[t−1] − θi ▽ Li(w

[t−1],Di),

where ▽ implies the gradient operator, θi is the learning rate, and Li(·) denotes the loss function. Then,

the device transmits w
[t]
i to the BS; finally, the BS performs model aggregation and weighted average

according to their size of the dataset |Di| to generate an updated global model w[t]. Thus, the updated
aggregation model during the t-th iteration is given by

w[t] =
1

∑

i∈S[t] |Di|
∑

i∈S[t]

|Di|w[t]
i , (1)

where w
[t]
i of dimension d is the i-th device’s local model at the current round, |Di| is the pre-processing

function at the i-th device, and 1∑
i∈S[t] |Di|

is the post-processing function at the BS. In fact, the model

aggregation in (1) can be realized by AirComp. Without loss of generality, we only study the situation
in one round and omit the iteration index t. Specifically, let si = |Di|wi ∈ Cd, which is the i-th device’s
transmit signal with unit variance, i.e., E(sis

H
i ) = I for ease of analysis. Each item in the vector si is

sent to the BS sequentially over time slots. For simplification, we focus on one item transmission of the
vector si and write si as si, which is independent and identically distributed (i.i.d.). According to the
principle of AirComp, the aggregation signal at the BS can be expressed as

y =
∑

i∈S

hi
√
pisi + n, (2)

where pi is the transmit power of the i-th device, hi ∈ CN is the channel vector from the i-th device to
the BS, and n ∼ CN (0, σ2I) is the noise vector with σ2 being the noise variance. With the aggregation
signal, the BS utilizes a receive beamforming vector z ∈ CN to recover the desired aggregation model.
Therefore, the actual aggregation model can be expressed as

m̂ = zHy = zH
∑

i∈S

hi
√
pisi + zHn. (3)

According to (1), m =
∑

i∈S si is the desired aggregation model. In general, one can evaluate the perfor-
mance by the mean square error (MSE) between the desired aggregation and the real aggregation [17].
The MSE is given by

MSE(m, m̂) = E{(m̂−m)(m̂−m)H}
=

∑

i∈S

(zHhi
√
pi − 1)(zHhi

√
pi − 1)H + σ2‖z‖2

=
∑

i∈S

|zHhi
√
pi − 1|2 + σ2‖z‖2.

From (4), it is known that the set of the selected devices S, the transmit power pi, and the receive
beamforming z determine the accuracy of the aggregation model for federated learning. Hence, it makes
sense to jointly perform device selection, transmit power allocation and receive beamforming according
to CSI. However, the BS is difficult to obtain full CSI about a large number of devices. In practice, the
BS only has partial CSI by estimation or feedback. In general, the real CSI hi related to the i-th device
can be modeled as [18]

Hi , {hi = ĥi + ei|‖ei‖ 6 εi},

where ĥi is obtained CSI and ei is the channel error vector, whose norm is bounded by a given radius εi,
i.e., ‖ei‖ 6 εi. Due to channel uncertainty at the BS, it is desired to design a robust federated learning
algorithm for edge-intelligent networks to guarantee the accuracy of the aggregation model in the worse
case.
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3 Robust design for federated learning

In this section, we design a robust federated learning algorithm by jointly optimizing the set of selected
devices, the transmit power, and the receive beamforming in the presence of channel uncertainty. First,
we rewrite the MSE expression in (4) as follows:

MSE(p, z) =
∑

i∈S

|zH(ĥi + ei)
√
pi − 1|2 + σ2‖z‖2. (4)

In order to exploit multiuser diversity gain for federated learning, we formulate the design problem
as the maximization of the number of selected devices while the MSE is smaller than a given value.
Mathematically, it can be described as the following optimization problem:

max
S,pi,z∈CN

|S| s.t. MSE(p, z) 6 η, pi 6 Pmax,i, (5)

where η is the tolerable maximum aggregation error, and Pmax,i is the maximum transmit power of the
i-th device. Since the objective function is discrete, the optimization problem is non-convex, which is
difficult to obtain the optimal solutions directly.

It is seen in (5) that the MSE expression consists of two parts, one is the sum of the influence of each
device on the overall MSE, the other is the influence of noise. Our task is to make the first part have the
largest number of subitems, while the MSE error does not exceed the given value. That is to say, for any
device i, where i = 1, 2, . . . ,K, if |zH(ĥi+ei)

√
pi−1|2 is small, it is better to select this device. However,

due to the undetermined beamforming vector z and transmit power pi, it is impossible to obtain the
value of each |zH(ĥi + ei)

√
pi − 1|2. To solve this challenge, we first assume all devices participate in

model aggregation for federated learning. Then, we derive the transmit power and receive beamforming
by minimizing the maximum MSE in the presence of channel uncertainty. Finally, we select devices with
small |zH(ĥi + ei)

√
pi − 1|2 until the total MSE is close to but not more than the given value η. In what

follows, we design the robust federated learning algorithm according to the above idea.

3.1 Algorithm design

When all theK devices participate in model aggregation, the MSE can be represented as
∑K

i=1|zHhi
√
pi−

1|2 + σ2‖z‖2. Due to channel uncertainty, we cannot obtain the minimum MSE, but the maximum MSE
in the worse case. This leads to the following min-max problem:

min
z,pi,∀i

max
hi∈Hi

MSE(p, z) (7a)

s.t. pi 6 Pmax,i, ∀ei : ‖ei‖2 6 εi. (7b)

Owing to the coupling of the two optimization variables in the MSE, the optimization problem (7) is not
convex. To solve this problem, we adopt the alternating optimization (AO) approach [19]. Specifically, we
iteratively optimize one variable by fixing the other variable until convergence. First, given the transmit
power, we optimize the receive beamforming vector {z}. To facilitate problem solving, we introduce an
auxiliary variable αi. The problem is transformed as

min

K
∑

i=1

αi + σ2‖z‖2 (8a)

s.t. |zH(ĥi + ei)
√
pi − 1|2 6 αi, (8b)

αi > 0, (8c)

∀ei : ‖ei‖2 6 εi.

The constraint (8b) is non-convex due to channel uncertainty. In order to ensure the robustness and
feasibility of the algorithm, we introduce the following lemmas to transform the constraint (8b).

Lemma 1 (Schur’s complement [20]). Let M be a Hermitian matrix given by M = [A B
H

B C
]. Then,

M is semi-positive, i.e., M > 0, if and only if A − BHC−1B > 0 with assuming C is invertible, or
C −BHA−1B > 0 with assuming A is invertible.
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Lemma 2 ([21]). Let us define a matrix function F (x) = A − (BHxcH +BxHc), where B ∈ Cm×n,
x ∈ Cm×1, c ∈ Cn×1, and A ∈ Cn×n is a Hermitian matrix. Then

F (x) > 0, ∀x : ‖x‖ 6 ε

holds true if and only if there exits λ > 0, such that

[

A− λccH −εBH

−εB λI

]

> 0.

According to Lemma 1, the constraint (8b) can be rewritten as

[

αi (
√
piz

Hĥi − 1)H +
√
piz

Hei
√
piz

Hĥi − 1 +
√
pie

H
i z 1

]

> 0.

Let

Ai =

[

αi (
√
piz

Hĥi − 1)H

√
piz

Hĥi − 1 1

]

, Bi =
[

0 −√
piz

]

,

and c = [1 0]T, then

[

αi (
√
piz

Hĥi − 1)H +
√
piz

Hei
√
piz

Hĥi − 1 +
√
pie

H
i z 1

]

= Ai − (BH
i eic

H + cie
H
i Bi) > 0, ∀ei : ‖ei‖ 6 εi.

Further, according to Lemma 2, we have

Ai − (BH
i eic

H + ceHi Bi) > 0, ∀ei : ‖ei‖ 6 εi

⇐⇒
[

Ai − φicc
H −εiB

H
i

−εiBi φiI

]

> 0, ∃φi > 0.
(10)

Thus, the constraint (8b) is converted to









αi − φi (
√
piz

Hĥi − 1)H 0
√
piz

Hĥi − 1 1 εi
√
piz

H

0 εi
√
piz φiI









> 0, ∃φi > 0, (11)

which is a linear matrix inequality (LMI) and thus is convex. In this case, the problem (8) can be
transformed as

min
z,φi,∀i

K
∑

i=1

αi + σ2‖z‖2 (12)

s.t. αi > 0, φi > 0 and (11).

Problem (12) is convex and thus can be solved by some optimization tools, e.g., CVX. Second, we assume
that the receive beamforming vector is fixed to optimize the transmit power {pi}. In this case, the
problem (8) can be transformed as

min
αi,pi,∀i

K
∑

i=1

αi + σ2‖z‖2 (13)

s.t. |zH(ĥi + ei)
√
pi − 1|2 6 αi, αi > 0, pi 6 Pmax,i.
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In order to solve this problem, we also need to transform the constraint (8b). Let Pi =
√
pi, the

constraint (8b) can be transformed as









αi − φi Piz
Hĥi − 1 0

Piz
Hĥi − 1 1 εiPiz

H

0 εiPiz φiI









> 0, ∃φi > 0. (14)

Hence, the problem (13) is transformed as

min
αi,pi,∀i

K
∑

i=1

αi + σ2‖z‖2 (15)

s.t. φi > 0, P 2
i 6 pi, pi 6 Pmax,i, (8b), (8c) and (14).

Problem (15) is also convex and thus can be solved by some optimization tools directly. By iteratively
optimizing the above two problems until convergence, we can obtain the transmit power pi, receive
beamforming z, and the corresponding MSE αi, ∀i. Without loss of generality, we assume αi has an
ascending order, namely α1 6 α2 6 · · · 6 αK . Then, we select the first k∗ devices as the ones participating
in federated learning as follows:

k∗ = argmax
k

{

k |
k

∑

i=1

αi 6 η

}

.

In summary, the proposed robust federated learning algorithm can be described as Algorithm 1.

Algorithm 1 Robust federated learning for edge-intelligent networks

Input: Number of antennas N , number of total devices K, obtained CSI ĥi, maximum transmit power Pmax,i, channel error

vector’s norm bound εi, noise power σ2, tolerance of MSE η;

Output: The set of selected devices S, beamforming vector z, transmit power pi, i ∈ S;

1: Initialize z
(0), p

(0)
i

= Pmax,i/2, and iteration index t = 1;

2: Repeat

3: Obtain z
(t) by solving problem (12) via CVX with fixed p

(t−1)
i

;

4: Obtain p
(t)
i

by solving problem (15) via CVX with fixed z
(t);

5: t = t + 1;

6: Until convergence;

7: Obtain αi, i = 1, 2, . . . ,K, sort them and obtain απ(i), i = 1, 2, . . . ,K, απ(1) 6 απ(2) 6 · · · 6 απ(K);

8: Add π(i)-th device to S, until
∑

L
i=1 απ(i) + σ2‖z‖2 6 η and

∑L+1
i=1 απ(i) + σ2‖z‖2 > η;

9: Obtain S={π(1), . . . , π(L)}.

3.2 Convergence and complexity analysis

In this subsection, we analyze the convergence behavior and computational complexity of the proposed
algorithm.

For Algorithm 1, it converges as long as the initial value is set properly. First, since the problem (11)
is convex in terms of {z(t)}, it is feasible to find the optimal solutions for minimizing the objective value

via CVX directly. Then, since the problem (15) is convex in terms of {p(t)i }, it is also feasible to find the
optimal solutions via CVX. Thus, based on the steps in Algorithm 1, the solutions in the t-th iteration
are feasible for the original problem (12) in the (t+1)-th iteration, which means that the objective value
obtained in the (t + 1)-th iteration is less than that in the t-th iteration. In other words, the MSE
monotonically decreases after each iteration. Furthermore, due to the existence of the transmit power
constraints pi 6 Pmax,i at each device, the MSE is lower bounded. According to the monotone bounded
convergence theorem, Algorithm 1 is convergent. The proposed algorithm adopts the AO approach.
According to [22, 23], the convergence rate shows a two-stage behavior. At first, the objective function
decreases q-linearly until sufficiently small. After that, sub-linear convergence is initiated.

Since the computational complexity of each iteration is the same, we only analyze the per-iteration
complexity in the following. In each iteration, the computational complexity of solving problem (12) is
dominant [21]. By using CVX to solve the problem (12), the CVX tool employs a standard interior-point



Gao Z H, et al. Sci China Inf Sci March 2022 Vol. 65 132306:7

0

2

4

6

1

3

5

7

8

9

10

The norm bound of channel uncertainty

T
h
e 

n
u
m

b
er

 o
f 

se
le

ct
ed

 d
ev

ic
es

0 0.05 0.15 0.250.200.10 0.35 0.400.30

= 5 dBγ
= 10 dBγ

Figure 2 (Color online) The number of selected devices with different norm bounds of channel uncertainty ε. The number of

total devices K is 10 and the number of BS antennas N is 32. The MSE requirement γ is 5 and 10 dB, respectively.

method (IPM) [24]. The complexity of this method depends on the constraints. Specifically, it has K
LMI constraints of size 1, K LMI constraints of size N + 2. Thus, for a given precision ε > 0 of solution,
the per-iteration complexities of solving problem (12) by IPM is ln 1

ε =
√

K(N + 3)·n · [K
(

1+(N+2)3
)

+

Kn
(

1 + (N + 2)2
)

], where the decision variable n is in the order of O(KN2). Moreover, the complexity
of sorting algorithm is O(K log2 K).

4 Simulation results

In this section, we present simulation results to validate the robustness and effectiveness of the proposed
algorithm for the model aggregation of federated learning in edge-intelligent networks. We assume that
each device has the same maximum transmit power Pmax,i = Pmax and the same norm bound of channel
uncertainty εi = ε. We use SNR = 10 log10(Pmax/σ

2) to denote the transmit SNR (in dB). In the
simulations, let all SNR = 20 dB and MSE requirement (in dB) be γ = 10 log10(Pmaxη/σ

2). In practice,
the value of γ should be determined according to the adopted training model and the required prediction
accuracy.

First, we investigate the impact of channel uncertainty on device selection. As shown in Figure 2, as
the norm bound of channel error vector increases, the number of selected devices decreases accordingly.
This is because a larger channel uncertainty leads to a larger MSE, and thus a smaller number of devices
are selected for model aggregation to guarantee the aggregation accuracy.

Then, we check the influence of the number of total devices K and the number of BS antennas N on
the number of selected devices. As shown in Figure 3, the proposed algorithm selects more devices as
the number of BS antennas increases. This is because more antennas decrease the MSE. On the other
hand, an increase in the number of total devices may lead to a decrease in the number of selected devices.
Since we assume that all devices are involved in model aggregation, the designed beamforming vector and
transmit power are sub-optimal if only a part of devices are involved in model aggregation. As a result,
an increase of total devices may increase the MSE. However, if there are enough BS antennas, an increase
of total devices can lead to an increase of selected devices under a suitable MSE requirement. If the
number of total devices is large, we can increase the number of selected devices by adding BS antennas.

To show the performance of the proposed algorithm for federated learning tasks, we further train a con-
volutional neural network (CNN) on the Mixed National Institute of Standards and Technology database
(MNIST) with a 32-antenna edge server and 10 mobile devices. The MNIST database of handwritten
digits has a training set of 60000 examples and a test set of 10000 examples. This CNN has two 5×5
convolution layers (the first with 32 channels, the second with 64, each followed with 2×2 max pooling),
a fully connected layer with 512 units and ReLu activation, and a final softmax output layer (1663370
total parameters). The data is shuffled, and each device has 600 examples. In [9], the authors formulated
the problem of device selection under perfect channel conditions as a nonconvex optimization problem
with a sparse objective function and a low-rank constraint. The authors employed three algorithms to
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The norm bound of channel uncertainty ε in the proposed robust algorithm is 0.1.

solve this problem and made a comparison. We compare the proposed robust algorithm with these three
baseline algorithms, namely ℓ1+semidefinite relaxation (SDR) [25], difference-of-convex-function (DC) [9]
and reweighted ℓ2+SDR [26]. Note that the baseline algorithms work with perfect CSI, but the proposed
robust algorithm works in the presence of channel uncertainty. As shown in Figure 4, the proposed robust
algorithm performs better than ℓ1+SDR and reweighted ℓ2+SDR. Even in the presence of imperfect CSI,
the proposed algorithm achieves the same prediction accuracy as the DC algorithm even with a not so
large number of communication rounds. In other words, the proposed algorithm has high robustness in
federated learning. Hence, the proposed algorithm is appealing in practical edge-intelligent networks.

5 Conclusion

In this paper, we provided a framework of federated learning for edge-intelligent networks in the presence
of channel uncertainty. A robust federated learning algorithm including device selection, power allocation
and receive beamforming was proposed. Simulation results have shown its good performance in the
training of CNN on the MNIST dataset. The proposed robust federated learning algorithm can be widely
applied to widely practical edge-intelligent networks such as cellular internet of things [27,28]. Thus, the
processing latency and signaling overhead can be reduced significantly.
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