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Abstract White-box cryptography aims to provide secure cryptographic primitives and implementations

for the white-box attack model, which assumes that an adversary has full access to the implementation of

the cryptographic algorithms. Real-world applications require highly efficient and secure white-box schemes,

whereas the existing proposals cannot meet this demand. In this paper, we design a new white-box block

cipher based on addition/rotation/XOR (ARX) primitives and random maximal distance separable (MDS)

matrix, white-box ARX (WARX), aiming for efficient implementations in both black- and white-box models.

The implementation of WARX in the black-box model is nine times faster than SPNbox-16 from ASI-

ACRYPT’16, and the implementation in the white-box model is more efficient than SPNbox-16 and WEM

from CT-RSA’17. Moreover, the security of WARX in both black- and white-box models is analyzed, which

ensures its practical applicability. The design of WARX shows that ARX primitives and random linear layer

can improve the efficiency of a white-box block cipher. This article may inspire more provably secure and

efficient white-box block ciphers and help to narrow the gap between provably secure white-box schemes from

academia and highly applicable schemes in great demand from industry.
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1 Introduction

White-box cryptography, introduced in [1], studies secure cryptographic primitives and implementations
in the white-box attack context, where an adversary has total visibility on the primitives’ implementation
and full control on their execution platforms. In recent years, white-box cryptography has fast-rising
demand in many scenarios, namely, digital rights management (DRM), mobile payment, memory-leakage
resilient software, and many more. In contrast to the white-box attack context which depicts the threats
in untrusted ends, the traditional black-box attack context assumes that the adversary can only observe
the external execution behavior of a cryptographic algorithm. In real-world applications with classical
client/server mode, the server, which is depicted as a black-box model, deals with a large number of user
keys simultaneously, and the user device, which is depicted as a white-box model, deals with real-time
transactions or plays real-time digital content. Therefore, a white-box cryptographic primitive requires
high security and encryption/decryption efficiency in both black- and white-box models. Considering the
limited computation resources of user devices, the white-box implementation also demands lower storage
cost.

However, the existing white-box schemes cannot meet these requirements. Since 2002, a number of
white-box implementations of data encryption standard (DES) and advanced encryption standard (AES)
have been proposed [1–5], but their security was penetrated [6–12]. At present, there are no recognized
secure white-box implementations of DES/AES. Since 2014, several provably secure white-box block
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ciphers have been proposed, e.g., ASASA [13] (broken in [14, 15]), SPACE-8/16/24/32 [16], SPNbox-
8/16/24/32 [17], WhiteBlock [18], WEM [19], and ASASASA [20]. Most of them belong to a common
design class of white-box block ciphers called space-hard ciphers. The strategy is to use components
that are secure in the black-box model and that have bulky implementation code. Although secure so
far, the aforementioned space-hard white-box block ciphers are limited by their efficiency. For instance,
the black-box implementation of SPNbox-16 [17] needs a 320-round execution of scaled-down AES on
16-bit blocks and a 10-round multiplication over the finite field GF(216); the white-box implementation
of WEM needs a 60-round execution of AES; the white-box implementations of SPACE-32/SPNbox-32
need storages of 52/17 GB.

These limitations motivate us to design a new white-box block cipher with better black- and white-
box efficiency. For black-box implementation, we consider addition-rotation-XOR (ARX) primitives
for their high software performance, which have received steady attention in designing symmetric-key
primitives [21–23], especially in the area of lightweight cryptography. For white-box implementation, the
efficiency bottleneck lies in the linear layer because the nonlinear component is usually implemented by a
lookup-table (LUT for short) which has equivalent efficiency for different ciphers. Hence, we are interested
in the influence of the linear layer in white-box efficiency improvement. We consider a random maximal
distance separable (MDS) matrix, aiming to reduce the number of rounds of the cipher. However, it is
unclear whether ARX and random MDS matrix can improve the efficiency of a white-box block cipher,
under the premise of not affecting security.

In this paper, a new white-box block cipher based on ARX primitives and random MDS matrix, WARX
(white-box ARX), is proposed. The contributions include:

Efficient black-box implementation. The round-based black-box implementation of WARX has
impressive software performance on Intel platforms. First, an ARX block cipher with the block size of
16 bits, mSPARX-16, is proposed. This small-size block cipher is used to construct the key-dependent
nonlinear component of WARX because it provides provable security against typical differential/linear
cryptanalysis in the black-box model. Despite using more rounds to achieve a desired security bound
against differential/linear cryptanalysis, ARX ciphers are faster than common substitution-permutation
network (SPN) ciphers due to their simple and efficient arithmetic instructions. With the help of this
building block, WARX outperforms SPNbox-16 by a factor of nine in the efficiency of the black-box
implementation. Another benefit of ARX primitives is their decreased vulnerability to cache-timing
attacks due to constant-time instructions.

Efficient white-box implementation. The LUT-based white-box implementation of WARX has
competitive efficiency on both Intel and ARM platforms. We introduce randomness to the MDS matrix,
which is wildly used in block ciphers to provide high security. By using the random MDS linear layer,
WARX needs fewer rounds to achieve the best white-box security level. Specifically, WARX improves
one round in this aspect, compared to most white-box block ciphers without a random linear layer.
Consequently, WARX is superior in white-box efficiency.

Observation, limitation, and implication. The structure of WARX is a combination of a key-
dependent non-linear layer and a random linear layer. The core contribution of this work is to study the
black/white-box security and efficiency of this structure. WARX reveals that a random linear layer can
help improve the white-box efficiency because the linear layer can contribute to white-box security, and
hence the lower bound of the number of rounds for achieving a certain security level is decreased.

Unfortunately, the efficiency improvement is limited (one round). Such a limitation comes from a
constant white-box security bound, meaning that the cipher can be broken in the white-box model with
a fixed probability regardless of the number of rounds. In other words, the white-box security of a block
cipher reaches maximal and stops growing after some rounds. So, we focus on the lower bound of the
number of rounds that fulfills the maximal achievable white-box security. For instance, this bound is
7/8/8 for WARX/SPNbox-16/WEM.

Despite the limited outcome, we hope this work can bring up new structures in designing more efficient
white-box block ciphers, and we expect the gap between provably secure white-box schemes from academia
and highly applicable schemes in great demand from industry vanishes soon.
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Figure 1 (a) 16-bit ARX-box mSPECKEY. ≫ 7 means right rotation by 7 bits, ≪ 2 means left rotation by 2 bits, and ⊞ means

addition modulo 28. (b) 16-bit ARX block cipher mSPARX-16.

2 WARX: specifications

WARX is a 7-round block cipher with an iterated SPN structure. The block size n and key size k
are 128 bits. The cipher state is organized as a row vector of eight elements with each in GF(216):
x = (x0, x1, . . . , x7).

Round transformation. Each round of WARX consists of three layers, the nonlinear layer, and
then the linear layer followed by the constant addition layer. The nonlinear layer applies eight identical
key-dependent S-boxes in parallel: x = (S(x0), S(x1), . . . , S(x7)). The linear layer applies an 8× 8 MDS
matrix in GF(216): x = (MR · (x0, x1, . . . , x7)

T)T where T means transposition of a vector or matrix.
The constant addition layer adds some round-dependent constants: x = (x0, x1, . . . , x7) ⊕ (8(r − 1) +
1, 8(r − 1) + 2, . . . , 8(r − 1) + 8) where r denotes the r-th round (r = 1, 2, . . . , 7).

S-box generation. The key-dependent S-box S is generated by the 16-bit ARX block cipher mSPARX-
16 whose design is inspired by SPARX [22]. First, a 16-bit ARX-box mSPECKEY is constructed. The notion
of ARX-box was introduced by Biryukov et al. at FSE’16 (see Definition 1), together with two examples
of 32-bit ARX-boxes SPECKEY and MARX [24]. The structure of mSPECKEY, shown in Figure 1(a), comes
from the scaled-down version of SPECKEY. Then, mSPARX-16 is constructed as a 24-round key alternating
cipher [25] which intersects the key addition with ARX-box, as shown in Figure 1(b). Finally, to generate
the 16-bit S-box S, each element e is seen as a plaintext and encrypted by mSPARX-16, and the ciphertext
is used as the output of this element.

Definition 1 (ARX-box [24]). An ARX-box is a permutation on m bits that relies entirely on addition,
rotation, and XOR to provide both non-linearity and diffusion. It is a particular type of S-box.

MDS matrix generation. The random MDS matrix MR is generated by multiplying a public pre-
defined MDS matrix MP , e.g., the MDS matrix used in the block cipher Khazad [26], by some random
numbers. First, a vector r = (rc0, rc1, . . . , rc7) with each element nonzero and randomly chosen from
GF(216) is generated. Then, MR is generated simply by multiplying these numbers by the corresponding
rows of MP : MR = diag(rc0, . . . , rc7) · MP , where diag(rc0, . . . , rc7) is a block diagonal matrix. The
irreducible polynomial is x16 + x5 + x3 + x+ 1.

Key schedule. The 16-bit round keys are generated by a key derivation function (KDF) [27] as
in SPNbox-16, e.g., an extendable-output function (XOF) [28]. Specifically, the 128-bit master key K
is expanded to 25 round keys by the KDF: (k0, . . . , k24)= KDF(K, 400), where k0, . . . , k24 are used for
generating the S-box.



Liu J, et al. Sci China Inf Sci March 2022 Vol. 65 132302:4

Implementations. WARX involves four algorithms, SETUP, MSPARX, BBI, and WBI, whose
pseudo-code are given in Algorithms 1–4, respectively. Taking DRM as an example, SETUP first runs
the key schedule to generate the round keys and then generates the random MDS matrix and S-box
by calling MSPARX, which is the encryption algorithm of the 16-bit block cipher mSPARX-16. BBI is
the round-based black-box encryption implementation of WARX with the S-box implemented by calling
MSPARX. WBI is the LUT-based white-box decryption implementation of WARX with the (inverse)
S-box implemented by looking up a table. Normally, SETUP, MSPARX, and BBI are all running on the
server, while WBI is running on a user’s device.

Algorithm 1 SETUP: setup procedure of WARX

Input: Master key K.

Output: Round keys (k0, . . . , k24), MDS matrix MR, S-box S.

1: (k0, . . . , k24) = KDF(K, 400); // Generate the round keys

2: for i = 0 to 216 − 1 do

3: S(i) = MSPARX (i, k0, . . . , k24); // Generate the S-box

4: end for

5: for j = 0 to 7 do

6: while rcj = 0 do

7: rcj ←R {0, 1}
16; // Randomly generate eight numbers

8: end while

9: end for

10: MR = diag(rc0, . . . , rc7) ·MP . //Generate the random MDS matrix

Algorithm 2 MSPARX: encryption algorithm of the 16-bit ARX block cipher mSPARX-16

Input: Plaintext x; round keys (k0, . . . , k24).

Output: Ciphertext y.

1: y = x⊕ k0; // Pre-whitening key

2: for i = 1 to 24 do

3: y = A(y)⊕ ki; // Key alternating. A is the 16-bit ARX-box mSPECKEY

4: end for

5: Return y.

Algorithm 3 BBI: round-based black-box implementation of WARX

Input: Plaintext x = (x0, x1, . . . , x7); round keys (k0, . . . , k24).

Output: Ciphertext y = (y0, y1, . . . , y7).

1: for i = 1 to 7 do

2: for j = 0 to 7 do

3: yj = MSPARX(xj, k0, . . . , k24); // Nonlinear layer

4: end for

5: y = (y0, y1, . . . , y7);

6: y = y ·MT

R ; // MDS matrix

7: y = y ⊕ (8(i− 1) + 1, 8(i− 1) + 2, . . . , 8(i− 1) + 8); // Round constant addition

8: end for

9: Return y.

Algorithm 4 WBI: LUT-based white-box implementation of WARX

Input: Ciphertext y = (y0, y1, . . . , y7); LUT T16 representing the 16-bit inverse S-box S−1.

Output: Plaintext x = (x0, x1, . . . , x7).

1: for i = 7 to 1 do

2: x = y ⊕ (8(i− 1) + 1, 8(i− 1) + 2, . . . , 8(i− 1) + 8); // Inverse of round constant addition

3: x = x · (M−1

R
)T; // Inverse of MDS matrix

4: x = (T16(x0), T16(x1), T16(x2), T16(x3), T16(x4), T16(x5), T16(x6), T16(x7)); // Inverse of nonlinear layer

5: end for

6: Return x.

3 WARX: design rationale

3.1 Non-linear layer

The key-dependent S-box should be a standalone primitive with strong security because the white-box
adversary can see its LUT. This primitive is expected to be more efficient than building blocks of prior
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Table 1 Automatic search results for mSPECKEY with rotation constants (7,2). ODC is the optimal differential characteristic

with input difference-output difference; OLT is the optimal linear trail with input mask-output mask

Rounds 1 2 3 4 5 6 7 8 9 10

ODCP 0 1 3 5 8 10 13 16 19 21

ODC 40,80-00,02 40,00-81,83 28,10-81,83 28,10-86,88 28,10-85,a7 48,d0-81,8b 48,50-74,a7 09,1a-74,a7 40,80-04,14 04,08-81,83

OLTC 0 0 1 2 3 4 6 7 9 10

OLT 00,10-40,40 80,41-04,04 a0,d1-04,04 8c,65-04,04 40,b0-c7,c6 80,79-8a,89 02,07-85,85 8c,56-c7,c6 80,71-1c,19 40,a8-04,04

white-box block ciphers, e.g., SPNbox-16. To this end, we consider implementing the 16-bit S-box by a
16-bit ARX block cipher, yet few block ciphers with the block size of 16 exist in the field of lightweight
symmetric cryptography [29]. To the best of our knowledge, LAX-16 [22] is the only candidate that
provides a 16-bit block size. However, the provable security of LAX against linear cryptanalysis remains
an open problem. Therefore, a new ARX block cipher mSPARX-16 is constructed, which has provable
security bounds against current black-box attacks.

The structure of mSPARX-16 is inspired by SPARX [22], the first provably secure ARX instance against
differential and linear cryptanalysis. mSPARX-16 uses a 16-bit ARX-box mSPECKEY, whose security
properties determine the number of rounds.

The construction of mSPECKEY comes from scaling down SPECK32 [21]. We performed an automatic
search for the best differential characteristic and the linear trail of mSPECKEY with different rounds under
the independence assumption [30]. For the optimal differential characteristic probability and linear trail
correlation, cryptoSMT [31] and MILP [32] were employed, respectively. To choose the rotation constants
of mSPECKEY, all possible pairs of constants (α, β) were tested where α and β is the right and left rotation
constant, respectively. Let ODCP denote the optimal differential characteristic probability (− log2 scale)
and OLTC denote the optimal linear trail correlation (− log2 scale). It was found that rotation constants
(7,2), (7,3), and (5,6) stood out in respect of ODCP and OLTC. However, our further security analysis
ruled out (5,6) (see Subsection 5.1 for more details). Finally, (7,2) was chosen due to the implementation
cost. The ODCP/OLTC result for (7,2), as seen in Table 1, was verified by experiments. Appendix A
provides the experiments result and ODCP/OLTC result for (7,3) and (5,6). From Table 1, at least
9 rounds are needed for mSPECKEY to make ODCP and OLTC less than 2−16 and 2−8, respectively.
Therefore, mSPARX-16 applies 24 rounds to provide a 62% (24−924 ) security margin.

3.2 Linear layer

For the linear layer, two methods were mainly considered, the random invertible binary matrix as in
LowMC [33,34] and the random MDS matrix. The second method was chosen because of its lower sample
complexity [35] and higher black-box security. To introduce randomness, the scalar multiplication class of
an MDS matrix [36] is employed. Let Mp denote a p×pMDS matrix in GF(2q). The scalar multiplication
class of Mp is defined as multiplying a scalar value V = (v0, v1, . . . , vp), where each vi is a nonzero value
in GF(2q), by Mp with the following rule: vi is multiplied by each element in the row i of Mp.

3.3 Determining the number of rounds

The choice of the number of rounds was based on the best existing white-box attacks. For a better tradeoff
between white-box security and efficiency, the minimal number of rounds necessary to reach the maximal
achievable white-box security was considered. Section 5 provides a detailed analysis of white-box security
of WARX, from which the lower bound of the number of rounds is deduced as 7. Finally, the number of
rounds was set as 7 to maximize the efficiency of the white-box implementation.

3.4 Key schedule

The choice of KDF as the key schedule was motivated by security consideration. An important cryp-
tographic criterion for key schedules in key alternating ciphers is that the round keys are mutually
independent and random. From the perspective of implementation, it is assumed that a large amount
of data is encrypted under the same key and the key schedule is called only rarely. In this case, the key
schedule can be neglected [37]. Also, it is reasonable to assume that a server has enough resources to
support the computation power a KDF such as SHAKE128 [28] requires. Moreover, efficient key schedule
functions achieving fast key mixing for small-size block ciphers are unknown to the best of our knowledge.
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4 Security evaluation in black-box model

In the black-box model, the adversary can only observe the input-output of the given key-fixed black-box
implementation of WARX. The adversary’s goal is to recover the round keys or the secret components,
i.e., the secret S-box and MDS matrix.

Brute force attacks. A naive key recovery attack is to exhaustively search the round keys in the
nonlinear layer, which are 25 × 16 = 400 bits, and search the MDS matrix in the linear layer, which is
from the scalar multiplication class of a pre-defined MDS matrix. The scalar multiplication class SMC of
a p×p MDS matrix has order OSMC = (O(GF(2q))−1)p, where O(GF(2q)) is the order of the base field.

For WARX, the base field is GF(216). Therefore, the time complexity is estimated as 2400+log
2
[(216−1)8].

The second attack in this scope is to exhaustively guess the 128-bit master key, then generate the round
keys, and then guess the MDS matrix as mentioned before. The time complexity is 2128+log

2
[(216−1)8].

Another attack is to guess the secret S-box directly without guessing the round keys, which has time
complexity 216×2

16+log
2
[(216−1)8]1). All in all, these attacks have impractical time complexity.

Meet-in-the-middle attacks. The meet-in-the-middle (MITM for short) approach can be used to
reduce the time complexity of an exhaustive search [38]. The idea of a basic MITM attack is to split
a cipher into two parts such that the subkeys in both parts can be guessed independently. In WARX,
the nonlinear layer of each round involves 25 round keys, i.e., the whole 128-bit master key. In this
case, the use of key bits is not biased among rounds. Therefore, MITM cannot give the adversary more
convenience.

Differential/Linear cryptanalysis. The most powerful attacks for block ciphers tend to be differ-
ential [39] and linear cryptanalysis [40]. Differential cryptanalysis employs differential propagation with
probability significantly higher than 21−n to attack an n-bit cipher, while linear cryptanalysis employs
linear propagation with correlation significantly higher than 2n/2 to attack an n-bit cipher. According to
the search result for the best differential characteristic and linear trail of mSPECKEY in Subsection 3.1,
the optimal differential characteristic probability and linear trail correlation of 9-round mSPARX-16 are
2−19 and 2−9, which are lower than 2−15 and 2−8, respectively. So it is assumed that the maximum
differential probability and linear correlation of mSPARX-16 are 2−15 and 2−8. Since the MDS matrix
is employed in the linear layer, it is trivial to follow the wide trail argument [25] to derive the security
bound against differential and linear cryptanalysis. For WARX, there are at least 9 active S-boxes after
2 rounds due to the 8× 8 MDS matrix in the linear layer. Therefore, full-round WARX is secure against
differential and linear cryptanalysis.

Structural attacks. Structural attack [41], also known as integral attack [42] or square attack [43],
applies to ciphers with unknown or key-dependent internal functions, because such attacks focus on the
syntactic interaction between different building blocks of a cipher, but ignore their concrete definition.
Note that 2.5-round WARX, i.e., two rounds plus the nonlinear layer of the third round, is rather weak.
Utilizing the technique in [41], the secret S-box and the MDS matrix can be recovered with complexities
of only 229 chosen plaintexts and 248 time. However, no useful structural attacks targeting full-round
WARX were found.

Decomposition attacks. WARX can be formally described as an ‘SASASASASASASA’ structure
where ‘S’ denotes a non-linear layer composed of S-boxes and ‘A’ an affine layer. In WARX, both A and
S layers are secret. For such secret SPN, decomposition attacks exist [44–46]. According to [44–46], the

degree of an ‘SA’ structure is upper bounded by n−⌈n−deg(A)
m−1 ⌉, where n and m are block size and S-box

size, respectively, and deg(A) is the degree of the affine layer, which is 1. For WARX, the 16-bit S-box
is modeled as a PRP, hence its algebraic degree is bounded by 15. This is reasonable because the S-box
is constructed by the 16-bit block cipher mSPARX-16. Therefore, the degree of the S-box is assumed as
15. Then the algebraic degree of 2-round WARX is upper bounded by 128− ⌈ 128−15

15 ⌉ = 120; and hence
WARX reaches the maximum algebraic degree only after three rounds. Given the above, the complexity
of generic decomposition attacks is very high.

Slide attacks. Iterated block ciphers with a high degree of self-similarity are vulnerable to slide
attacks [47–49]. Such attacks are independent of the number of rounds of the cipher. WARX has the
same S-box and the MDS matrix in each round, while the addition of round-dependent constants breaks
the symmetry of the cipher. Therefore, general slide attacks are inapplicable.

1) Representing a random m-bit permutation requires (m − 1.44)m bits, but the difference is only by a small multiplicative

factor of about 1− 1.44/m.
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Algebraic attacks. The idea of algebraic attack can be traced back to Shannon, who states that
‘breaking a cipher should be as difficult as solving a system of simultaneous equations in a large number of
unknowns of a complex type’ [50]. The basic principle is to construct a system of multivariate polynomial
equations from a cryptographic primitive such that solving this system can reveal some information of
the key [51, 52]. Algebraic attacks do not threaten the security of WARX because of its high algebraic
degree and complicated equation system.

5 Security evaluation in white-box model

Given the cipher’s implementation, the goal of a white-box adversary is to extract the key, or to extract
and copy the whole implementation code without recovering the secret key and use it in a standalone
manner, which is called code lifting. Therefore, white-box security is composed of key extraction and
code lifting security.

5.1 Key extraction security

In the white-box model, the adversary can see the LUT of the key-dependent S-box and the matrix of
the linear layer, from which the adversary can get all plaintext-ciphertext pairs generated by mSPARX-16
with regard to a fixed key in the black-box model. Therefore, key extraction can be reduced to the key
recovery problem for mSPARX-16 in the single key black-box model, and the adversary’s advantage of key
extraction in the white-box model is upper bounded by the advantage of key recovery for mSPARX-16 in
the black-box model. Therefore, we analyze the black-box security of mSPARX-16.

Single trail differential/linear cryptanalysis. Because mSPARX-16 is a key alternating cipher, the
optimal differential characteristic probability and linear trail correlation (see Table 1) of 9-round mSPARX-
16 are 2−19 and 2−9, respectively. Hence there is no differential/linear trail covering nine rounds with
probability/correlation larger than 2−16/2−8. Therefore, 24-round mSPARX-16 is secure against single-
trail differential/linear cryptanalysis. The difference/linear effect, i.e., the effect of trail clustering [25],
is not considered, but it is expected that trail clustering does not greatly influence the security of the
cipher. The effect of trail clustering in SPECK and SPARX have been observed in [53, 54], and the results
show that attacks exploiting this effect do not threaten security.

Integral cryptanalysis. mSPARX-16 is a scaled-down version of SPECK32 with a modified key ad-
dition. A 6-round integral distinguisher based on the division-property for mSPARX-16 might exist [55].
This was verified with the automatic search tool Solvatore [56]. It was found that there always exists an
integral distinguisher for rotation constants (5,6) for any number of rounds, but no 7-round distinguishers
were found for rotation constants (7,2) and (7,3).

Algebraic attacks. Algebraic attacks pose a threat to the ciphers with a weak algebraic structure,
especially for those with a low algebraic degree. In the A-box of mSPARX-16, modular addition operation
can be expressed by a vectorial boolean function from GF(216) to GF(28) and the algebraic degree of
this function is defined as the highest degree of its coordinates. According to the algebraic normal form
of each coordinate of modular addition operation [57,58], one modular addition has degree almost eight,
which appears in the carry bit. This means the algebraic degree of one A-box is upper bounded by eight.
By iterating the algebraic representation of modular addition, mSPARX-16 reaches the full degree, i.e.,
15, only after two rounds.

Other attacks. KDF is employed to preclude periodic sequence of round keys, e.g., (k1, k2, k1, k2, . . .),
so mSPARX-16 is secure against slide attacks. A simple MITM attack [38] that splits mSPARX-16 into
two sub-ciphers with every 12 rounds costs 213×16 time complexity, but no MITM attacks on full-round
mSPARX-16 with significantly lower complexity were found. Besides, attacks in the related-key model
such as rotational-xor attacks [59] are not applicable.

5.2 Code lifting security: space hardness bound

In space-hard designs, code lifting resistance is achieved by the incompressible white-box implementation
such that the adversary cannot easily extract or copy the implementation code from the execution envi-
ronment due to channel limitation. The security notion of (M,Z)-space hardness (see Definition 2) was
proposed to quantitively measure code lifting resistance of a white-box block cipher.
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Figure 2 (a) 1-round case; (b) 2-round case; (c) r-round case.

Definition 2 ((M,Z)-space hardness, [16]). An implementation of a block cipher is said to have (M,Z)-
space hardness if it is infeasible for an adversary to decrypt any randomly drawn ciphertext with the
success probability greater than 2−Z , given code of size less than M .

To calculate the space hardness of a cipher, all code compression attacks should be concerned. Because
WARX employs a different structure with the former white-box block ciphers, it is beyond the scope that
the current code compression attacks can cover. Therefore, we define new code compression attacks.
According to the type of code that the adversary stores, code compression attacks are classified as non-
linear layer, linear layer, cipher, and hybrid compression attack. In a non-linear layer compression attack,
the adversary stores some entries of the LUT. In a linear layer compression attack, the adversary stores
some constants of the linear layer matrix. In a cipher compression attack, the adversary stores some
plaintext/ciphertext pairs. In a hybrid compression attack, the adversary stores anything among the
three but with a proportion. Notice that although the linear layer occupies small space compared to the
nonlinear layer and thus should be stored without limitation for the adversary, the situation that the
adversary does not store the linear layer is still discussed. It will be shown that when the adversary only
stores plaintext/ciphertext pairs with the given space, the success probability is maximal.

To conduct the analysis in a general way, WARX is parameterized as an (n,m, t, r) cipher with n
representing the block size, m representing the S-box size, t representing the number of S-boxes in one
nonlinear layer, and r representing the number of rounds. Then, the parameter λ = Ma

Mw
is introduced,

where Mw is the memory size of the white-box implementation and Ma is the memory size given to the
adversary. For WARX, Mw = m2m+ t · log2(2

m− 1) bits. For ease of comparison with current white-box
block ciphers, we fix λ = 1

4 , soMa = m2m−2+ 1
4 t·log2(2

m−1) bits. Finally, we define the (λ, a, b, c)-hybrid
compression attack, where a/b/c denotes the proportion of the space that the adversary uses to store the
entries/constants/pairs. Obviously, a+ b+ c = 1, and a non-linear layer/linear layer/cipher compression
attack corresponds to a (1/4,1,0,0)/(1/4,0,1,0)/(1/4,0,0,1)-hybrid compression attack. To represent all
kinds of attacks, we consider all possible combinations of a, b, and c, leading to three cases: (1/4, 0, b, c),
(1/4, a, b, 0), and (1/4, a, b, c). In all these cases, b can take any value such that bMa/m = 0, 1, 2, . . . , t
under the assumption that the adversary stores some constants completely rather partially.

For each type of attack, 1-round and 2-round cases are discussed and then the upper bound of the
adversary’s success probability is deduced for full-round WARX. The results are revealed in Theorems
1–3 as below. For a vector v = (v0, v1, . . . , vt−1) ∈ [GF(2m)]t, vi is called a bundle, and it is called a zero
bundle if vi = 0. For the 1-round case, x0, x

L
0 , x1 respectively denote the target ciphertext, intermediate

value after the inverse linear layer, and plaintext (see Figure 2(a)). x̃L
0 and x̃1 denote the adversary’s

guesses for xL
0 and x1, respectively. Similar notations are used for the 2- and r-round cases (Figures 2(b)

and (c), respectively). Let g0, . . . , gt−1 denote the adversary’s guess for rc−10 , . . . , rc−1t−1. In the next
analysis, it is assumed that the input values of each table lookup are uniformly distributed.

Theorem 1. For a (1/4, 0, b, c)-hybrid compression attack under which the adversary can store (cMa)/n
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plaintext/ciphertext pairs and (bMa)/m constants of M−1
R , the upper bound of the adversary’s success

probability is a constant which is independent of r and only relies on n and m.

Proof. 1-round case. Denote the set of stored plaintext/ciphertext pairs as Xs. The adversary can
directly decrypt if the target ciphertext is already stored, and otherwise can directly guess the plaintext or
guess the inverse linear layer and missed entries of S−1. Let p1 and p2 respectively denote the adversary’s
success probability by directly guessing the plaintext of the missed ciphertext and by guessing the matrix
and the entries of the missed ciphertext, and then

p1 = Pr[x̃1 = x1|x0 ∈ Xs] · Pr[x0 ∈ Xs] + Pr[x̃1 = x1|x0 /∈ Xs] · Pr[x0 /∈ Xs]

= 1 ·
(cMa)/n

2n
+

(
1

2n
− (cMa)/n

)
·

(
1−

(cMa)/n

2n

)
. (1)

Let S̃−1 denote the adversary’s guess for the missed entries of S−1, and then

p2 = Pr[x̃1 = x1|x0 ∈ Xs] · Pr[x0 ∈ Xs] + Pr[x̃1 = x1|x0 /∈ Xs]
′ · Pr[x0 /∈ Xs]

= 1 ·
(cMa)/n

2n
+ Pr[S̃−1(x̃L

0 ) = x1] ·

(
1−

(cMa)/n

2n

)

= 1 ·
(cMa)/n

2n
+

(
1

2m

)t

·

(
1−

(cMa)/n

2n

)
. (2)

Obviously, p1 > p2. Therefore, the success probability is upper bounded by 2m−n (b = 0, c = 1).
2-round case. When the adversary directly guesses x̃2, the probability is the same as in the 1-round

case. If the adversary guesses the missed constants and entries, the same analysis for the 1-round case

holds, and p2 = 1 · (cMa)/n
2n +

(
1
2m

)2t
·
(
1− (cMa)/n

2n

)
. Again, the upper bound is determined by p1. Hence,

the probability is upper bounded by 2m−n.
r-round case. As in the 2-round case, the success probability is upper bounded by 2m−n, which is

only determined by the block size and the S-box size. This means for an (n,m, t, r) white-box block
cipher, its space hardness under the (1/4, 0, 0, 1)-hybrid compression attack is upper bounded by 2m−n,
regardless of the number of rounds. For WARX/SPNbox-16/WEM with n = 128, m = 16, this bound is
2−112.

Theorem 2. For a (1/4, a, b, 0)-hybrid compression attack under which the adversary can store (aMa)/m
entries of S−1 and (bMa)/m constants of M−1

R , the upper bound of the adversary’s success probability

is [ 2
m−2−3t(m−1)/4m+1

2m ]rt.

Proof. 1-round case. The adversary first guesses the missed parts of M−1
R , and then guesses the

missed entries of S−1. There is Pr[x̃1 = x1] = Pr[x̃1 = x1|x̃L
0 = xL

0 ] · Pr[x̃
L
0 = xL

0 ] + Pr[x̃1 = x1|x̃L
0 6=

xL
0 ] · Pr[x̃

L
0 6= xL

0 ]. It is easy to see that when x̃L
0 = xL

0 , whether x̃1 = x1 depends on whether the looked
entries of xL

0 are stored. If they are, then the probability of x̃1 = x1 is one, and if not, the adversary can

still guess the missed entries of S−1. So, Pr[x̃1 = x1|x̃L
0 = xL

0 ] = [1· (aMa)/m
2m + 1

2m−(aMa)/m
·(1− (aMa)/m

2m )]t.

The situation is more complicated when x̃L
0 6= xL

0 , because x̃L
0 might have some common bundles with

xL
0 . For these common bundles, it is easy to determine the probability that the corresponding bundles of

x̃1 and x1 are equal, while for the other bundles, this probability depends on whether the looked entries

of those bundles of x̃L
0 are stored. If so, then the probability is zero, and if not, then the adversary can

still guess the missed entries and get the correct outputs of those uncommon bundles. Let #(x̃L
0 , x

L
0 )

denote the number of common bundles in x̃L
0 and xL

0 , and then

Pr[x̃1 = x1|x̃L
0 6= xL

0 ] =

[
1 ·

(aMa)/m

2m
+

1

2m − (aMa)/m
·

(
1−

(aMa)/m

2m

)]#(˜xL
0
,xL

0
)

·

[
0 ·

(aMa)/m

2m
+

1

2m − (aMa)/m
·

(
1−

(aMa)/m

2m

)]t−#(˜xL
0
,xL

0
)

. (3)

Here, #(x̃L
0 , x

L
0 ) can have any value from 0 to t − 1. ∀i ∈ [0, 1, . . . , t − 1], Pr[x̃L

0 i = xL
0 i] =

1
2m . So,

∀j ∈ [0, 1, . . . , t− 1], Pr[#(x̃L
0 , x

L
0 ) = j] =

(
t−1
j

)
·
(

1
2m

)j
·
(
1− 1

2m

)t−1−j
where

(
u
v

)
denotes v combinations
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of u. Therefore,

Pr[x̃1 = x1|x̃L
0 6= xL

0 ] =

t−1∑

j=0

(
t− 1

j

)
·

(
1

2m

)j

·

(
1−

1

2m

)t−1−j

·

[
1 ·

(aMa)/m

2m
+

1

2m − (aMa)/m
·

(
1−

(aMa)/m

2m

)]j

·

[
1

2m − (aMa)/m
·

(
1−

(aMa)/m

2m

)]t−j
. (4)

Now, only Pr[x̃L
0 = xL

0 ] needs to be calculated. x̃L
0 = xL

0 iff M
−1
P · diag(g0, . . . , gt−1) · x0 = xL

0 ,
which holds iff diag(g0, . . . , gt−1) · x0 = MP · xL

0 , because M
−1
P has full rank. Let yL0 = MP · xL

0 .
Because diag(g0, . . . , gt−1) · x0 = (g0 · x00, . . . , gt−1 · x0t−1), we need (g0 · x00, . . . , gt−1 · x0t−1) = yL0 =
(yL0 0, . . . , y

L
0 t−1). ∀i ∈ [0, 1, . . . , t− 1], the solution of gi such that gi · x0i = yL0 i depends on whether x0i

is a zero bundle. If x0i = 0, then any nonzero constant in the base field GF(2m) makes gi · x0i = yL0 i

hold, while if x0i 6= 0, there is only one solution for gi. Since the adversary has stored (bMa)/m

constants of M
−1
R , there are t − (bMa)/m constants remaining to be guessed. So, Pr[x̃L

0 = xL
0 ] =

[1 · 1
2m + 1

2m−1 · (1− 1
2m )]t−(bMa)/m. Naturally, Pr[x̃L

0 6= xL
0 ] = 1− (1 · 1

2m + 1
2m−1 · (1− 1

2m ))t−(bMa)/m.
To sum up, there is

Pr[x̃1 = x1] = [f(a)]
t
· [f(m)]

t−(bMa)/m

+




t−1∑

j=0

(
t− 1

j

)
·

(
1

2m

)j

·

(
1−

1

2m

)t−1−j

·[f(a)]
j
·[f ′(a)]t−j


·[1− [f(m)]t−(bMa)/m], (5)

where f(a) = 1 · (aMa)/m
2m + 1

2m−(aMa)/m
· (1 − (aMa)/m

2m ), f ′(a) = 1
2m−(aMa)/m

· (1 − (aMa)/m
2m ), and

f(m) = 1 · 1
2m + 1

2m−1 · (1− 1
2m ).

Let E5R denote the right-hand-side expression of Eq. (5). We evaluated E5R for all possible pairs of a

and b and the upper bound appears when (a, b) = (1 − t·log
2
(2m−1)
Ma

, t·log
2
(2m−1)
Ma

), meaning the adversary

stores the whole M
−1
R . The bound is expressed by E5R < [ 2

m−2−3t(m−1)/4m+1
2m ]t.

2-round case. The 2-round case differs from the 1-round case because the adversary guesses M
−1
R

once in the first round and it is determinate in the second round. Following the same analysis as in
the 1-round case, the probability that the target ciphertext can be correctly decrypted is calculated by
Pr[x̃2 = x2] = Pr[x̃2 = x2|x̃1 = x1] · Pr[x̃1 = x1] + Pr[x̃2 = x2|x̃1 6= x1] · Pr[x̃1 6= x1].

When x̃1 = x1, Pr[x̃2 = x2] = Pr[x̃2 = x2|x̃L
1 = xL

1 ] ·Pr[x̃
L
1 = xL

1 ] + Pr[x̃2 = x2|x̃L
1 6= xL

1 ] ·Pr[x̃
L
1 6= xL

1 ].

Again, it is easy to see that Pr[x̃2 = x2|x̃L
1 = xL

1 ] = [f(a)]
t
. When x̃L

1 6= xL
1 , whether x̃2 = x2 is unrelated

to the number of rounds, so

Pr[x̃2 = x2|x̃L
1 6= xL

1 ] =

t−1∑

j=0

(
t− 1

j

)
·

(
1

2m

)j

·

(
1−

1

2m

)t−1−j

· [f(a)]
j
· [f ′(a)]

t−j
. (6)

Then only Pr[x̃L
1 = xL

1 ] remains to be determined. Here, x̃L
1 = xL

1 iff M
−1
P · diag(g0, . . . , gt−1) · x1 = xL

1 .

Although diag(g0, . . . , gt−1) has been guessed and is determinate in the first round, whether x̃L
1 = xL

1 also

depends on whether the guesses are correct, which is independent of r, so Pr[x̃L
1 = xL

1 ] = [f(m)]t−(bMa)/m.

Finally, it is natural to determine Pr[x̃L
1 6= xL

1 ].
To sum up, Pr[x̃2 = x2|x̃1 = x1] = Pr[x̃1 = x1].

When x̃1 6= x1, it is not easy to determine Pr[x̃2 = x2]. Again, Pr[x̃2 = x2] = Pr[x̃2 = x2|x̃L
1 =

xL
1 ] · Pr[x̃

L
1 = xL

1 ] + Pr[x̃2 = x2|x̃L
1 6= xL

1 ] · Pr[x̃
L
1 6= xL

1 ]. First, Pr[x̃2 = x2|x̃L
1 = xL

1 ] = [f(a)]t . Then

Pr[x̃2 = x2|x̃L
1 6= xL

1 ] =

t−1∑

j=0

(
t− 1

j

)
·

(
1

2m

)j

·

(
1−

1

2m

)t−1−j

· [f(a)]
j
· [f ′(a)]

t−j
. (7)
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Now, only Pr[x̃L
1 = xL

1 ] remains to be determined. x̃L
1 = xL

1 iff (g0 · x̃10, . . . , gt−1 · x̃1t−1) = yL1 =
(yL1 0, . . . , y

L
1 t−1), where yL1 = MP · xL

1 . If gi has been stored at the beginning for some i ∈ [0, . . . , t− 1],

then the probability that gi ·x̃1i = yL1 i depends on whether x̃1i = x1i, and this probability is 1
2m . However,

if gi was guessed in the first round, then the probability of gi · x̃1i = yL1 i depends on whether x̃1i is a

zero bundle, and this probability is [f(m)]t−(bMa)/m. Finally, it is natural to determine Pr[x̃L
1 = xL

1 ].

To sum up,

Pr[x̃2 = x2|x̃1 6= x1] = [f(a)]t ·

[(
1

2m

)(bMa)/m

· [f(m)]t−(bMa)/m

]

+




t−1∑

j=0

(
t− 1

j

)
·

(
1

2m

)j

·

(
1−

1

2m

)t−1−j

· [f(a)]j · [f ′(a)]
t−j




·

(
1−

(
1

2m

)(bMa)/m

· [f(m)]t−(bMa)/m

)
. (8)

All in all, there is Pr[x̃2 = x2] = E2
5R+E8R ·(1−E5R) where E8R denotes the right-hand-side expression

of Eq. (8). Again, the upper bound appears when (a, b) = (1− t·log
2
(2m−1)
Ma

, t·log2
(2m−1)
Ma

). In this case, E8R

is negligible and we regard E2
5R as the upper bound of the success probability. This bound is expressed

by E2
5R < [ 2

m−2−3t(m−1)/4m+1
2m ]2t.

r-round case. From the analysis in the 2-round case, it is deduced that the success probability for

the r-round case is upper bounded by [ 2
m−2−3t(m−1)/4m+1

2m ]rt. For WARX with t = 8,m = 16, this bound
is 2−16r.

Theorem 3. For a (1/4, a, b, c)-hybrid compression attack under which the adversary can store (aMa)/m
entries of S−1, (bMa)/m constants of M−1

R , and (cMa)/n plaintext/ciphertext pairs, the upper bound of

the success probability is [ 2
m−2−3t(m−1)/4m+1

2m ]rt.

Proof. 1-round case. The adversary can randomly guess the plaintext, or guess M
−1
R and the

missed entries of S−1 for the target ciphertext if it is not stored. Let p′1 and p′2 respectively denote
the adversary’s success probability by directly guessing the plaintext of the missed ciphertext and by
guessing the matrix and the entries of S−1 used by the missed ciphertext. Following the analysis in the

(1/4, 0, b, c)-hybrid compression attack, p′1 = 1 · (cMa)/n
2n + ( 1

2n − (cMa)/n) · (1 −
(cMa)/n

2n ), while for p′2,

the analysis in the (1/4, a, b, 0)-hybrid compression attack holds: p′2 = 1 · (cMa)/n
2n + E5R · (1 − (cMa)/n

2n ).
Because E5R > ( 1

2n − (cMa)/n), Pr[x̃1 = x1] is upper bounded by p′2, which is further upper bounded by
E5R.

2-round case. Following the analysis in the 1-round case, Pr[x̃2 = x2] is upper bounded by E2
5R +

E8R · (1− E5R). We regard E2
5R as the bound, which is expressed by E2

5R < [ 2
m−2−3t(m−1)/4m+1

2m ]2t.

r-round case. Following the analysis in the 2-round case, it is deduced that Pr[x̃r = xr] is upper

bounded by [ 2
m−2−3t(m−1)/4m+1

2m ]rt. For WARX with t = 8, m = 16, this bound is 2−16r.

Putting Theorems 1–3 together, the constant bound under the (1/4, 0, 0, 1)-hybrid compression attack
gives a generic maximal achievable space hardness when considering all code compression attacks. Build-
ing upon this, an expression can be formulated to derive the number of rounds needed for the desired
112-bit security level for WARX: 2−16r 6 2−112, from which we get r > 7. As the goal of WARX is to
optimize efficiency, the number of rounds can be set as 7.

For white-box block ciphers without a random linear layer such as SPNbox-16 [17] and WEM [19], a
similar analysis can be conducted. Given Ma size to the adversary who can only store some entries of
the S-box and plaintext/ciphertext pairs, the upper bound of the adversary’s success probability is 2−112

under the (1/4, 0, 0, 1)-hybrid compression attack and 2−15r under the (1/4, 1, 0, 0)-hybrid compression
attack. Therefore, their minimal number of rounds is determined by 2−15r 6 2−112, from which we
deduce r > 8.

To sum up, by adopting a random linear layer, the minimal number of rounds required to achieve the
maximal code lifting security level is improved by one round.
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Table 2 Components of SPNbox-16, WEM, and WARX. AES-16 denotes the 16-bit AES used in SPNbox-16. ri denotes the

number of rounds of the small block cipher

Cipher r ri
Components

Key schedule Non-linear layer (S-box generation) Linear layer

SPNbox-16 [17] 10 32 KDF AES-16 MDS matrix

WEM [19] 12.5 – AES PRNG(AES-CTR) and Fisher-Yates shuffle 5-round AES-128

WARX 7 24 KDF mSPARX-16 MDS matrix

Table 3 Software performance of BBIs. Performance on Intel is measured by cycles per byte. Cache-timing issues means whether

the implementation is vulnerable to some potential cache-timing attacks

Cipher
Implementation method

Performance on Intel Cache-timing issues
Non-linear layer Linear layer

SPNbox-16 [17] Arithmetic instructions Givaro∗ 7821 YES

WEM [19] LUT Arithmetic instructions 970 YES

WARX Arithmetic instructions Givaro 863 NO

* A C++ library for arithmetic and algebraic computations for efficient finite field multiplication. https://github.com/
linbox-team/givaro.

Table 4 Software performance of WBIs. Performance on Intel and performance on ARM are all measured by cycles per byte.

Space hardness is under the best compression attack

Cipher
Implementation method

Performance on Intel Performance on ARM Mw Space hardness
Non-linear layer Linear layer

SPNbox-16 [17] LUT Givaro 778 11024 128 KB (32 kB, 112)

WEM [19] LUT Arithmetic instructions 970 12586 128 KB (32 kB, 112)

WARX LUT Givaro 572 8739 128 KB (32 kB, 112)

6 Software performance and comparison

We mainly compare WARX with SPNbox-16 [17] and WEM [19], the two most competitive white-box
block ciphers so far. All of the three ciphers have the SPN structure, but use different components, as
shown in Table 2. To clarify the efficiency improvement, we implemented BBIs and WBIs of them (codes
are available on the website2)). Considering scenarios such as cloud-based DRM and mobile payment, all
BBIs were tested under the x86 64 architecture. Specifically, a laptop equipped with a 1.6-GHz Intel Core
i5 CPU was chosen and the performance result is shown in Table 3. WBIs were tested under the same
x86 64 and ARMv8 architectures, for which a QEMU 5.0 ARMv8 virtual machine with a Cortex-A53
CPU was built. The performance result is shown in Table 4. Performance of BBI is measured by taking
the average over 100000 repetitions, each time encrypting a random message of 2048 bytes. Performance
of WBI is measured similarly while decrypting a message of the same length.

From Tables 3 and 4, the black- and white-box implementations of WARX perform best among the
three ciphers on both Intel and ARMv8 platforms. Especially, the BBI of WARX is about nine times
faster than SPNbox-16. Obviously, for all the three ciphers, the table-based WBI outperforms the round-
based BBI on the same platform. This result is consistent with [17]. We should mention that some
implementation methods might introduce cache-timing issues. For example, a BBI with key-dependent
table lookups for secret S-boxes might be vulnerable to cache-timing attacks; hence, its secret components
might be recovered.

7 Conclusion

This paper proposes a new white-box block cipher, WARX, which is based on ARX primitives and random
MDS matrix. Under the precondition of ensuring security, WARX accomplishes better black- and white-
box efficiency than the existing space-hard white-box block ciphers. This design shows the effectivity
of a random linear layer in reducing the number of rounds of an SPN-type white-box block cipher and
thereby improving its efficiency. Our findings indicate several future research directions. First, it would
be interesting to explore different random linear layers. In this case, the space hardness will perform
differently, but we predict that the constant space hardness bound cannot be broken. Second, the space

2) https://github.com/JunLiu9102.

https://github.com/linbox-team/givaro
https://github.com/linbox-team/givaro
https://github.com/JunLiu9102
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hardness model defined in this work also applies to other SPN-type white-box block ciphers. This means
the constant space hardness bound exists for new designs following the SPN structure. Therefore, the
number of rounds cannot be reduced further, also because the security under some black-box attacks still
relies on the number of rounds. Finally, an open question is to search fast and secure key mixing functions
for small-size block ciphers, which can further optimize the efficiency of the setup procedure in practice. It
is worth noting that there exists a gap between theoretically secure and realistically imperative white-box
schemes, while our work took a step towards closing this gap.
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Appendix A Experiments for Subsection 3.1
We used cryptoSMT to search for the best differential probability of the ARX-box mSPECKEY, and MILP to search for the

linear correlation. We modified the word size to 8 and ran the tools for all possible pairs of rotation constants. After that, we

verified the differential probability and linear correlation using 10000 random keys and 10000 pairs of plaintext for the rotation

constant (7,2). For the practical probability, we took the average value. When the number of rounds is low, the verified differential

probability/linear correlation is close to the result returned by the tools, while for higher numbers of rounds, the verified probability

differs more because of the trail clustering effect. See Tables A1 and A2 for the automatic search results of rotation constants (7,3)

and (5,6). See Table A3 for the verification result of differential probability and linear correlation.

Table A1 Automatic search results (extra) of rotation constant (7,3)

Rounds 1 2 3 4 5 6 7 8 9 10

ODCP 0 1 3 6 9 12 15 18 20 22

ODC 40,80-00,04 40,80-04,24 24,08-81,85 84,03-85,a1 35,68-c2,d0 42,80-71,7e 72,44-81,85 40,80-20,21 01,02-80,84 01,02-c2,d0

OLTC 0 0 1 2 4 5 7 8 9 10

OLT 00,10-80,80 80,21-08,08 80,21-d8,c0 80,21-3c,0d 98,15-73,7a 82,bd-ac,8d 10,24-e9,e9 00,a3-ac,8d 86,a8-0c,0c 04,0d-08,08

Table A2 Automatic search results (extra) of rotation constant (5,6)

Rounds 1 2 3 4 5 6 7 8 9 10

ODCP 0 1 3 5 9 11 13 16 19 22

ODC 10,80-00,20 10,00-84,a4 1a,40-84,a4 0a,40-80,a9 0a,40-a5,cf 20,01-20,28 94,84-20,28 94,84-29,23 9a,40-29,23 10,80-02,a6

OLTC 0 0 1 3 4 6 6 8 9 11

OLT 00,10-04,04 00,80-49,48 20,05-92,90 20,9d-21,00 20,95-94,84 2a,37-6d,6c 20,05-49,48 e6,31-49,48 20,cd-6d,6c 06,f0-e4,24

Table A3 Verification result for differential probability and linear correlation of mSPECKEY (all − log
2
scale)

Rounds 1 2 3 4 5 6 7 8 9 10

Differential probability (cryptoSMT) 0 1 3 5 8 10 13 16 19 21

Differential probability (verify) 0 1.0 3.0 5.0 8.0 10.0 12.8 15.0 15.0 15.8

Linear correlation (MILP) 0 0 1 2 3 4 6 7 9 10

Linear correlation (verify) 0 0 7.6 2.0 3.0 4.0 5.7 6.6 6.9 6.8
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