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Abstract This paper proposes a finite-horizon state estimation method for a kind of complex network that

suffers from randomly occurring gain variations. The method involves utilizing integral measurements from a

portion of nodes in such complex networks. Integral measurements are carried out to characterize time delays

that occur in signal acquisition together with real-time signal processing. Measurements from only partial

nodes reflect the fact that signals of several sensors are unacquirable. A Gaussian random variable is utilized

to depict the random appearance of gain variations during the practical implementation of estimators. The

aim of this paper is to construct finite-horizon resilient estimators for complex networks in view of integral

measurements from a portion of nodes that fulfill the specified H∞ performance demand involving a specified

disturbance attenuation level. Necessary and sufficient conditions are put forward to ensure that such ideal

estimators exist by employing stochastic analysis as well as using the completing squares method. The gain

parameters of the finite-horizon estimators are expressed by adopting the Moore-Penrose pseudoinverse and

acquired through solving the solutions to a group of coupled backward recursive Riccati difference equations

with constraint conditions. A confirmatory instance is carried out that demonstrates the feasibility of the

newly developed estimation algorithm.
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1 Introduction

The complex network model, which contains a number of nodes and their inner/outer connections (cou-
plings), can characterize diverse network systems in the real world, such as social, Internet, transporta-
tion, biological, computer, and power transmission network systems. Considering that the node state
in complex networks contains much valuable information which cannot be measured, the goal of state
estimation (SE) is to acquire accurate estimates of state under a certain performance constraint and es-
tablish a basis for subsequent system analysis and decision. Over the last few decades, the SE issue with
respect to complex networks has gained increased attention; see [1] and [2] for the globally asymptotic
and robustly exponential SE in the mean square, [3] for the H∞ SE, [4] for the SE with the performance
of exponential ultimate boundedness in the mean square, [5] for the set-membership SE, [6] for the re-
cursive SE, [7] for the asynchronous dissipative SE, etc. Nowadays, most complex networks are known
to exhibit time-varying features due to rapid changes in working conditions, unpredictable network en-
vironments, the need for working assignments, and physical device factors. Therefore, it is natural to
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consider time-varying parameters when solving the SE issue for complex networks, i.e., the finite-horizon
SE problem. For example, in [8], considering the time-varying complex networks (TVCNs) containing
stochastic factors, the design of bounded H∞ state estimator has been discussed, which focuses on the
transient behavior over a given finite time horizon.

It is recognized that the majority of study results on SE of complex networks stem from measuring
all nodes. Measurements from some network nodes may be unavailable due to a faulty sensor, network
disconnection between node and sensor, loss of sensor’s transmission capacity, or harsh operational condi-
tions. It is critical to realize the SE based on measurement signals from only partial nodes of the network.
Initial research efforts were devoted to the analysis of complex networks, considering measurements from
a portion of nodes [9–11]. For example, for delayed complex networks, the SE of the whole network has
been realized in [10] based on measurement signals of a portion of nodes. Current instant measurements
may sometimes be relevant to time delays due to the existence of time intervals between signal acquisition
and real-time processing, which is known as integral measurements. So far, integral measurements have
been discussed when dealing with the analysis problem of actual systems (e.g., physical reaction [12],
quality-of-service guarantees [13], chemical process [14], self-referencing SPR-sensor [15], and electron
energy albedos [16]). In particular, Ref. [17] developed a discrete-time model for integral measurements,
and the measurement signal is expressed with both the present state and some previous states. However,
the finite-horizon SE issue has not yet been solved for TVCNs in terms of integral measurements of a
part of nodes, which is the motivation behind our work.

A number of methods have been proposed to cope with finite-horizon analysis and synthesis issues of
estimating time-varying systems. These methods include, but are not limited to, the minimum covariance
method [6,18–20], an auxiliary Krein space state-space model [21], the recursive linear matrix inequality [2,
5, 8, 22, 23], and the coupled backward recursive Riccati difference equation (RRDE) method [24–27].
The advantages of using the RRDE method include low computation burdens, fast calculation of gains,
acquisition of necessary and sufficient conditions (NSCs), less conservativeness, as well as easy realization.
Such a method proved effective in investigating H∞ containment control [24], finite-horizon H∞ bipartite
consensus control [25], and finite-horizon H∞ control [26] and filtering [27], etc. Among these references,
the H∞ performance indices guarantee that the influences are restrained below a prescribed disturbance
attenuation level (DAL). These influences include both the noises and the initial states on the controlled
tracking errors, the consensus error, the controlled output, and the estimation error output filtering.
Specifically, NSCs are obtained for designing desired observer/controller/filter such that the corresponding
H∞ performance indices are met. Nevertheless, considering time-varying complex networks with integral
measurements of partial nodes, the establishment of NSCs has not yet been sufficiently investigated for
the beingness of finite-horizon H∞ state estimators, which also inspires us to carry out this work.

During the actual implementation of estimators, some gain variations/perturbations may appear due
to analog-digital conversion, rounding error, finite accuracy, and noises. Such gain variations may cause
system fragilities, such as increased estimation error, loss of estimation performance, unreliability, ab-
normal behavior, and wrong estimator operation. It is thus critical to devise resilient estimators that
are insensitive to such gain variations. Research results on resilient/non-fragile estimation for complex
networks are available in the literature; see [5, 28] and the references therein. In this paper, the main
task is to realize the SE for complex networks with time-varying parameters, integral measurements of
a portion of nodes as well as randomly occurring gain variations under a finite-horizon H∞ performance
constraint. The difficulties that need to be addressed include (1) how to construct a uniform framework
for the problem under investigation; (2) how to obtain NSCs that guarantee that such finite-horizon re-
silient H∞ state estimators exist; and (3) how to acquire the time-varying gain parameters of such state
estimators. In this paper, the major novelties are the following aspects: (1) the finite-horizon partial-
nodes-based SE issue is, firstly, solved for TVCNs with integral measurements and randomly occurring
gain variations; (2) NSCs are established with the help of the completing squares method (CSM), which
ensure that the estimation error dynamics exhibits the finite-horizon H∞ performance; and (3) the gain
parameters of the time-varying state estimators are conveniently calculated by finding the solutions to
certain coupled backward RRDEs.

The framework of this paper is listed below. Section 2 presents specified models and the issue that
needs to be addressed. Section 3 presents the analysis of estimation performance and the development of
the SE method. In Section 4, a confirmatory instance is carried out to verify the estimation performance
of the developed estimators. Section 5 presents the conclusion of this paper.

Notation. In this paper, ℜp is the Euclidean space with dimension p. l2([0, L], ℜ
q) is referred to the
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space of nonanticipatory square-summable vector-valued functions with dimension q over [0, L]. As for
a real symmetric matrix S, S > 0 (or S > 0) illustrates that S is a positive definite (or positive semi-
definite) matrix, S−1 and |S|mean the inverse and the determinant of S, and ∗ depicts the symmetric term
therein. diag{· · · } reflects a block-diagonal matrix. Considering a matrix O, OT, O†, ‖O‖, and ‖O‖F
show the transpose, the Moore-Penrose pseudoinverse, the norm, and the Frobenius norm, respectively.
I (0) is the identity (zero) matrix. E {ϑ} characterizes the mathematical expectation of a random variable
ϑ. ⊗ represents the Kronecker product.

2 Problem formulation and preliminaries

For a given finite horizon [0, D̆], consider a kind of TVCNs involving U coupled nodes as follows:

xı(ℏ+ 1) = Aı(ℏ)xı(ℏ) +
U∑

j=1

aıjΓxj(ℏ) + Eı(ℏ)w(ℏ),

zı(ℏ) = Hı(ℏ)xı(ℏ), ı = 1, 2, . . . , U, ℏ = 0, 1, . . . , D̆,

(1)

where xı(ℏ) ∈ ℜnx and zı(ℏ) ∈ ℜnz denote the state vector and the vector we would like to estimate,
respectively; w(ℏ) ∈ l2([0, D̆],ℜnw ) is the process noise; Aı(ℏ), Eı(ℏ) and Hı(ℏ) are given time-varying
matrices whose dimensions are proper; and the matrix B , [aıj ]U×U represents the outer-coupling config-
uration matrix of network (1) conforming to aıj > 0 (ı 6= j) but not all zeros. Generally, B is symmetric
with the satisfaction of

U∑

j=1

aıj =

U∑

j=1

ajı = 0, ı = 1, 2, . . . , U. (2)

The matrix Γ , diag{r1, r2, . . . , rnx
} > 0 stands for the inner-coupling matrix with a connection to the

jth state variable when rj 6= 0.

Assume that the measurement outputs from the first u (u 6 U) network nodes are available. The
measurement signal of the ıth (ı = 1, 2, . . . , u) node is expressed as

yı(ℏ) = Cı(ℏ)

℘
∑

m=0

xı(ℏ−m) +Gı(ℏ)w(ℏ) ∈ ℜny , (3)

where ℘ represents the time interval to collect the data; and time-varying matrices Cı(ℏ) and Gı(ℏ) are
given having proper dimensions.

Remark 1. This paper mainly focuses on the finite-horizon SE issue in terms of measurements of a
portion of nodes, considering the fact that measurements from some nodes may be inaccessible during
the actual operation of complex networks due to complexity of working environments, sensor failure,
temporary ineffectiveness of network of certain region, and linking inconvenience from the sensor to the
estimator of several nodes. In later analysis, effort is devoted to conducting the analysis of estimation
performance and estimator design on the basis of measurements from a part of rather than all the nodes.

Let x̆ı(ℏ) , [xTı (ℏ) x
T
ı (ℏ− 1) · · · xTı (ℏ− ℘)]T. The expressions of (1) and (3) are changed to the

following form:

x̆ı(ℏ+ 1) = Ăı(ℏ)x̆ı(ℏ) +

U∑

j=1

aıjΓ̆x̆j(ℏ) + Ĕı(ℏ)w(ℏ), ı = 1, 2, . . . , U,

zı(ℏ) = H̆ı(ℏ)x̆ı(ℏ), ı = 1, 2, . . . , U,

yı(ℏ) = C̆ı(ℏ)x̆ı(ℏ) +Gı(ℏ)w(ℏ), ı = 1, 2, . . . , u,

(4)
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where

Ăı(ℏ) ,













Aı(ℏ) 0 · · · 0 0

I 0 · · · · · · 0

0
. . . · · · · · ·

...
... · · ·

. . . · · ·
...

0 · · · · · · I 0


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





, Ĕı(ℏ) ,












Eı(ℏ)

0

0
...

0












, C̆ı(ℏ) , [Cı(ℏ) Cı(ℏ) · · · Cı(ℏ)
︸ ︷︷ ︸

℘+1

],

Γ̆ , diag{Γ, 0, 0, . . . , 0}, H̆ı(ℏ) ,
[

Hı(ℏ) 0 0 · · · 0
]

.

Remark 2. In order to be more realistic, in the measurement signal (3) of the ıth (ı = 1, 2, . . . , u)
node, integral measurements are considered to reflect the existence of time delays during the process of
signal acquisition in view of real-time signal processing. By employing the mathematical manipulation
of augmenting the vectors [17], the form of time delays in the expression of integral measurements (3)
is involved in a single vector x̆ı(ℏ), which is convenient for executing analysis and design of estimators
afterwards.

Construct the following estimators for TVCN (1) on node ı:

x̂ı(ℏ+ 1) = Ăı(ℏ)x̂ı(ℏ) +
U∑

j=1

aıjΓ̆x̂j(ℏ) + (Kı(ℏ) + ς(ℏ)∆Kı(ℏ))(yı(ℏ)− C̆ı(ℏ)x̂ı(ℏ)), ı = 1, 2, . . . , u,

x̂ı(ℏ+ 1) = Ăı(ℏ)x̂ı(ℏ) +

U∑

j=1

aıjΓ̆x̂j(ℏ), ı = u+ 1, u+ 2, . . . , U,

ẑı(ℏ) = H̆ı(ℏ)x̂ı(ℏ), ı = 1, 2, . . . , U,

(5)

where x̂ı(ℏ) ∈ ℜnx(℘+1) and ẑı(ℏ) ∈ ℜnz characterize the estimates of the state x̆ı(ℏ) and the signal zı(ℏ)
of the ıth node, and Kı(ℏ) is the gain parameter to be decided of the estimator. ∆Kı(ℏ) denotes the
gain variations with the following expression:

∆Kı(ℏ) =Mı(ℏ)Fı(ℏ)Nı(ℏ), (6)

whereMı(ℏ) and Nı(ℏ) stand for given matrices, and Fı(ℏ) means an unknown matrix with FT
ı (ℏ)Fı(ℏ) 6

I. The variable ς(ℏ) is introduced in (5) which reflects the random occurrence of gain variations, which
is supposed as a sequence of Gaussian white noise with expectation ς̄ as well as variance ς̂ .

Let eı(ℏ) , x̆ı(ℏ) − x̂ı(ℏ) and z̆eı(ℏ) , zı(ℏ) − ẑı(ℏ) denote the estimation errors, and we derive the
following estimation error dynamics (EED):

eı(ℏ+ 1) = (Ăı(ℏ)−Kı(ℏ)C̆ı(ℏ)− ς̄∆Kı(ℏ)C̆ı(ℏ))eı(ℏ) +

U∑

j=1

aıjΓ̆ej(ℏ) + (Ĕı(ℏ)−Kı(ℏ)Gı(ℏ)− ς̄

×∆Kı(ℏ)Gı(ℏ))w(ℏ) − ς̃(ℏ)∆Kı(ℏ)C̆ı(ℏ)eı(ℏ)− ς̃(ℏ)∆Kı(ℏ)Gı(ℏ)w(ℏ), ı = 1, 2, . . . , u,

eı(ℏ+ 1) = Ăı(ℏ)eı(ℏ) +
U∑

j=1

aıjΓ̆ej(ℏ) + Ĕı(ℏ)w(ℏ), ı = u+ 1, u+ 2, . . . , U,

z̆eı(ℏ) = H̆ı(ℏ)eı(ℏ), ı = 1, 2, . . . , U. (7)

Several new variables are introduced as follows:

∇(ℏ) ,
[

∇T
1 (ℏ) ∇T

2 (ℏ) · · · ∇T
U (ℏ)

]T

, ∇ = e, z̆e, Ĕ, ∂(ℏ) , diag{∂1(ℏ), ∂2(ℏ), . . . , ∂U (ℏ)}, ∂ = Ă, H̆,

G(ℏ) ,
[

GT
1 (ℏ) G

T
2 (ℏ) · · · GT

u (ℏ)
]T

, i(ℏ) , diag{i1(ℏ),i2(ℏ), . . . ,iu(ℏ)}, i = K,∆K, C̆. (8)

In terms of (7) and (8), we acquire the following compact form of the EED (7):

e(ℏ+ 1) = (A(ℏ) − ς̄∆K̆(ℏ)C(ℏ))e(ℏ)− ς̃(ℏ)∆K̆(ℏ)C(ℏ)e(ℏ) + (Ĕ(ℏ)− K̆(ℏ)
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×G(ℏ)− ς̄∆K̆(ℏ)G(ℏ))w(ℏ) − ς̃(ℏ)∆K̆(ℏ)G(ℏ)w(ℏ), (9)

z̆e(ℏ) = H̆(ℏ)e(ℏ), (10)

where

A(ℏ) , Ă(ℏ) +B ⊗ Γ̆− K̆(ℏ)C(ℏ), K̆(ℏ) ,
[

KT(ℏ) 0
]T

, ∆K̆(ℏ) ,
[

∆KT(ℏ) 0
]T

, C(ℏ) ,
[

C̆(ℏ) 0
]

.

In this paper, the aim lies in coping with the finite-horizon resilient SE issue for the TVCN (1)
based on integral measurements of the form (3). In particular, we are devoted to designing the gain
parameters Kı(ℏ) (ı = 1, 2, . . . , u, ℏ = 0, 1, . . . , D̆) of time-varying estimators (5), for all nonzero w(ℏ),
which guarantee that the estimation error z̆e(ℏ) in (10) meets the performance constraint below:

W , E







D̆∑

ℏ=0

‖z̆e(ℏ)‖
2 − χ̄2

D̆∑

ℏ=0

‖w(ℏ)‖2






− χ̄2eT(0)Qe(0) < 0, (11)

where Q > 0 is a known weighting matrix, and χ̄ > 0 stands for the specified DAL.
Considering (6), one has

∆K̆(ℏ) = M̆(ℏ)F (ℏ)N(ℏ), (12)

where

M̆(ℏ) ,
[

MT(ℏ) 0
]T

, O(ℏ) , diag{O1(ℏ), O2(ℏ), . . . , Ou(ℏ)}, O =M,F,N.

To deal with the gain variations in (9), an effective method is to view them as one source of the dis-
turbances [26, 27]. Thus, we are to resist the impact of all the disturbances on the estimation error in
accordance with the specified H∞ performance constraint (11). Then, we rewrite (9) in the following
expression:

e(ℏ+ 1) = A(ℏ)e(ℏ) + G(ℏ)̟(ℏ) − ς̃(ℏ)M(ℏ)̟(ℏ),

z̆e(ℏ) = H̆(ℏ)e(ℏ),
(13)

where

̟(ℏ) ,
[

wT(ℏ) (ζ(ℏ)F (ℏ)N(ℏ)C(ℏ)e(ℏ))T (ζ(ℏ)F (ℏ)N(ℏ)G(ℏ)w(ℏ))T
]T

,

G(ℏ) ,
[

Ĕ(ℏ)− K̆(ℏ)G(ℏ) −ζ−1(ℏ)ς̄M̆(ℏ) −ζ−1(ℏ)ς̄M̆(ℏ)
]

, M(ℏ) ,
[

ζ−1(ℏ)M̆(ℏ) ζ−1(ℏ)M̆(ℏ)
]

.

Here, ζ(ℏ) > 0 means a function which denotes the scaling concerning the perturbation, and the involve-
ment of it is to offer more flexibility into the estimation problem. Besides, for all nonzero ̟(ℏ), we utilize
the auxiliary index as follows:

W̄ , E

{
D̆∑

ℏ=0

‖z̆e(ℏ)‖
2 − χ̄2

D̆∑

ℏ=0

(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)

}

− χ̄2eT(0)Qe(0) < 0. (14)

3 Main results

Before presenting the major results, several lemmas are shown which are necessary for performance
analysis and design of estimators (5).

Lemma 1 ([29]). Let W , Y and X denote nonzero matrices with suitable dimensions. The solution S
with respect to minS ‖WSX − Y ‖F is W †Y X†.
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Lemma 2. Concerning the noise ̟(ℏ) and the initial state e(0), regard e(ℏ) as the appropriate solution
to the system (13) over [0, D̆]. Then, one acquires

W1(e(0), ̟(ℏ)) ,E

{
D̆∑

ℏ=0

‖z̆e(ℏ)‖
2 − χ̄2

D̆∑

ℏ=0

(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)

}

=

D̆∑

ℏ=0

E
{
ēT(ℏ)Ω(ℏ)ē(ℏ)

}
+ E {eT(0)P̆ (0)e(0)− eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)}. (15)

Moreover, if |Ω22(ℏ+1)| 6= 0 for all ℏ ∈ [0, D̆], by choosing ̟(ℏ) , Ω−1
22 (ℏ+1)ΩT

12(ℏ+1)e(ℏ) and defining

Z̆(ℏ) , −K̆(ℏ)C(ℏ)e(ℏ), one has

W2(Z̆(ℏ), ̟(ℏ)) ,

D̆∑

ℏ=0

E

{

‖z̆e(ℏ)‖
2 + ‖Z̆(ℏ)‖2

}

=

D̆∑

ℏ=0

E {ĕT(ℏ)Θ(ℏ)ĕ(ℏ)}+ E {eT(0)X(0)e(0)− eT(D̆ + 1)X(D̆ + 1)e(D̆ + 1)}, (16)

where {P̆ (ℏ)}06ℏ6D̆+1 > 0 and {X(ℏ)}06ℏ6D̆+1 > 0 denote two groups of matrices with T (ℏ) ,

[Tıj(ℏ)]Unx(℘+1) ×Unx(℘+1) (T = P,X), and

Ω(ℏ+ 1) ,

[

Ω11(ℏ+ 1)− P̆ (ℏ) ∗

ΩT
12(ℏ+ 1) −Ω22(ℏ+ 1)

]

, Θ(ℏ+ 1) ,

[

Θ1(ℏ+ 1) ∗

ΘT
12(ℏ+ 1) Θ22(ℏ+ 1)

]

,

Ω11(ℏ+ 1) , H̆T(ℏ)H̆(ℏ) +AT(ℏ)P̆ (ℏ+ 1)A(ℏ) + χ̄2ζ2(ℏ)CT(ℏ)NT(ℏ)N(ℏ)C(ℏ),

Ω12(ℏ+ 1) , AT(ℏ)P̆ (ℏ+ 1)G(ℏ), Θ1(ℏ+ 1) = Θ11(ℏ+ 1) + H̆T(ℏ)H̆(ℏ)−X(ℏ),

Ω22(ℏ+ 1) , −GT(ℏ)P̆ (ℏ+ 1)G(ℏ)− ς̂MT(ℏ)P̆ (ℏ+ 1)M(ℏ) + χ̄2I − χ̄2ζ2(ℏ)STGT(ℏ)NT(ℏ)

×N(ℏ)G(ℏ)S, Ă(ℏ) , Ă(ℏ) +B ⊗ Γ̆, Θ12(ℏ+ 1) , (Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))TX(ℏ+ 1),

ĕ(ℏ) ,
[

eT(ℏ) Z̆T(ℏ)
]T

, S ,
[

I 0 0
]

, ē(ℏ) ,
[

eT(ℏ) ̟T(ℏ)
]T

, Λ(ℏ+ 1) , Ω−1
22 (ℏ+ 1)ΩT

12(ℏ+ 1),

Θ11(ℏ+ 1) , (Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))TX(ℏ+ 1)(Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))

+ ς̂ΛT(ℏ+ 1)MT(ℏ)X(ℏ+ 1)M(ℏ)Λ(ℏ+ 1), Θ22(ℏ+ 1) , X(ℏ+ 1) + I. (17)

Proof. Let Υ(ℏ) , eT(ℏ+ 1)P̆ (ℏ+ 1)e(ℏ+ 1)− eT(ℏ)P̆ (ℏ)e(ℏ). According to system (13), one derives

E {Υ(ℏ)} = eT(ℏ)AT(ℏ)P̆ (ℏ+ 1)A(ℏ)e(ℏ) + 2eT(ℏ)AT(ℏ)P̆ (ℏ+ 1)G(ℏ)̟(ℏ) +̟T(ℏ)GT(ℏ)P̆ (ℏ+ 1)

× G(ℏ)̟(ℏ) + ς̟̂T(ℏ)MT(ℏ)P̆ (ℏ+ 1)M(ℏ)̟(ℏ)− eT(ℏ)P̆ (ℏ)e(ℏ). (18)

Combining
∑D̆

ℏ=0E{‖z̆e(ℏ)‖
2} with the zero term

∑D̆
ℏ=0E{Υ(ℏ)−Υ(ℏ)}+χ̄2

∑D̆
ℏ=0E{‖̟(ℏ)‖2−‖ζ(ℏ)N(ℏ)

×C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2 − (‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)} and
noticing w(ℏ) = S̟(ℏ), we deduce that

D̆∑

ℏ=0

E {‖z̆e(ℏ)‖
2} =

D̆∑

ℏ=0

E
{
ēT(ℏ)Ω(ℏ+ 1)ē(ℏ)

}
+ χ̄2

D̆∑

ℏ=0

E {‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2

− ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2} − E {eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)− eT(0)P̆ (0)e(0)}. (19)

In similarity, considering Z̆(ℏ) = −K̆(ℏ)C(ℏ)e(ℏ), we have

A(ℏ)e(ℏ) = Ă(ℏ)e(ℏ) + Z̆(ℏ). (20)

In addition, under |Ω22(ℏ+1)| 6= 0 for all ℏ ∈ [0, D̆], the selection of ̟(ℏ) , Ω−1
22 (ℏ+1)ΩT

12(ℏ+1)e(ℏ)
leads to

D̆∑

ℏ=0

E {‖z̆e(ℏ)‖
2} =

D̆∑

ℏ=0

E {‖H̆(ℏ)e(ℏ)‖2 − ‖Z̆(ℏ)‖2 + ‖Z̆(ℏ)‖2} − E {eT(D̆ + 1)X(D̆ + 1)e(D̆ + 1)− eT(0)
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×X(0)e(0)}+
D̆∑

ℏ=0

E {eT(ℏ)(Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))TX(ℏ+ 1)(Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))

× e(ℏ)− eT(ℏ)X(ℏ)e(ℏ) + ς̂eT(ℏ)ΛT(ℏ+ 1)MT(ℏ)X(ℏ+ 1)M(ℏ)Λ(ℏ+ 1)e(ℏ)

+ 2eT(ℏ)(Ă(ℏ) + G(ℏ)Λ(ℏ+ 1))TX(ℏ+ 1)Z̆(ℏ) + Z̆T(ℏ)X(ℏ+ 1)Z̆(ℏ)}

= E {eT(0)X(0)e(0)− eT(D̆ + 1)X(D̆+ 1)e(D̆ + 1)} −
D̆∑

ℏ=0

E {‖Z̆(ℏ)‖2}

+

D̆∑

ℏ=0

E {ĕT(ℏ)Θ(ℏ+ 1)ĕ(ℏ)}. (21)

It is clear to see that Eqs. (15) and (16) are guaranteed, respectively, via (19) and (21).
Through employing the CSM as well as proofs by contradiction, NSCs would be put forward for

designing the time-varying estimators (5) under the prescribed performance requirement (11).

Lemma 3. Note that the DAL χ̄ > 0 and the matrix Q > 0 are known. Considering the system (13)
with all nonzero {̟(ℏ)}06ℏ6D̆

, the performance requirement (14) is fulfilled if and only if there exists

a series of matrices {P̆ (ℏ) > 0}06ℏ6D̆ (under the final condition P̆ (D̆ + 1) = 0) which ensures that the
backward RRDE below:

Ω11(ℏ+ 1) + Ω12(ℏ+ 1)Ω−1
22 (ℏ+ 1)ΩT

12(ℏ+ 1) = P̆ (ℏ) (22)

holds with
Ω22(ℏ+ 1) > 0 and P̆ (0) < χ̄2Q. (23)

Proof. Sufficiency. In terms of matrices {P̆ (ℏ) > 0}06ℏ6D̆+1 in (22), by considering (19), we have

D̆∑

ℏ=0

E {‖z̆e(ℏ)‖
2} − χ̄2

D̆∑

ℏ=0

E {‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2}

= E {eT(0)P̆ (0)e(0)− eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)}+
D̆∑

ℏ=0

E {eT(ℏ)(Ω11(ℏ+ 1)− P̆ (ℏ))e(ℏ)

+ 2eT(ℏ)Ω12(ℏ+ 1)̟(ℏ)−̟T(ℏ)Ω22(ℏ+ 1)̟(ℏ)}

= E {eT(0)P̆ (0)e(0)− eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)}

+
D̆∑

ℏ=0

E
{
− (̟(ℏ)−̟∗(ℏ))TΩ22(ℏ+ 1)(̟(ℏ) −̟∗(ℏ))

}
, (24)

where ̟∗(ℏ) , Ω−1
22 (ℏ+ 1)ΩT

12(ℏ+ 1)e(ℏ).

Owing to Ω22(ℏ+ 1) > 0 and P̆ (0) < χ̄2Q, for all nonzero ̟(ℏ), we derive from P̆ (D̆ + 1) = 0 that

W̄ <

D̆∑

ℏ=0

E

{

‖z̆e(ℏ)‖
2 − χ̄2(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)

}

− eT(0)P̆ (0)e(0)

= −
D̆∑

ℏ=0

E {(̟(ℏ)−̟∗(ℏ))TΩ22(ℏ+ 1)(̟(ℏ)−̟∗(ℏ))} < 0, (25)

which is equivalent to (14).
Necessity. In this stage, we are to validate that, as long as Eq. (14) is met, there exists a feasible

solution P̆ (ℏ) (0 6 ℏ 6 D̆ + 1) to (22) meeting (23) for all nonzero ({̟(ℏ)}, e(0)). Actually, taking
into account the final condition P̆ (D̆ + 1) = 0, the RRDE (22) is solved backward at all the time if
Ω22(ℏ + 1) > 0 and P̆ (0) < χ̄2Q for ℏ ∈ [0, D̆], which indicates that Eq. (22) ceases the recursion for
some ℏ = τ́ ∈ [0, D̆] if Ω22(τ́ + 1) or χ̄2Q− P̆ (0) has one or more non-positive eigenvalues.
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The subsequent part of the proof is carried through contradiction. For the assumption that there is at
least one non-positive eigenvalue for Ω22(ℏ + 1) or χ̄2Q − P̆ (0) at certain time step ℏ = τ́ ∈ [0, D̆], we
would like to verify that W̄ < 0 cannot be fulfilled.

Case 1. We are to verify

̺ℓ(Ω22(ℏ+ 1)) 6 0, ∀ℏ ∈ [0, D̆], ℓ = 1, 2, . . . , nw =⇒ W̄ > 0, (26)

where ̺ℓ(Ω22(ℏ+ 1)) stands for the ℓth eigenvalue of Ω22(ℏ+ 1).
In order to simplify the representation, we express the zero or negative eigenvalue of Ω22(ℏ+1) at time

step τ́ as ̺(τ́), i.e., ̺(τ́ ) 6 0. In the following part, we will employ ̺(τ́ ) 6 0 to represent that there is
some ({̟(ℏ)}, e(0)) 6= 0 which causes W̄ > 0. First of all, choose e(0) , 0 and

̟(ℏ) =







0, if h ∈ [0, τ́),

ψ(τ́ ), if h = τ́ ,

̟∗(ℏ), if h ∈ (τ́ , D̆ + 1),

where ψ(τ́ ) is the eigenvector of Ω22(τ́ + 1) corresponding to ̺(τ́ ).
For 0 6 ℏ < τ́ , according to (13) with e(0) = 0 as well as ̟(ℏ) = 0, we acquire e(ℏ) = 0 (0 6 ℏ 6 τ́ ),

so that ̟∗(ℏ) = Ω−1
22 (ℏ+ 1)ΩT

12(ℏ+ 1)e(ℏ) = 0 (ℏ ∈ [0, τ́ ]).
According to (24) and ̟(ℏ), we have

E

{
τ́−1∑

ℏ=0

‖z̆e(ℏ)‖
2 − χ̄2

τ́−1∑

ℏ=0

(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)

}

= 0, (27)

E

{

‖z̆e(τ́ )‖
2 − χ̄2(‖̟(τ́ )‖2 − ‖ζ(τ́ )N(τ́ )C(τ́ )e(τ́ )‖2 − ‖ζ(τ́ )N(τ́ )G(τ́ )v(τ́ )‖2) + Υ(τ́ )−Υ(τ́)

}

= E

{

−̟T(τ́ )Ω22(τ́ + 1)̟(τ́ )− eT(τ́ + 1)P̆ (τ́ + 1)e(τ́ + 1)
}

(28)

and

E

{
D̆∑

ℏ=τ́+1

‖z̆e(ℏ)‖
2 − χ̄2

D̆∑

ℏ=τ́+1

(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2)

}

= E

{

eT(τ́ + 1)P̆ (τ́ + 1)e(τ́ + 1)− eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)−

D̆∑

ℏ=τ́+1

(̟(ℏ)−̟∗(ℏ))T

× Ω22(ℏ+ 1)(̟(ℏ)−̟∗(ℏ))

}

= E {eT(τ́ + 1)P̆ (τ́ + 1)e(τ́ + 1)}. (29)

From (27)–(29), we derive

W̄ = −̟T(τ́ )Ω22(τ́ + 1)̟(τ́ ) = −ψT(τ́ )Ω22(τ́ + 1)ψ(τ́ ) = −̺(τ́)‖ψ(τ́ )‖2 > 0,

which violates the condition W̄ < 0. Therefore, we conclude that Ω22(ℏ+ 1) > 0.
Case 2. It remains to testify

Ω22(ℏ+ 1) > 0 and P̆ (0) > χ̄2Q, ∀ℏ ∈ [0, D̆] =⇒ W̄ > 0. (30)

Choose ̟(ℏ) , ̟∗(ℏ). It is shown by (24) that

W̄ = E {eT(0)P̆ (0)e(0)− eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)}+
D̆∑

ℏ=0

E
{
− (̟(ℏ) −̟∗(ℏ))TΩ22(ℏ+ 1)

× (̟(ℏ)−̟∗(ℏ))
}
− χ̄2eT(0)Qe(0) = E {eT(0)(P̆ (0)− χ̄2Q)e(0)}.

For e(0) 6= 0, it is clear that W̄ > 0, which contradicts the condition W̄ < 0.
Based on Lemmas 2 and 3, we are prepared to develop the algorithm for the design of estimators (5).
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Theorem 1. Take the TVCN (1) over the finite horizon [0, D̆] into consideration. For a known DAL
χ̄ > 0 and a matrix Q > 0, the finite-horizon estimators (5) fulfil the performance constraint (11) for all
nonzero {̟(ℏ)}06ℏ6D̆ if Eq. (22) and the following RRDE:

Θ11(ℏ+ 1) + H̆T(ℏ)H̆(ℏ)−Θ12(ℏ+ 1)Θ−1
22 (ℏ+ 1)ΘT

12(ℏ+ 1) = X(ℏ) (31)

hold with a series of solutions {ℵ(ℏ)}06ℏ6D̆
(ℵ = P̆ ,X,K) conforming to

P̆ (D̆ + 1) = X(D̆ + 1) = 0, (32)

Θ22(ℏ+ 1) > 0, Ω22(ℏ+ 1) > 0, P̆ (0) < χ̄2Q, (33)

K̆∗(ℏ) = arg min
K̆(ℏ)

‖ − K̆(ℏ)C(ℏ) + Θ−1
22 (ℏ+ 1)ΘT

12(ℏ+ 1)‖F , (34)

where other parameters are shown in Lemma 2.

Proof. First, as long as there are {P̆ (ℏ)}06ℏ6D̆ meeting (22) and (33), it is convenient to obtain from

Lemma 3 that the EED (13) fulfills the performance requirement (14). Under such a situation, the
worst-case disturbance is able to be represented by ̟∗(ℏ) = Ω−1

22 (ℏ + 1)ΩT
12(ℏ + 1)e(ℏ). Then, through

utilizing the worst-case disturbance, our target is to design the gain matrices Kı(ℏ) (ı = 1, . . . , u) of the
estimators (5). By virtue of the CSM, we derive from Lemma 2 that

W2(Z̆(ℏ), ̟(ℏ)) =

D̆∑

ℏ=0

E

{

eT(ℏ)(Θ11(ℏ+ 1) + H̆T(ℏ)H̆(ℏ)−X(ℏ)−Θ12(ℏ+ 1)Θ−1
22 (ℏ+ 1)

×ΘT
12(ℏ+ 1))e(ℏ) + (Z̆(ℏ)− Z̆∗(ℏ))TΘ22(ℏ+ 1)(Z̆(ℏ)− Z̆∗(ℏ))

}

+ E {eT(0)X(0)e(0)− eT(D̆ + 1)X(D̆ + 1)e(D̆ + 1)}

6
D̆∑

ℏ=0

E

{

eT(ℏ)(Θ11(ℏ+ 1) + H̆T(ℏ)H̆(ℏ)−X(ℏ)−Θ12(ℏ+ 1)Θ−1
22 (ℏ+ 1)

×ΘT
12(ℏ+ 1))e(ℏ) + ‖ − K̆(ℏ)C(ℏ) + Θ−1

22 (ℏ+ 1)ΘT
12(ℏ+ 1)‖2F

× ‖Θ22(ℏ+ 1)‖F‖e(ℏ)‖
2

}

+ E {eT(0)X(0)e(0)− eT(D̆ + 1)X(D̆+ 1)e(D̆ + 1)}, (35)

where Z̆∗(ℏ) , −Θ−1
22 (ℏ + 1)ΘT

12(ℏ + 1)e(ℏ). Moreover, it is proved that the gain parameters Kı(ℏ)
(ı = 1, . . . , u) fulfill (31) and (34), which finishes the proof.

Remark 3. In this stage, NSCs have been acquired in Theorem 1 for the beingness of estimators (5)
by virtue of Lemmas 2 and 3, which ensure the fulfillment of the prescribed performance constraint (11).
To be more specific, from one aspect, if there exists a solution to the backward RRDEs (22) and (31)
satisfying (33) and (34), then the performance constraint (11) is satisfied. From another aspect, under
the condition that the EED (9)-(10) fulfils the performance constraint (11), then the backward RRDEs
(22) and (31) have a solution conforming to (33) and (34).

Usually, it is of some difficulties to deal with the optimization problem (34). For enhancing the
convenience of realization, the gains Kı(ℏ) (ı = 1, . . . , u) can be computed through adopting the Moore-
Penrose pseudoinverse, and it would be discussed in the theorem below.

Theorem 2. Set the DAL χ̄ > 0, the matrix Q > 0, the constants θ(ℏ) > 0, and ǫ(ℏ) > 0. The EED
(9)-(10) fulfills the H∞ performance requirement (11) for all nonzero noise sequence {̟(ℏ)}06ℏ6D̆ as

long as there is a set of solutions {P̆ (ℏ), X(ℏ),Kı(ℏ)} 06ℏ6D̆,ı=1,...,u to the RRDEs below:

Ω11(ℏ+ 1) + Ω̄12(ℏ+ 1)Ω̄−1
22 (ℏ+ 1)Ω̄T

12(ℏ+ 1) = P̆ (ℏ), (36)

Θ̄11(ℏ+ 1) + H̆T(ℏ)H̆(ℏ)− Θ̄12(ℏ+ 1)Θ−1
22 (ℏ+ 1)Θ̄T

12(ℏ+ 1) = X(ℏ) (37)

with

P̆ (D̆ + 1) = X(D̆ + 1) = 0, (38)
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Ω̄22(ℏ+ 1) > 0, P̆ (0) < χ̄2Q, Θ22(ℏ+ 1) > 0, (39)

K̆∗(ℏ) = Z†(ℏ+ 1)Φ(ℏ+ 1)C†(ℏ), (40)

Y (ℏ) 6 ǫ(ℏ)I, (41)

where

Ḡ(ℏ) ,
[

Ĕ(ℏ) −θ−1(ℏ)I −ζ−1(ℏ)ς̄M̆(ℏ) −ζ−1(ℏ)ς̄M̆(ℏ)
]

, M̄(ℏ) ,
[

0 0 ζ−1(ℏ)M̆(ℏ) ζ−1(ℏ)M̆(ℏ)
]

,

Ω̄12(ℏ+ 1) , AT(ℏ)P̆ (ℏ+ 1)Ḡ(ℏ), Λ̄(ℏ+ 1) , Ω̄−1
22 (ℏ+ 1)Ω̄T

12(ℏ+ 1), S̄ ,
[

I 0 0 0
]

,

Ω̄22(ℏ+ 1) , −ḠT(ℏ)P̆ (ℏ+ 1)Ḡ(ℏ)− ς̂M̄T(ℏ)P̆ (ℏ+ 1)M̄(ℏ) + χ̄2I − χ̄2ζ2(ℏ)S̄TGT(ℏ)NT(ℏ)

×N(ℏ)G(ℏ)S̄ − ǫ(ℏ)S̄TS̄,

Θ̄12(ℏ+ 1) , (Ă(ℏ) + Ḡ(ℏ)Λ̄(ℏ+ 1))TX(ℏ+ 1),

Θ̄11(ℏ+ 1) , (Ă(ℏ) + Ḡ(ℏ)Λ̄(ℏ+ 1))TX(ℏ+ 1)(Ă(ℏ) + Ḡ(ℏ)Λ̄(ℏ+ 1)) + ς̂Λ̄T(ℏ+ 1)M̄T(ℏ)

×X(ℏ+ 1)M̄(ℏ)Λ̄(ℏ+ 1),

Y (ℏ) , χ̄2θ2(ℏ)GT(ℏ)K̆T(ℏ)K̆(ℏ)G(ℏ),

Z(ℏ+ 1) , −I −Θ−1
22 (ℏ+ 1)X(ℏ+ 1)Ḡ(ℏ)Ω̄−1

22 (ℏ+ 1)ḠT(ℏ)P̆ (ℏ+ 1),

Φ(ℏ+ 1) , −Θ−1
22 (ℏ+ 1)X(ℏ+ 1)(I + Ḡ(ℏ)Ω̄−1

22 (ℏ+ 1)ḠT(ℏ)P̆ (ℏ+ 1))Ă(ℏ). (42)

Proof. Let v(ℏ) , θ(ℏ)K̆(ℏ)G(ℏ)w(ℏ), where θ(ℏ) > 0 is introduced to produce additional degree of

freedom in the process of designing the estimators. With the selection of w̆(ℏ) , [wT(ℏ) vT(ℏ) (ζ(ℏ)F (ℏ)

×N(ℏ)C(ℏ)e(ℏ))T (ζ(ℏ)F (ℏ)N(ℏ)G(ℏ)w(ℏ))T ]T, Eq. (13) is rewritten in the expression as follows:

e(ℏ+ 1) = A(ℏ)e(ℏ) + Ḡ(ℏ)w̆(ℏ)− ς̃(ℏ)M̄(ℏ)w̆(ℏ), (43)

z̆e(ℏ) = H̆(ℏ)e(ℏ). (44)

Furthermore, regarding Lemma 1, we recognize that Eq. (40) is a solution to the optimization issue
below:

min
K̆(ℏ)

‖Z(ℏ+ 1)K̆(ℏ)C(ℏ)− Φ(ℏ+ 1)‖F ,

which is further described by

min
K̆(ℏ)

‖ − K̆(ℏ)C(ℏ) + Θ−1
22 (ℏ+ 1)Θ̄T

12(ℏ+ 1)‖F . (45)

According to (19) and Theorem 1, by assuming that there is a series of solutions to the RRDEs (36)
and (37) with (38)–(41), we have

D̆∑

ℏ=0

E
{
‖z̆e(ℏ)‖

2
}
=

D̆∑

ℏ=0

E

{

eT(ℏ)(Ω11(ℏ+ 1)− P̆ (ℏ) + Ω̄12(ℏ+ 1)Ω̄−1
22 (ℏ+ 1)Ω̄T

12(ℏ+ 1))e(ℏ)

− (w̆(ℏ)− w̆∗(ℏ))TΩ̄22(ℏ+ 1)(w̆(ℏ)− w̆∗(ℏ))
}

− E
{
eT(D̆ + 1)P̆ (D̆ + 1)e(D̆ + 1)

− eT(0)P̆ (0)e(0)
}
−

D̆∑

ℏ=0

E
{
ǫ(ℏ)(S̄w̆(ℏ))T(S̄w̆(ℏ))

}

+ χ̄2
D̆∑

ℏ=0

E
{
‖w̆(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2

}

<χ̄2eT(0)Qe(0) + χ̄2
D̆∑

ℏ=0

E {‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)

×G(ℏ)w(ℏ)‖2}+

D̆∑

ℏ=0

E
{
̟T(ℏ)ST(Y (ℏ)− ǫ(ℏ)I)S̟(ℏ)

}
, (46)
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where w̆(ℏ) , w̆∗(ℏ) = Ω̄−1
22 (ℏ+ 1)Ω̄T

12(ℏ+ 1)e(ℏ).
By employing (41), it is shown based on (46) that

D̆∑

ℏ=0

E
{
‖z̆e(ℏ)‖

2
}
<χ̄2eT(0)Qe(0) + χ̄2

D̆∑

ℏ=0

(‖̟(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)C(ℏ)e(ℏ)‖2 − ‖ζ(ℏ)N(ℏ)G(ℏ)w(ℏ)‖2).

We make a conclusion that the estimators (5) ensure that system (9)-(10) fulfills the performance re-
quirement (11).

Based on Theorem 2, the time-varying state estimator design (TVSED) algorithm is developed which
is shown in Algorithm 1.

Algorithm 1 TVSED algorithm

1: Choose the DAL χ̄ and the matrix Q > 0, and set ℏ = D̆.

2: Calculate Θ22(ℏ + 1) and Ω̄22(ℏ + 1) with given X(ℏ + 1) and P̆ (ℏ + 1) according to (17) and (42), respectively. Besides, the

gain parameters Kı(ℏ) (ı = 1, . . . , u) of the estimators (5) are computed in accordance with (40).

3: If Ω̄22(ℏ + 1) 6= 0 and Θ22(ℏ + 1) 6= 0, then compute (36) and (37) to acquire P̆ (ℏ) and X(ℏ), respectively, and continue to

Step 4; otherwise this algorithm is infeasible and quit.

4: In case ℏ 6= 0, Ω̄22(ℏ + 1) > 0 and Θ22(ℏ + 1) > 0, set ℏ = ℏ − 1 and go back to Step 2; else continue to Step 5.

5: If P̆ (0) > χ̄2Q or Ω̄22(ℏ + 1) 6 0 or Θ22(ℏ + 1) 6 0, this algorithm is infeasible and quit.

Remark 4. Via the CSM, the finite-horizon resilient H∞ estimation issue has already been solved
with respect to TVCN (1). The occurrence of gain variations may be random which is represented
by the probability distribution of a Gaussian random variable. The results of Theorem 2 contain the
total important factors of the complex networks such as time-varying parameters and the probabilistic
information of the randomly occurring gain variations. NSCs are put forward to guarantee that the H∞

performance demand (11) is fulfilled concerning the overall EED (9)-(10), and the estimator gains are
expressed in (40) via utilizing the Moore-Penrose pseudoinverse. To be specific, Theorem 2 possesses
little conservatism due to the fact that the obtained conditions are both sufficient and necessary.

Remark 5. Until now, we have finished discussing the finite-horizon H∞ performance of the resilient
state estimators for TVCNs involving integral measurements of partial nodes, and designing gains of such
estimators. Under the existing research framework of SE for TVCNs, the innovations of this paper are
stressed below: (1) the finite-horizon resilient SE issue is new, which is based on integral measurements
from a portion of network nodes; and (2) the developed design algorithm of time-varying state estimators
is new as it is composed of NSCs which guarantee that the finite-horizon resilient estimators exist.
To testify the correctness of the design algorithm of the finite-horizon/time-varying state estimators, a
specific simulation is done in Section 4.

4 Simulation results

Consider a 6-node TVCN (1) over the finite horizon [0, 60], where the following parameters are used:

℘ = 2, χ̄ = 1, ζ(ℏ) = 1, ς̄ = 0.5, ς̂ = 0.02, Q = 3I,

Γ = diag{0.53, 0.55}, Eı(ℏ) =
[

0.2 sin(3ℏ) 0.5
]T

,

B =














−0.4 0.15 0.08 0.12 0.03 0.02

0.15 −0.4 0.02 0.07 0.08 0.08

0.08 0.02 −0.22 0.04 0.04 0.04

0.12 0.07 0.04 −0.3 0.04 0.03

0.03 0.08 0.04 0.04 −0.28 0.09

0.02 0.08 0.04 0.03 0.09 −0.26














, Aı(ℏ) =

[

−0.02 sin(5ℏ) 0.02

0.04 0.04

]

, Hı(ℏ) =

[

0.3 0.1

0.5 0.2

]

,

Mı(ℏ) =







I

I

I






, Nı(ℏ) =

[

0.3 0.3

0.3 0.3

]

, ı = 1, 2, . . . , 6,
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Table 1 Gain parameters of finite-horizon partial-nodes-based state estimators

ℏ = 0 ℏ = 1 . . . ℏ = 59

K1(ℏ)

























−0.1558 −0.0167

−0.1542 0.15

0.8333 0

1.0417 −0.8333

0.8333 0

1.0417 −0.8333

















































−0.1997 0.0312

−0.2201 0.2028

1.1899 −0.2853

1.4874 −1.1899

1.1899 −0.2853

1.4874 −1.1899

























. . .

























−0.5796 −0.8951

−0.2214 −0.3416

0 0

0 0

0 0

0 0

























K2(ℏ)

























−0.1558 −0.0167

−0.1542 0.15

0.8333 0

1.0417 −0.8333

0.8333 0

1.0417 −0.8333

















































−0.1997 0.0312

−0.2201 0.2028

1.1899 −0.2853

1.4874 −1.1899

1.1899 −0.2853

1.4874 −1.1899

























. . .

























−0.5788 −0.894

−0.2210 −0.3412

0 0

0 0

0 0

0 0

























K3(ℏ)

























−0.0763 −0.0167

−0.0510 0.0675

0.8333 0

1.0417 −0.8333

0.8333 0

1.0417 −0.8333

















































−0.0862 0.0040

−0.0728 0.0849

1.1899 −0.2853

1.4873 −1.1899

1.19 −0.2853

1.4876 −1.19

























. . .

























−0.5928 −0.9466

−0.2263 −0.3614

0 0

0 0

0 0

0 0

























Cj(ℏ) =

[

0.4 0.1 sin(5ℏ)

0.5 −0.4

]

, Gj(ℏ) =

[

0.2

0.5

]

, j = 1, 2, 3.

By employing the TVSED algorithm in Algorithm 1 via the Matlab software, we obtain the estimator
gains with θ(ℏ) = 2.5 and ǫ(ℏ) = 0.25, which are listed in Table 1. Choose the initial conditions

xı(−2) = [0.4 −0.1]T, xı(−1) = [0.2 −0.1]T, xı(0) = [0.3 −0.2]T and x̂ı(0) = [0 0.2 0.2 0.2 0.2 0.2]T

(ı = 1, 2, . . . , 6). Select the noise signal and the uncertain matrix in (6) as w(ℏ) = 0.4 cos(3ℏ)e−0.01ℏ and
Fj(ℏ) = diag{cos(3ℏ), sin(2ℏ)} (j = 1, 2, 3), respectively. Emulation curves are shown in Figures 1–8.
Figure 1 demonstrates the state estimation error eı(ℏ) (ı = 1, 2, . . . , 6), where eıℑ(ℏ) (ℑ = 1, 2) is the
ℑth element of eı(ℏ). Figure 2 draws the estimation errors z̆eı(ℏ) of all the nodes. On the basis of the
performance requirement (11), Figure 3 depicts the estimation performance curve, through which it is
seen that

φ(ℏ) =

∑
ℏ

ς=0 E
{
‖z̆e(ς)‖

2
}

∑ℏ

ς=0(‖̟(ς)‖2 − ‖ζ(ς)N(ς)C(ς)e(ς)‖2 − ‖ζ(ς)N(ς)G(ς)w(ς)‖2) + eT(0)Qe(0)
< χ̄2

for ℏ = 0, 1, . . . , D̆; i.e., the developed estimation method is able to satisfy the performance require-
ment (11). Figure 4 (or 6) and Figure 5 (or 7) show the estimation errors and performance with different
values of ς̄ (or ∆Kı(ℏ)), which illustrate that the bigger the value of ς̄ (the intensity of ∆Kı(ℏ)), the
bigger the resulted estimation error and the worse the estimation performance. Figure 8 represents the
estimation performance of general and resilient estimators, and it is seen that the performance of the
resilient estimators is better than that of the general estimators.

5 Conclusion

This paper has addressed a finite-horizon partial-nodes-based SE issue for TVCNs with integral mea-
surements as well as randomly occurring gain variations. Time-varying parameters have been involved
in the model to depict the changing characteristics of complex networks with time. Measurements from
only partial nodes have been taken into account to reflect the presence of unmeasurable network nodes
under specific working situations. Integral measurements have been considered to reflect the time de-
lays in the measurement signals under practical circumstances. A Gaussian stochastic variable and the
norm-bounded uncertainty have been used to represent randomly occurring gain variations. NSCs were
found to devise the resilient H∞ state estimators by employing the stochastic analysis skill as well as
the CSM. The estimator parameters have been obtained by recursively solving certain coupled backward
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Figure 1 (Color online) The state estimation error eı(ℏ) (ı =

1, 2, . . . , 6).

Figure 2 (Color online) The estimation error z̆eı(ℏ) (ı =

1, 2, . . . , 6).
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Figure 3 (Color online) The estimation performance φ(ℏ). Figure 4 (Color online) The norm of estimation error with

different ς̄.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
h
e 

es
ti

m
at

io
n
 p

er
fo

rm
an

ce
( 

 )
φ

Time    (s)  

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Time    (s)  

Figure 5 (Color online) The estimation performance with dif-

ferent ς̄.

Figure 6 (Color online) The norm of estimation error with

different ∆Kı(ℏ).

RRDEs and computing the Moore-Penrose pseudoinverse of the corresponding matrices. The results of
the illustrative emulation example were used to demonstrate the usefulness of the developed method.
Future research endeavors will address the estimation for systems with communication protocols [30,31],
Markovian jumping parameters [32], time delays [33–35], nonlinearities [36], or stochastic coupling [37],
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Figure 7 (Color online) The estimation performance with dif-

ferent ∆Kı(ℏ).

Figure 8 (Color online) The estimation performance of gen-

eral and resilient estimators.

the synchronization [38] and the pinning control [39] issues.
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