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Abstract In this paper, we investigate the distributed convex optimization problem for a class of nonlinear

multi-agent systems disturbed by random noise over a directed graph. The target problem involves designing

a continuous-time algorithm to minimize the sum of all local cost functions associated with each agent. The

target noise is considered as a second-order stationary process under mild assumptions. The noise-to-state

exponential stability for the multi-agent system based on random differential equations is analyzed using

a random field method. Sufficient conditions corresponding to the second moment relative to the optimal

solution in the form of matrix inequalities are established. Then, the grid search method is employed to

determine the best system parameters such that the second moment of the estimation error has the minimum

value. In addition, the obtained results are applied to solve the average consensus problem in the presence

of a stationary process. Finally, a numerical example is presented to verify the effectiveness of the proposed

algorithm.

Keywords distributed optimization, random differential equations, stationary process, noise-to-state ex-

ponential stability

Citation Wang D, Wang Z, Wu Z J, et al. Distributed convex optimization for nonlinear multi-agent systems

disturbed by a second-order stationary process over a digraph. Sci China Inf Sci, 2022, 65(3): 132201, https://doi.

org/10.1007/s11432-020-3111-4

1 Introduction

Over the past two decades, cooperative control of multi-agent systems has received increasing atten-
tion owing to its extensive applications such as formation control, target location, resource allocation,
containment control, and tracking control [1–5]. Distributed optimization is an important problem for
multi-agent systems. Here, the goal is to minimize the sum of all agents’ local cost functions in a dis-
tributed manner:

min
x

n
∑

i=1

fi(x), i = 1, 2, . . . , n, (1)

where x ∈ R is a global variable, and fi(x) : R → R denotes a local cost function for agent i. Many
discrete-time algorithms for the distributed optimization problem (DOP) have been proposed previously
over an undirected graph or a directed graph (digraph) [6–12]. Owing to the effective development of
continuous-time control techniques, several continuous-time algorithms have also been proposed to search
the optimal solution of the DOP [13–17]. In engineering and communication fields, noisy disturbances
always exist [18–23], and such disturbances are considered as an obstacle to obtain an accurate solution to
the target problem. In addition, most existing methods can only make sure that the system states converge
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to a small neighborhood of the optimal solution of the problem in the presence of such disturbances, and
the estimation error between the current and optimal solutions is unknown, which means that developing
the effective evaluation criteria for the solution to the optimization problem with noise has become an
important issue. Some results have been reported for these two problems [18–23]. Note that the random
noise in [19,22] is a white noise. White noise is considered as the formal derivative of a Wiener process [24].
Because the mean power of the white noise process is unbounded, dynamical models based on stochastic
differential equations driven by a Wiener process are inappropriate for many practical problems. For
systems disturbed by a stationary process whose mean power is bounded, random differential equations
(RDEs) are employed to describe the dynamical models [25]. For example, it is more reasonable to
employ stationary processes than white noises to model thermal noises generated by agents performing
computations on the digital computers owing to the heating of electronic devices in circuit systems [24].
Accordingly, the dynamics of systems disturbed by stationary processes in this paper are modeled using
RDEs. Most existing results for the DOP [19, 21] consider linear systems rather than more practical
networks and more complex node dynamics models, e.g., a coupled FitzHugh-Nagumo type system [26].
In addition, nonlinearity and uncertainty are ubiquitous in real applications [27]; however, they are not
considered in [19, 21]. To the best of our knowledge, the existing results regarding the DOP based
on random nonlinear multi-agent systems disturbed by random noises are very rare. Addressing this
challenging limitation is the motivation of this study.

In this paper, a continuous-time algorithm is proposed to solve the DOP for multi-agent systems
with stationary processes, which are used to model the external disturbances present in the agents’
complex computing surroundings and uncertainties induced by the local information exchange among
agents over the communication network. Then, a noise-to-state (NOS) exponential stability criterion
is developed to evaluate the quality of DOP solutions in the presence of stationary processes. The
primary contributions of this paper are summarized as follows. First, in the DOP, the dynamics of
agents are extended to nonlinear systems disturbed by random noise that can be equivalently considered
as a second-order stationary process under some mild conditions, and these are different from linear
systems in continuous-time algorithmic design [13–15,21]. In addition, it is more appropriate to employ
stationary processes to model the effect of a vibration environment in practical applications than white
noises [28, 29]. Second, the NOS exponential stability of the target multi-agent system is analyzed using
the random field method, and sufficient conditions corresponding to the second moment relative to the
optimal solution in the form of matrix inequalities are obtained. These matrices contain some positive
and free constants; thus, conservatism of the established criterion is alleviated. Third, the grid search
method is applied to find optimal system parameters using the developed criterion such that the upper
bound of the second moment of the estimation error of the solution has the minimum value. This helps us
obtain more accurate solutions for multi-agent systems based on RDEs. Finally, the obtained results are
applied to average consensus for nonlinear multi-agent systems with second-order stationary processes.
Thus, our results provide an alternative solution for the average consensus problem subject to stationary
processes.

2 Preliminaries and problem formulation

2.1 Notations and preliminaries

C and CT denote a matrix and its transpose, respectively. C > 0 denotes that the matrix C is positive
definite. Rn represents the n-dimensional real vector space. 0n and 1n denote the n-dimensional vectors
with all entries 0 and 1, respectively. In denotes the n-dimensional identity matrix. For a vector c̄, ‖c̄‖2
denotes its Euclidean norm. col (ĉ1, ĉ2, . . . , ĉn) = [ĉT1 , ĉ

T
2 , . . . , ĉ

T
n ]

T denotes the column vector stacked
by vectors ĉ1, ĉ2, . . . , ĉn. diag {κ1, κ2, . . . , κn} denotes the diagonal matrix with diagonal entries κi. ⊗
denotes the Kronecker product. For two positive numbers a and c, let a ∧ c = min {a, c}. ∗ denotes an
element of the symmetric position of the symmetric matrix. For a random variable ε, Eε denotes its
expectation.

A non-empty set K is said to be convex if b̄y1 + (1− b̄)ȳ ∈ K, for any y1, ȳ ∈ K and b̄ ∈ [0, 1].
A differentiable function f : K → R is strongly convex if there exists a positive constant ˆ̟ such that
(y1 − ȳ)T (∇f (y1)−∇f (ȳ)) > ˆ̟ ‖y1 − ȳ‖22 , ∀y1, ȳ ∈ K. In addition, its gradient ∇f is Lipschitz if
there exists a positive constant l̄ such that ‖∇f (y1)−∇f (ȳ)‖2 6 l̄‖y1 − ȳ‖2, ∀y1, ȳ ∈ K in [30].
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2.2 Graph theory

The basic concepts about graph theory can be found in [31]. The communication topology for a
multi-agent system with n agents is described by a weighted directed graph G = (V , E ,A), where
V = {1, 2, . . . , n} is the agent set, E ⊆ V × V is the edge set, and A = [aij ] ∈ R

n×n is the weighted
adjacency matrix that is used to portray the interaction among agents. Particularly, aij > 0 if agent i
can receive information from agent j and aij = 0, otherwise. In this paper, aii = 0. The notation
Ni = {j| (i, j) ∈ E} denotes the set of in-neighbors of agent i. The graph G is said to be connected if
there exists a path between any pair of different agents. The in-degree of agent i is di =

∑

j∈Ni
aij . Thus,

the Laplacian matrix L of G is defined as L = D −A with D = diag {d1, d2, . . . , dn}.

2.3 Problem formulation

Consider a multi-agent system consisting of n agents operating in a vibration environment, where the
dynamics of agents are always affected by some unforeseen factors, e.g., stochastic interferences and
stochastic missing measurements [32]. Here, these factors are considered external disturbances present
by the agents’ computing surroundings, and uncertainty is induced by the local information exchange
among agents over the communication network. Furthermore, nonlinearity is also an inherent feature of
almost all practical systems, so the dynamics of each agent is described by the following random nonlinear
dynamical model:

żi = gi1 (zi, xi, wi) + ϕ0
ii (zi, t)σ

0
ii (t) ,

ẋi = gi2 (zi, xi, wi) + ϕ0̄
ii (xi, t)σ

0̄
ii (t) + ui + Λ̄i (ui) ,

(2)

where (zi, xi) ∈ R×R are states; ui is the control input; wi is an uncertain constant parameter in a fixed
compact set W ∈ R; zi(t0) = zi(0), xi(t0) = xi(0); the functions gi1 (zi, xi, wi) and gi2 (zi, xi, wi) are
Lipschitz in zi and xi, respectively; σ

0
ii (t) is an independent 1-dimensional random process, so is σ0̄

ii (t);
ϕ0
ii (zi, t) is a general-force matrix, so is ϕ0̄

ii (xi, t); ϕ
0
ii (zi, t)σ

0
ii (t) and ϕ

0̄
ii (xi, t)σ

0̄
ii (t) are random noises,

which respectively denote the impact of the external environment on gi1 (zi, xi, wi) and gi2 (zi, xi, wi);
Λ̄i (ui) represents a random noise that depends on ui, i ∈ V ; and the specific expression is given later.
Note that the target noise considered is a second-order stationary process under some weak conditions
that will be provided later.

The target problem involves designing a continuous-time algorithm ui for agent i with dynamics (2)
to cooperatively solve the following equivalent problem of (1):

min
x

F (x) =
∑n

i=1
fi(xi) s.t. lim

t→∞
E |xi − xj | = 0, (3)

where x = col (x1, x2, . . . , xn) ∈ R
n, and xi denotes a local estimate for the global variable x. Suppose that

the set of solutions of problem (3) is non-empty, which is marked asX∗ = {x∗|Exi = Exj = x∗, i 6= j ∈ V}.

Throughout this paper, the following assumptions are made on the communication topology and the
local cost functions.

Assumption 1. The communication topology G among agents is described by a strongly-connected
and weight-balanced directed graph.

Remark 1. This assumption is widely used [14, 21] and has the properties 1TnL = 0n and L1n = 0n.
0 is the simple eigenvalue of the Laplacian matrix L [31]. In addition, there is a standard non-singular
matrix Q such that QTLQ = diag {0, J}, where Q = [Q1, Q2] with Q1 = 1√

n
1n ∈ R

n and Q2 ∈ R
n×(n−1)

satisfying QT
2Q2 = In−1. J is an upper triangular matrix, and its diagonal entries have positive real

parts. As a result, the matrix J + JT is a positive definite matrix.

Assumption 2. The local cost function fi(xi) is ̟i-strongly convex and its gradient ∇fi(xi) is ν̄i-
Lipschitz, where the minimum value of the strongly convex coefficient is ̟ = min {̟1, ̟2, . . . , ̟n}, and
the maximum value of the Lipschitz constant is ν̄ = max {ν̄1, ν̄2, . . . , ν̄n}.

Remark 2. For Assumption 2, fi(xi) is strongly convex, which implies that the global function f(x) is
strongly convex. Moreover, this assumption can guarantee that the optimal solution x

∗ = 1n ⊗ x∗ of (3)
is unique. Thus, it is derived that X∗ is a single point set.
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For each agent i, i ∈ V , ui is designed as

ui = ς̇i + ςi,

q̇i = χξ
∑

j∈Ni

aij (xi − xj),

ς̇i = −χ∇fi (xi)− ξ
∑

j∈Ni

aij [(xi − xj) + (qi − qj)]

(4)

with qi(t0) = qi(0) and ςi(t0) = ςi(0), where qi and ςi are the intermediate states, ∇fi (xi) is the gradient
of fi(xi), and χ and ξ are positive constants to be determined.

The intuition behind the algorithm (4) is as follows. For the first equation of (4), the negative gra-
dient term −χ∇fi (xi) drives agent i to search the minimizer of fi(xi),

∑n

j=1 aij (qi − qj) is viewed as
the estimation of the local intermediate states with its neighbors based on an integral feedback and
the local communication, and its key role is to eliminate the deviation

∑n

j=1 aij (xi − xj). The term
∑n

j=1 aij (xi − xj) in the second equation is to ensure that states of agents achieve consensus. The role
of the last equation is to compensate the effect of the nonlinear term gi2 (zi, xi, wi) on the first-order
optimality condition

∑n

i=1 ∇fi (x
∗) = 0 of problem (3) at the optimal solution x∗ such that xi converges

to the optimal solution x∗ of problem (3), i.e., gi2 (z
∗
i , x

∗, wi) + ς∗i = 0, where z∗i and ς∗i are the steady
states of zi and ςi, respectively.

Note that ui in (4) only uses its local information as well as the exchanged information from its in-
neighbors via a directed communication topology to agent i. The noise we consider is additive and does
not require to decay over time. This means that if there is an additive persistent random noise, it will
affect not only computations of agents but also communication channels of the topology G [19].

(1) Computation noise. Any computation performed by each agent is subject to random noise. Par-
ticularly, when agent i computes ∇fi (xi) at time instant t > t0 > 0, it actually gets

∇fi (xi) + ϕii (xi, t)σii (t) , (5)

where σii (t) is an independent copy of σ0
ii (t) in the first equation of (2), and ϕii (xi, t) is the corresponding

general-force matrix [22].

(2) Communication noise. Similarly, the communication channels between two different agents are also
corrupted by random noise. Specifically, when agent i receives xj from its in-degree neighbor j via the
communication channel (i, j) ∈ E at t > t0 > 0, agent i ultimately obtains

xj + ϕij (xi, t)σij (t) , j ∈ Ni, (6)

where σij (t) is also an independent copy of σ0
ii (t), and ϕij (xi, t) also represents the general-force matrix.

As described in [29], with the aid of dynamic-static method and relative-motion principle, the ef-
fect of random variations in surroundings to a real system can be equivalently considered as random
disturbances to the control protocol. Furthermore, it can be seen that Eq. (4) consists of a three-
dimensional dynamics for each agent. As mentioned earlier, the noise Λ̄i (ui) is induced by the first
equation of (4). Similarly, the noises induced by the second and third equations of (4) are respectively
recorded as Λ̄i (q̇i) and Λ̄i (ς̇i). In what follows, we give their specific expressions and use superscript
to distinguish the noise terms associated with the different terms in (4). Particularly, based on (5) and
(6), in the first equation of (4), the computation noises corresponding to ∇fi (xi) and ςi are respectively
ξ

χ
ϕ1
ii (xi, t)σ

1
ii (t) and ϕ

2
ii (ςi, t) σ

2
ii (t) for the convenience of analysis, while the communication noises re-

lated to the consensus terms
∑

j∈Ni
aij (xi − xj) and

∑

j∈Ni
aij (qi − qj) are

∑

j∈Ni
aijϕ

1
ij (xi, t)σ

1
ij (t)

and
∑

j∈Ni
aijϕ

3
ij (qi, t)σ

3
ij (t), respectively. Similarly, in the second equation of (4),

∑

j∈Ni
aij (xi − xj)

relevant to communication noise is
∑

j∈Ni
aijϕ

4
ij (xi, t)σ

4
ij (t). Besides, in the last equation of (4),

the computation noise of ∇fi (xi) is also ξ

χ
ϕ5
ii (xi, t)σ

5
ii (t), the communication noises associated with

∑

j∈Ni
aij (xi − xj) and

∑

j∈Ni
aij (qi − qj) are

∑

j∈Ni
aijϕ

5
ij (xi, t)σ

5
ij (t) and

∑

j∈Ni
aijϕ

6
ij (qi, t)σ

6
ij (t),

respectively. Furthermore, here the random process σkij (t) is also an independent copy of σ0
ii (t), and

ϕkij (·, t), k = 0̄, 1, 2, . . . , 6, are also the general-force matrices associated with the relevant variables.

Based on the above analysis, additive noises Λ̄i (ui), Λ̄i (q̇i) and Λ̄i (ς̇1) that depend on the control (4)



Wang D, et al. Sci China Inf Sci March 2022 Vol. 65 132201:5

are respectively

Λ̄i (ui) = −ξ
∑

j∈Ni

aij(ϕ
1
ij(xi, t)σ

1
ij + ϕ3

ij(qi, t)σ
3
ij)− ξϕ1

ii (xi, t)σ
1
ii (t) + ξϕ2

ii (ςi, t)σ
2
ii (t) ,

Λ̄i (q̇i) = χξ
∑

j∈Ni

aijϕ
4
ij (xi, t)σ

4
ij (t),

Λ̄i (ς̇i) = −ξ
∑

j∈Ni

aij(ϕ
5
ij(xi, t)σ

5
ij + ϕ6

ij(qi, t)σ
6
ij)− ξϕ5

ii (xi, t)σ
5
ii (t) .

(7)

The underlying complete probability space of random process σyij(t) (y = 0, k) is taken to be the
quartet (Ω,F ,Ft, P ) with a filtration Ft satisfying the general conditions (i.e., it is increasing and right
continuous while F0 contains all P -null sets) [33]. Furthermore, the matrix ϕyij(·, t) satisfies the following
assumption.

Assumption 3 ( [33]). ϕyij(·, t) is measurable and uniformly bounded. In addition, there exist two
positive constants L0 and L1 such that

∣

∣ϕyij (0, t)
∣

∣ < L0,
∣

∣ϕyij (s1, t)− ϕyij (s2, t)
∣

∣ 6 L1 |s1 − s2|
(8)

for s1, s2 ∈ R.

Define the target random process as

σy(t) =









σy11(t) · · · σy1n(t)
...

...
...

σyn1(t) · · · σynn(t)









which is a second-order stationary process that satisfies the following two assumptions.

Assumption 4 ([33]). Random process σy(t) is Ft-adapted and piecewise continuous, and there is a
constant S > 0 such that

sup
t>t0

E ‖σy (t)‖22 < S, ∀t0 > 0. (9)

Assumption 5 ([33]). For random process σy(t), for any ε1 > 0 and δ1 > 0, there exists a T > t0 > 0

such that P{| 1
t−t0

∫ t

t0
‖σy(s)‖22ds− E‖σy(t)‖22| > δ1} 6 ε1 for all t > T .

Remark 3. Random process σy(t) is only restricted by Assumptions 4 and 5. Compared with the
existing results [19], the weak law of large numbers we used in this study is a relaxed condition, which
implies that the target random process is a stationary process, although Assumption 5 is added. It is
derived from P{| 1

t−t0
∫ t

t0
‖σy(s)‖22ds− E‖σy(t)‖22| > δ1} 6 ε1 that the stationary process is a random

process, where the probability distribution at a fixed time and location is the same as the probability
distribution at all times and locations. Therefore, its mathematical expectations and variances do not
change with time and position. In addition, the reason why the effect of vibration environment on system
performance is modeled by a stationary process rather than a white noise directly in many applications,
for a detailed explanation, please see [29]. The closed-loop system composed of (2), (4) and (7) is based
on RDEs; thus, Itô integral and Itô formula cannot be used to analyze its dynamical characteristics [25].
As a result, we need to employ a random field method for developing a criterion to evaluate the quality
of DOP solutions for the target MASs driven by a stationary process.

To proceed, the following assumptions related to the first equation of (2) are provided.

Assumption 6. Letting σ0
ii(t) = 0 for a given point xi = x∗, there exists a unique point z∗i satisfying

gi1 (z
∗
i , x

∗, wi) = 0.

Assumption 7. There is a continuously differentiable function Vz̄i (z̄i) that has upper and lower

bounds of τ1 |z̄i|
2
2 and τ2 |z̄i|

2
2 with τ1 > τ2 > 0, respectively. In addition, its time derivative along

˙̄zi = ḡi1 (z̄i, x̄i, wi) + ϕ̄0
ii(z̄i, t)σ

0
ii(t) satisfies

V̇z̄i (z̄i) 6 −θ̂i |z̄i|
2
2 + γi |x̄i|

2
2 + 2

∣

∣z̄iϕ̄
0
ii(z̄i, t)σ

0
ii(t)

∣

∣ , (10)
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where ḡi1 (z̄i, x̄i, wi) = gi1 (zi, xi, wi) − gi1 (z
∗
i , x

∗, wi), z̄i = zi − z∗i , x̄i = xi − x∗, ϕ̄0
ii(z̄i, t) = ϕ0

ii(zi, t) −

ϕ0
ii(z

∗
i , t), and θ̂i and γi are positive constants.

Note that Assumption 6 is a crucial condition for obtaining the optimal solution x∗ of (3), that is, the
state xi converges to x

∗ if and only if zi also converges to z∗i for any i ∈ V . We first need Assumption 7
to guarantee that the transformed system ˙̄zi = ḡi1 (z̄i, x̄i, wi) + ϕ̄0

ii(z̄i, t)σ
0
ii(t) is NOS stable relative to

the origin (0, 0), and then we only need to analyze the stability of the remainder of system (2). Moreover,
Assumption 7 can degrade into a standard assumption to ensure the stability of unmodeled dynamics at
the point (z∗i , x

∗) and the effectiveness of feedback control when σ0
ii(t) = 0 [18, 34, 35].

Let bij = aij if (i, j) ∈ E , bij = 1 if i = j, and

ϕ0 (z, t) =









b11ϕ
0
11 (z1, t) · · · b1nϕ0

1n (zn, t)
...

...
...

bn1ϕ
0
n1 (z1, t) · · · bnnϕ0

nn (zn, t)









,

where ϕkij (·, t), k = 0̄, 1, 2, . . . , 6, are defined in the same way, z = col (z1, z2, . . . , zn), q,x, ς,∇f (x) ,
g1 (z,x, w) and g2 (z,x, w) are defined in the same way. Thus, the closed-loop system composed of (2),
(4) and (7) can be rewritten in a compact form:

ż = g1 (z,x, w) + Φ (z, t) ,

ẋ = g2 (z,x, w)− χ∇f (x)− ξL (x+ q) + ς − ξ (−1/ξΨ(x, t) + ∆ (x, t)− Λ (ς, t) +H (q, t)) ,

q̇ = χξLx+ χξΓ (x, t) ,

ς̇ = −χ∇f (x)− ξL (x+ q)− ξ (Π (x, t) +B (q, t)) ,

(11)

where Φ(z, t), Ψ(x, t), ∆(x, t), Λ(ς, t), H(q, t), Γ(x, t), Π(x, t) and B(q, t) are the column vectors stacked
by the main diagonal elements of matrices ϕ0(z, t)(σ0(t))T, ϕ0̄(x, t)(σ0̄(t))T, ϕ1(x, t)(σ1(t))T, ϕ2(ς,
t)(σ2(t))T, ϕ3(q, t)(σ3(t))T, ϕ4(x, t)(σ4(t))T, ϕ5(x, t)(σ5(t))T and ϕ6(q, t)(σ6(t))T, respectively.

3 Noise-to-state exponential stability analysis

In this section, the NOS exponential stability of system (11) is analyzed using a random field method.
Particularly, the relationship between the optimal solution of (11) without a stationary process and the
NOS stable solution of system (11) in the second moment is discussed. The following definition relative
to the NOS stability of random systems is provided.

Definition 1 ([33]). System ẋ(t) = f (x (t) , t, σ (t)) ∈ R
n is said to be NOS stable in the second moment

if there exist a class-KL function β (·, ·) and a class-K function ρ (·) such that

E‖x (t)‖22 6 β (‖x0‖2 , t− t0) + ρ

(

sup
t06s6t

E‖σ (s)‖22

)

(12)

for x0 ∈ R
n and t ∈ [t0,∞), where σ(t) is a stationary process satisfying Assumptions 4 and 5. Further-

more, system ẋ = f (x (t) , t, σ (t)) is said to be exponentially NOS stable in the second moment if the
class-KL function β (·, ·) can be represented by h1‖x0‖2e

−h2(t−t0) for two positive constants h1 and h2.

The following lemma is about the existence and uniqueness of the global solution for the closed-loop
system (11).

Lemma 1 ([33]). Under Assumptions 3–5, system (11) has a unique solution x̃(t) on [t0,∞).

Remark 4. It is obtained from Definition 1 and Lemma 1 that the solution x̃(t) of problem (3) is unique

and NOS stable in the second moment, i.e., E‖x (t)− x̃(t)‖22 6 β (‖x0‖2 , t− t0)+ ρ(supt06s6tE‖σ (s)‖
2
2).

Thus, we know that the second moment of the estimation error between the optimal solution of system (11)
without random noises and the NOS stable solution of system (11) is bounded. Note that the size of
the second moment of the estimation error is dependent on the initial states and the parameters of the
concerned system as well as the magnitude of random noise. Nevertheless, an oversized upper bound for
analyzing the stability of (11) is insignificant. Thereby, we need to employ the grid search method for
finding the appropriate parameters to decrease the estimation error concerned.
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The following lemmas related to the main results are provided.

Lemma 2 ([36]). Suppose that ỹ(t) is an absolutely continuous function for t > t0 and its derivative
satisfies the inequality ˙̃y (t) 6 e (t) ỹ (t) + m (t) for almost all t > t0 > 0, where e(t) and m(t) are
almost everywhere continuous and integrable functions over every finite interval. Thus, the inequality

ỹ (t) 6 ỹ (t0) e
∫

t

t0
e(s)ds

+
∫ t

t0
e
∫

t

s
e(c)dcm (s)ds holds for t > t0 > 0.

Lemma 3 ( [37]). Given two vectors ỹ1 and ỹ2 with compatible dimensions, the inequality ỹT1 ỹ2 6

r ‖ỹ1‖
2
2 + ‖ỹ2‖

2
2/4r holds for any positive scalar r.

When a system is disturbed by a stationary process, there is no exactly optimal solution of the target
problem. For this case, we need to develop a new evaluation criterion for the quality of DOP solutions (3).
To this end, assume that the equilibrium point of system (11) in the absence of a stationary process is
col (z∗,x∗, q∗, ς∗). Define new coordinate transformations as

ϑ = QTz̄, ν = QT
x̄, φ = QTq̄, η = QTς̄ , (13)

where Q = [Q1, Q2] is defined in Remark 1, z̄ = z − z∗, x̄ = x − x
∗, q̄ = q − q∗, ς̄ = ς − ς∗ − x̄,

ϑ = [ϑ1, ϑ
T
2 ]

T, ν = [ν1, ν
T
2 ]

T, φ = [φ1, φ
T
2 ]

T, η = [η1, η
T
2 ]

T with ϑ1, ν1, φ1, η1 ∈ R and ϑ2, ν2, φ2, η2 ∈
R
n−1. Thus, system (11) can be equivalently decomposed to the following form:

ϑ̇ = QTḡ1 +QTΦ̄ (z̄, t) ,

ν̇1 = QT
1 ḡ2 − χQT

1 h (x̄) + η1 + ν1 − ξQT
1

(

∆̄ (x̄, t) + H̄ (q̄, t)− Λ̄ (ς̄ , t)
)

,

ν̇2 = QT
2 ḡ2 − χQT

2 h (x̄)− ξJ (φ2 + ν2) + η1 + ν1 − ξQT
2

(

−1/ξΨ(x̄, t) + ∆̄ (x̄, t) + H̄ (q̄, t)− Λ̄ (ς̄ , t)
)

,

φ̇1 = χξQT
1 Γ̄ (x̄, t) ,

φ̇2 = χξJν2 + χξQT
2 Γ̄ (x̄, t) ,

η̇1 = −QT
1 ḡ2 − η1 − ν1 − ξQT

1 Γ̂ (·)σ′ (t) ,

η̇2 = −QT
2 ḡ2 − η2 − ν2 − ξQT

2 Γ̂ (·)σ′ (t) ,

(14)

where ḡ1 = g1 (z,x, w) − g1 (z
∗,x∗, w), ḡ2 = g2 (z,x, w) − g2 (z

∗,x∗, w), h (x̄) = ∇f (x) − ∇f (x∗),
Φ̄ (z̄, t) = Φ (z, t)−Φ (z∗, t), Ψ̄(x̄, t) = Ψ(x, t)−Ψ(x∗, t), ∆̄ (x̄, t) = ∆ (x, t)−∆(x∗, t), H̄ (q̄, t) = H (q, t)−
H (q∗, t), Λ̄ (ς̄ , t) = Λ (ς, t) − Λ (ς∗ + x̄, t), Γ̄ (x̄, t) = Γ (x, t) − Γ (x∗, t), Π̄ (x̄, t) = Π (x, t) − Π(x∗, t),
B̄ (q̄, t) = B (q, t)−B (q∗, t) and Γ̂ (·)σ′ (t) = Π̄ (x̄, t)+ B̄ (q̄, t)+ 1/ξΨ(x̄, t)− ∆̄ (x̄, t)− H̄ (q̄, t)+ Λ̄ (ς̄ , t).
According to Assumption 1 and Remark 1, it is derived that φ1 ≡ 0 when system (11) is not affected by
a random process.

Theorem 1. Under Assumptions 1–7, there exist positive constants l1, l2, c1, c2, c3, c4, p1, ξ, χ and the
diagonal positive-definite matrix P̂ ∈ R

(n−1)×(n−1) such that the solution of system (14) is exponentially
NOS stable in the second moment if the following condition holds:

− P1θ + l1c4In < 0, Ω = diag
{

−P1θ̂ + l1c4In, Ω
∗
}

< 0 (15)

with

Ω∗ =



















Ω11 0 0 l1
2 0

∗ Ω22 Ω23 0 l1χIn−1

2 − l2ξJ

2

∗ ∗ Ω33 0 l1In−1

2 − l2ξJ
2

∗ ∗ ∗ Ω44 0

∗ ∗ ∗ ∗ Ω44In−1



















,

where Ω11 = l1c1 + l1 (χ+ 1) + ( l1χ4 + l2χ

4 )ν̄2 − χ (l1 + l2 + l1χ)̟ + p1γ1, Ω22 = (Ω11 − p1γ1) In−1 −

ξl2J−χl1J+ P̂ γ, Ω23 = −χξl1J−ξl2J+ l1In−1/2, Ω33 = c3l1In−1+χl1In−1− l1ξJ , Ω44 = c2l1+χl2− l1,

P̂ = diag {p2, . . . , pn}, P1 = diag{p1, P̂}, θ̂ = diag{θ̂1, . . . , θ̂n} and γ = diag {γ2, . . . , γn}.

Proof. Consider the Lyapunov function candidate:

V (ψ) = ψT
1 Θψ1 +

n
∑

i=1

piVz̄i (z̄i) (16)
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with

Θ =

























l + l1χ

2 0 0 1
2 l2 0

∗ (l + l1χ
2 )In−1

l1
2 In−1 0 l2

2 In−1

∗ ∗ l1
χ
In−1 0 0

∗ ∗ ∗ l 0

∗ ∗ ∗ ∗ lIn−1

























,

where ψ = col (ϑ, ψ1) with ψ1 = col(ν1, ν2, φ2, η1, η2), l =
l1+l2

2 , Vz̄i (z̄i) is defined in Assumption 7 and
pi is a positive constant.

Thus, it is obtained that

~1 ‖ψ‖
2
2 6 V (ψ) 6 ~2 ‖ψ‖

2
2 , (17)

where

~1 ‖ψ‖
2
2 = λmin (Θ) ‖ψ1‖

2
2 + τ2 [pi]

min
i∈V ‖ϑ‖22 ,

~2 ‖ψ‖
2
2 = λmax (Θ) ‖ψ1‖

2
2 + τ1 [pi]

max
i∈V ‖ϑ‖22 .

Taking the derivative of (16) along the solutions of (14) yields

V̇ (ψ) 6 l1((1 + χ)Qν −Qη +Q2φ2)
Tḡ2 + l1 (χ+ 1) νTν − l2χη

T
2 Jν2 − ξl2ν

T
2 J (ν2 + φ2)

− l1χν
T
2 Jν2 + l1η

T
2 φ2 − χ(l1Qν + l2Qν + l2Qη + l1χQν + l2Q2φ2)

T
h (x̄)

− χξl1ν
T
2 Jφ2 + p1γ1ν

T
1 ν1 + l1χν

Tη − ξl2η
T
2 Jφ2 − l1ξφ

T
2 Jφ2 + l1φ

T
2 ν2 − ϑTP1θ̂ϑ

+ γνT2 P̂ ν2 − l1η
Tη − 2ψT

1 ΘM (ψ1, t) +

n
∑

i=1

2pi
∣

∣z̄iϕ̄
0
ii(z̄i, t)σ

0
ii(t)

∣

∣, (18)

where matrices P̂ , P1, θ̂ and γ are defined in (15), M (ψ1, t) = col(QT
1M1, Q

T
2M1,−χQT

2 Γ̄ (x̄, t) ,
QT

1 Γ̂ (·)σ′ (t) , QT
2 Γ̂ (·) σ′ (t)) with M1 = −1/ξΨ(x̄, t) + ∆̄ (x̄, t) + H̄ (q̄, t)− Λ̄ (ς̄ , t). Note that QTQ = In

and QT
2Q2 = In−1. It is derived from Assumption 2 and Lemma 3 that

− (Q2φ2)
Th (x̄) 6 φT2 φ2 + 0.25ν̄2νTν,

− (Qη)
T
h (x̄) 6 ηTη + 0.25ν̄2νTν,

(Qν)Th (x̄) > ̟νTν,

(19)

and

l1((1 + χ)Qν −Qη +Q2φ2)
T
ḡ2 = l1((1 + χ)Qν −Qη +Qφ)

T
ḡ2

6 l1
(

c1ν
Tν + c2η

Tη + c3φ
T
2 φ2 + c4ϑ

Tϑ
)

(20)

hold for some positive constants c1, c2, c3 and c4. The above inequalities are obtained by using Lemma
7.8 in [35] and φ1 ≡ 0.

According to Assumption 3 and (17), there are two positive constants d1 and d2 such that

− 2ψT
1 ΘM (ψ1, t) +

n
∑

i=1

2pi
∣

∣z̄iϕ̄
0
ii(z̄i, t)σ

0
ii(t)

∣

∣ 6 2d1
(

~2 + L2
1

)

‖ψ‖22 + 2d2‖σ̂ (t)‖
2
2, (21)

where σ̂ (t) = col(σ0(t), σk(t)), k = 0̄, 1, 2, . . . , 6. Furthermore, it is obtained from (18), (19), (20) and
(21) that

V̇ 6 ψTΩψ + 2d1
(

~2 + L2
1

)

‖ψ‖22 + 2d2‖σ̂ (t)‖
2
2 6

(

λmax (Ω) + 2d1
(

~2 + L2
1

))

‖ψ‖22 + 2d2‖σ̂ (t)‖
2
2, (22)



Wang D, et al. Sci China Inf Sci March 2022 Vol. 65 132201:9

where matrix Ω defined in (15) is negative-definite, and λmax (Ω) denotes its maximum eigenvalue. For
obtaining the condition of the NOS exponential stability of system (14), let λmax (Ω) + 2d1

(

~2 + L2
1

)

6

−d3 hold with a positive constant d3, and then, the equation λmax (Ω) + 2d1
(

~2 + L2
1

)

+ d3 = −κ holds

for a positive constant κ. Owing to 2d1
(

~2 + L2
1

)

> 0 and d3 > 0, using the mean value inequality

in [38],
√

2d1d3 (~2 + L2
1) 6

1
2

(

2d1
(

~2 + L2
1

)

+ d3
)

< − 1
2λmax (Ω) means that d1d3 6

1

8(~2+L2

1)
λ2max (Ω),

where the equality holds when d3 = −λmax (Ω)/2 and d1 = −λmax (Ω)
/

4
(

~2 + L2
1

)

. In what follows,
substituting (17) into (22) leads to

V̇ (ψ (t)) 6 −
κ

~2
V (ψ (t)) + 2d2 ‖σ̂ (t)‖

2
2 . (23)

Taking integrals first in the time-interval [t0, t ∧ υb) and then expectations on both sides of (23), we have

EV (ψ (t ∧ υb))− V (ψ (0)) 6 −
κ

~2
E

∫ t∧υb

t0

V (ψ (s)) ds+ 2d2E

∫ t

t0

‖σ̂ (s)‖22 ds, (24)

where stopping time υb = inf{t > t0| ‖ψ (t)‖22 > b} for any b > 0, υ∞ = limb→∞υb = ∞ and inf ∅ = ∞
almost surely.

Combining (9) with (24) yields

EV (ψ (t ∧ υb)) 6 V (ψ (0)) + 16d2St 6 (V (ψ (0)) + 16d2)St. (25)

Therefore, based on Lemma 5 (note that we replace ect with St owing to Assumption 6) in [33], the exis-
tence of solutions of system (14) on the time interval [t0,∞) is guaranteed, that is, υ∞ = ∞ almost surely.
It follows from υ∞ = ∞ almost surely and (23) that V (ψ (t)) < ∞ and V̇ (ψ (t)) < ∞. In light of Fu-

bini’s theorem [39], the equation EdV (ψ)
dt = dEV (ψ)

dt holds, which means the exchangeability of expectation

and derivative. According to Lemma 2, it is derived from (23) that EV (ψ(t)) 6 V (ψ(0))e−κ/~2(t−t0) +

2d2~2/κ(1 − e−κ/~2(t−t0))supt06s6tE ‖σ̂ (s)‖22 6 V (ψ(0))e−κ/~2(t−t0) + e−κ/~2(t−t0)supt06s6tE ‖σ̂ (s)‖22,

which, together with (17), implies that E ‖ψ(t)‖22 6 ~2/~1 ‖ψ(0)‖
2
2 e

−κ/~2(t−t0) + (2~22d2
/

~1κ)

supt06s6tE ‖σ̂ (s)‖22. Furthermore,

E ‖x (t)− x
∗‖22 6 ~2/~1 ‖x (0)‖

2
2 e

−κ/~2(t−t0) + (2~22d2
/

~1κ)supt06s6tE ‖σ̂ (s)‖22 . (26)

Clearly, ~2

~1

‖x (0)‖22 e
− κ

~2
(t−t0) is a class-KL function and

2d2~
2

2

~1κ
supt06s6tE ‖σ̂ (s)‖22 is a class-K function.

According to Definition 1 and Lemma 1, it is derived from (26) that system (14) is exponentially NOS
stable in the second moment. So the solution of problem (3) is exponentially NOS stable in the second
moment. It is further derived that the algorithm (4) can solve problem (3).

Remark 5. In Theorem 1, the sufficient condition (15) corresponding to E ‖x (t)− x
∗‖22 is obtained

in the form of matrix inequalities. Despite the computational time being lost by solving matrix inequal-
ities and performing the Jordan decomposition associated with the Laplacian matrix L, conservatism
of the established criterion is alleviated. Note that the determination for value range of parameters in
system (11) must be prior to the grid search method employment, which will accelerate the acquisition
of the best optimization parameters and decrease the estimation error of the solution at the same time.

Remark 6. Compared with the existing results [13–15,19,21], this paper has the following advantages.
(1) For the DOP, the dynamics of agents are integral-type systems and they do not consider the effect of

external surroundings on system characteristics [13–15,21]. However, the dynamics of agents in this paper
is extended to a class of nonlinear systems disturbed by a stationary process, which is very appropriate
to model noisy disturbances in practice, and it is different from that by a white noise process in [19].

(2) Although a co-coercivity of vector field method is employed to select the optimal parameters of
system based on stochastic differential equations in [19] to tight the minimum of the second moment of the
estimation error of the solution, this method is very complicated, and the obtained parameters are some
functions defined on a bounded interval. In addition, this method do not directly reflect the relationship
between the system parameters and the magnitude of the estimation error of the DOP solutions. On the
contrary, we use the grid search method, which is easily implemented in real applications, to determine
the optimal parameters of the system for reducing the estimation error concerned. Moreover, the figures
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depicted using this method can directly reflect the relationship between the selected parameters and the
size of the estimation error of the solution.

(3) The obtained results can be applied to the average consensus problem for a class of random nonlinear
multi-agent systems. Thus, our results provide an alternative solution to achieve average consensus in
the presence of stationary processes.

4 Applications to the average consensus problem in the presence of a sta-
tionary process

For distributed collaborative control of multi-agent systems, the DOP is considered an extension of the
consensus problem by adding a global cost function. The average consensus problem is a special issue
of the consensus problem in which its solution equals an average value of all initial states of agents. In
this section, we show that the results in Section 3 can be applied to the average consensus problem for
random nonlinear systems (2) by modifying the corresponding algorithm. To be specific, we consider the
problem given in the following definition.

Definition 2 ([40]). If states of agents converge to the average of their initial states for the target
system, i.e., limt→∞xi (t) = x∗ = 1

n

∑n

j=1 xj (0), i ∈ V , ∀t > 0, then average consensus is said to be
reached.

In order to solve the problem given in Definition 2, the proposed algorithm (4) can be modified as

ui = ς̇i + ςi,

q̇i = χξ
∑

j∈Ni

aij (xi − xj),

ς̇i = −χ(xi − xi(0))− ξ
∑

j∈Ni

aij [(xi − xj) + (qi − qj)],

(27)

where xi(0) is the initial state of xi, and other variables and notations are the same as those in (4).

Remark 7. It is worth noting that the difference between the proposed algorithms (27) and (4) is the
gradient term. The gradient term is ∇fi (xi) in (4), but it is replaced with xi−xi(0) in (27). It is derived
from the first-order optimality condition

∑n

i=1 ∇fi (x
∗) = 0 that x∗ = limt→∞xi (t) = 1/n

∑n

j=1 xj (0),
which implies that average consensus is achieved.

Applying Theorem 1 to the distributed average consensus problem for random nonlinear multi-agent
systems (2), we have the following result.

Theorem 2. Under Assumptions 1–7, there are positive constants l1, l2, c1, c2, c3, c4, p1, b1, b2, ξ,
χ, and the diagonal positive-definite matrix P̂ such that the solution of the random nonlinear system
composed of (2), (27) and (7) is exponentially NOS stable in the second moment under the condition
(15).

Proof. For each agent i, let its local cost function be

fi (xi) = 0.5(xi − xi (0))
2, (28)

which satisfies Assumption 2. We transform the average consensus problem into the DOP with the form
of (3):

min
x∈Rn

F (x) =

n
∑

i=1

0.5(xi − xi (0))
2

s.t. lim
t→∞

E |xi − xj | = 0. (29)

For problem (29), when the effect of the environment on system performance is ignored, its minimum
point is x∗ = 1

n

∑n

j=1 xj (0). Moreover, suppose that Assumptions 1, 3–7 hold, using similar proof idea to
that in Theorem 1, we prove that the system composed by (2), (27) and (7) is exponentially NOS stable
in the second moment. It is derived from Lemma 1 that the solution of the problem (29) is exponentially
NOS stable in the second moment. Therefore, it is obtained that the algorithm (27) solves the distributed
average consensus problem given in Definition 2 for random nonlinear multi-agent systems (2).
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Figure 1 (Color online) A curve of a second-order stationary

process σ(t).

Figure 2 (Color online) The communication topology among

eight agents.

5 Simulation

In this section, an example is provided to illustrate the effectiveness of the proposed algorithm. Con-
sider a multi-agent system consisting of 8 agents that operates in a random vibration environment,
where the dynamics of each agent is modeled by a coupled FitzHugh-Nagumo type system (2) [26] with
gi1 (zi, xi, wi) = τ̂i1 (xi − τ̂i2zi) and gi2 (zi, xi, wi) = xi (xi − τ̂i3) (1− xi), where τ̂ij = τ ′ij + wi > 0,
i = 1, . . . , 8, j = 1, 2, 3, are some real coefficients with the uncertainty wi influencing on the nominal
value τ ′ij , and τ̂i = (τ̂i1, τ̂i2, τ̂i3) = (1, 2, 1). Random process σy(t) (y = 0, k) is a second-order stationary
process. We use MATLAB to generate a desired stationary process. Particularly, the target random
process is a bandlimited white noise instead of pure white noise [33]. Based on the fact, it is physically
achievable and can be generated by a module of Band-Limited White Noise in Simulink. Set the noise
power A = 0.05 and the correlation time tc = 0.1, and then E ‖σy (t)‖22 = A/tc = 0.5. Thus, the sta-
tionary process that satisfies Assumptions 4 and 5 is depicted in Figure 1. The communication topology
among agents is modeled by a strongly-connected and weight-balanced digraph as shown in Figure 2,
which implies that Assumption 1 is satisfied. In addition, let the weight of each edge be aij = 1 if
(i, j) ∈ E . The objective of all agents is to cooperatively solve an optimization problem in the form
of (3) based on a multi-agent framework, where the local cost functions associated with each agent are
respectively

f1 (x1) = 0.8(x1 − 2)
2
, f2 (x2) = 2x22 + 3x2 + 1, f3 (x3) = 3e0.3x3, f4 (x4) = 3x24 + 0.5e2x4 + 6,

f5 (x5) =
x25 + 3
√

x25 + 1
+ x25, f6 (x6) = 0.8e2x6 + 2x6, f7 (x7) = 4x27 − 6x7, f8 (x8) = 2e−3x8 + 2x28 + 2x8.

Each fi(xi) is strongly convex, which implies that Assumption 2 is satisfied. Assume that Assumptions 6
and 7 associated with nonlinear system (2) are also satisfied. The initial state of x is set to x (0) =

[1, 2, 2,−2, 3, 1, 0, 0.5]T, and the initial states of the remainder of variables can be arbitrarily chosen.
After calculation, it is easy to know that the state xi converges to the optimal solution x∗ = 0.1065 of
problem (3) in the absence of a stationary process, and the minimum value of the global cost function is
F (x∗) = 19.2643.

Next, consider the optimization problem (3) in the presence of a stationary process. According to
Theorem 1, the grid search method is employed to depict the relationship between the second moment
E‖x (t)− x

∗‖22 of the estimation error and parameters χ, ξ as shown in Figure 3. Select two pairs of
parameters (χ = 2.45, ξ = 1.38) and (χ = 2.45, ξ = 0.72) from Figure 3 to perform the simulation
analysis, and let the general-force matrices ϕ0(z, t) = ϕ1 (x, t) = ϕ2 (ς, t) = ϕ3 (q, t) = ϕ4 (x, t) =
ϕ5 (x, t) = ϕ6 (q, t). Here, we only present a detailed description of the components of ϕ1(x, t) for the
sake of brevity, ϕ1

ii(xi, t) = 0.05 + r∗sin(t) if i = j, and ϕ1
ij(xi, t) = 0.05 + 0.5r∗sin(t) if (i, j) ∈ E ,

where r∗ is randomly selected in [0, 0.1]. It is derived that Assumption 7 is satisfied with two constants
L0 = 0.15 and L1 = 0.05. It is observed from Figure 4 that the trajectories of state xi of agent i converge
to a bounded neighborhood of the optimal solution of problem (3). The reason for this case is that the
dynamics of agents are disturbed by a stationary process. In addition, it is also derived that when we
focus on the minimum of the second moment E‖x (t)− x

∗‖22 of the estimation error, the parameter ξ is
smaller. This further illustrates the effectiveness and correctness of the obtained results.

Finally, we show that the obtained results can be applied to average consensus for a multi-agent system
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(b) χ = 2.45, ξ = 0.72.
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Figure 5 (Color online) Trajectories of system states x under (27) with different parameters (a) χ = 2.45, ξ = 1.38 and

(b) χ = 2.45, ξ = 0.72.

in the presence of a stationary process, where the communication topology among agents, the initial states
of all variables, two pairs of parameters and random noise are chosen the same as those in the DOP (3).

However, the local cost functions of agents are modified as fi (xi) = 1
2 (xi − xi (0))

2
, i = 1, 2, . . . , 8.

The simulation results are presented in Figure 5. It is observed from Figure 5 that the trajectories of
xi converge to a bounded domain of the average consensus point x∗ = 0.9375. Furthermore, the size
of the bounded neighborhood is excessively dependent on the parameter ξ. In other words, when we
overemphasize consensus, the parameter ξ is smaller.

6 Conclusion

In this paper, a continuous-time algorithm was proposed to solve the DOP for a class of nonlinear multi-
agent systems disturbed by a stationary process over a strongly-connected and weight-balanced digraph.
The NOS exponential stability criterion for the target system based on RDEs is established to evaluate
the quality of solutions for the given problem. In addition, the obtained results can be applied to the
distributed average consensus problem in the presence of a stationary process. In future, we plan to focus
on developing distributed optimization algorithms under time-varying unbalanced directed graphs.



Wang D, et al. Sci China Inf Sci March 2022 Vol. 65 132201:13

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61973050,

61773089, 62073275), Fundamental Research Funds for the Central Universities (Grant Nos. DUT20GJ209, DUT20JC14). The

authors are very grateful to anonymous reviewers for their valuable comments to improve the quality of the paper.

References

1 Shi J T, Sun J, Yang Y H, et al. Distributed self-triggered formation control for multi-agent systems. Sci China Inf Sci, 2020,
63: 209207

2 Otte M, Kuhlman M, Sofge D. Competitive target search with multi-agent teams: symmetric and asymmetric communication
constraints. Auton Robot, 2018, 42: 1207–1230

3 Wang D, Wang Z, Wen C Y, et al. Second-order continuous-time algorithm for optimal resource allocation in power systems.
IEEE Trans Ind Inf, 2019, 15: 626–637

4 Li Y M, Qu F Y, Tong S C. Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems
with input delay. IEEE Trans Cybern, 2021, 51: 126–137

5 Tong S C, Min X, Li Y X. Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown
control gain functions. IEEE Trans Cybern, 2020, 50: 3903–3913

6 Tsitsiklis J, Bertsekas D, Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms.

IEEE Trans Automat Contr, 1986, 31: 803–812
7 Yuan D M, Hong Y G, Ho D W C, et al. Optimal distributed stochastic mirror descent for strongly convex optimization.

Automatica, 2018, 90: 196–203
8 Nedic A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Trans Automat Contr, 2009, 54:

48–61
9 Shi W, Ling Q, Wu G, et al. EXTRA: an exact first-order algorithm for decentralized consensus optimization. SIAM J Optim,

2015, 25: 944–966
10 Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of

multipliers. FNT Mach Learn, 2010, 3: 1–122
11 Feng H, Jiang Z D, Hu B, et al. The incremental subgradient methods on distributed estimations in-network. Sci China Inf

Sci, 2014, 57: 092103
12 Zhang J Q, You K Y. AsySPA: an exact asynchronous algorithm for convex optimization over digraphs. IEEE Trans Automat

Contr, 2020, 65: 2494–2509

13 Wang J, Elia N. Control approach to distributed optimization. In: Proceedings of the 48th Annual Allerton Conference on
Communication, Control, and Computing, Allerton, 2010. 557–561

14 Kia S S, Cortés J, Mart́ınez S. Distributed convex optimization via continuous-time coordination algorithms with discrete-time
communication. Automatica, 2015, 55: 254–264

15 Wang D, Wang Z, Chen M F, et al. Distributed optimization for multi-agent systems with constraints set and communication
time-delay over a directed graph. Inf Sci, 2018, 438: 1–14

16 Cherukuri A, Mallada E, Low S, et al. The role of convexity in saddle-point dynamics: Lyapunov function and robustness.
IEEE Trans Automat Contr, 2018, 63: 2449–2464

17 Zhu Y N, Yu W W, Wen G H, et al. Continuous-time distributed subgradient algorithm for convex optimization with general
constraints. IEEE Trans Automat Contr, 2019, 64: 1694–1701

18 Wang X H, Hong Y G, Ji H B. Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection.
IEEE Trans Cybern, 2016, 46: 1655–1666
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