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Abstract While the fifth generation (5G) cellular system is being deployed worldwide, researchers have

started the investigation of the sixth generation (6G) mobile communication networks. Although the essential

requirements and key usage scenarios of 6G are yet to be defined, it is believed that 6G should be able to

provide intelligent and ubiquitous wireless connectivity with Terabits per second (Tbps) data rate and sub-

millisecond (sub-ms) latency over three-dimensional (3D) network coverage. To achieve such goals, acquiring

accurate location information of the mobile terminals is becoming extremely useful, not only for location-

based services but also for improving wireless communication performance in various ways such as channel

estimation, beam alignment, medium access control, routing, and network optimization. On the other

hand, the advancement of communication technologies also brings new opportunities to greatly improve the

localization performance, as exemplified by the anticipated centimeter-level localization accuracy in 6G by

extremely large-scale multiple-input multiple-output (MIMO) and millimeter wave (mmWave) technologies.

In this regard, a unified study on integrated localization and communication (ILAC) is necessary to unlock the

full potential of wireless networks for dual purposes. While there are extensive studies on wireless localization

or communications separately, the research on ILAC is still in its infancy. Therefore, this article aims to give

a tutorial overview on ILAC towards 6G wireless networks. After a holistic survey on wireless localization

basics, we present the state-of-the-art results on how wireless localization and communication inter-play with

each other in various network layers, together with the main architectures and techniques for localization

and communication co-design in current two-dimensional (2D) and future 3D networks with aerial-ground

integration. Finally, we outline some promising future research directions for ILAC.
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1 Introduction

Starting from the second generation (2G), wireless localization has been included as a compulsory feature
in cellular networks, with continuous enhancement on the localization accuracy over each generation, e.g.,
from hundreds of meters accuracy in 2G to tens of meters in the fourth generation (4G). For the forthcom-
ing fifth generation (5G) mobile networks, localization is regarded as one of the key components, due to its
fundamental support for various location-based services, and the requirement on localization accuracy is
up to sub-meter level [1]. While the deployment of 5G networks is ongoing, researchers around the world
have already started the investigation on the sixth generation (6G) mobile communication targeting for
network 2030, with various visions proposed [2–8]. For example, it was envisioned that 6G should achieve
“ubiquitous wireless intelligence” [5], for providing users smart context-aware services through wireless
connectivity anywhere in the world. This renders that acquiring the accurate location information of
users becomes more critical than ever before, with potentially centimeter (cm)-level localization accuracy
for 6G.

However, most current localization services provided by global navigation satellite systems (GNSS),
wireless local area networks (WLAN) or existing cellular networks can at best achieve meter-level lo-
calization accuracy in clutter environments. Such coarse localization services are difficult to meet the
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cm-level localization accuracy requirements of many emerging applications. For example, the following
three promising usage scenarios of 5G-and-beyond networks, namely, intelligent interactive networks,
smart city, and automatic factory, all highlight the critical role of highly accurate localization in future
network design.

(1) Intelligent interactive networks. It is believed that the ultimate goal of communication
networks is to promote the intelligent interactions across the world, in terms of people-to-people, people-
to-machine, and machine-to-machine. An unprecedented proliferation of new internet-of-things (IoT) ser-
vices, like multisensory extended reality (XR) encompassing augmented/mixed/virtual reality (AR/MR
/VR) [9], brain-computer interfaces (BCI) [3], as well as tele-presence and tele-control services [5], brings
excellent opportunities to realize the goal of interaction with everything. To implement such new appli-
cations, it is necessary to achieve high localization performance, as elaborated in the following.

• Multisensory XR. XR services will enable users to experience and interact with virtual and immer-
sive environments through first-person view [9]. To enable truly immersive XR applications, XR systems
must be deployed through wireless networks, and the accurate tracking of XR devices is of paramount
importance. For wireless XR applications, a control center collects the tracking information of the XR
devices, and sends data to those devices through wireless links. Therefore, the accuracy of device track-
ing and the delay of signal measurements will significantly affect the XR information transmission and
hence impact the user experience. For instance, an inaccurate head-tracking may cause cybersickness,
like nausea, disorientation, headaches, and eye strain [10]. In general, for XR services, depending on the
usage scenarios, the requirement for localization accuracy ranges from 1 to 10 cm, and the time delay
should be typically less than 20 milliseconds (ms) [9].

• Wireless BCI (WBCI). The forthcoming 5G and future 6G networks bring new opportunities
to tailor communication networks into versatile networks integrated with human-centric communication,
wireless sensing, and remote control [3], where people will be enabled to interact with their surrounding
environment by using various IoT devices connected through the WBCI technology. It opens the door for
people to control their neighboring IoT devices through their brain implants, gestures, empathic as well as
haptic messages [9]. Such a breathtaking technology requires communication support of extremely high
data rate, ultra-low latency, and high reliability, together with high-performance localization services, e.g.,
cm-level accuracy. In addition, the cooperative localization among IoT devices is also quite important
for WBCI.

• Tele-presentation and Tele-control. With the advancement of various supporting technologies
including high-resolution imaging and sensing, wearable displays, mobile robots and drones, it is expected
that the technologies of tele-presentation and tele-control will become reality in the near future [5]. For
tele-presentation, a remote environment can be represented through real-time environment capturing,
information transmission, and three-dimensional (3D) holographic rendering, which makes the accurate
location information critical for 3D mapping. Furthermore, people may operate the remote IoT devices
through wireless networks, just like manipulating them face-to-face, which is referred to as tele-control or
tele-operation. An exemplary application of tele-presentation and tele-control is tele-surgery (or remote
surgery), which will enable doctors to perform emergent surgery remotely. Note that in such use cases,
highly-accurate, ultra-reliable, and low-latency localization is vital. For tele-control, the remote and
neighboring localization systems usually have two separate coordinates, perform different localization
algorithms, and use different reference nodes, which may cause mismatch errors. Therefore, for such
applications, the real-time infrastructure calibration between the two localization systems is of paramount
importance for reducing the mismatch errors.

(2) Smart city. A smart city has the ability to efficiently analyze different requirements from the
society, and reasonably manage and optimize public resources, such as electricity, water, transportation,
and healthcare, to provide better public services [11]. A truly smart city entails many different aspects.
Here, we elaborate two major application scenarios to outline the importance of the accurate localization
for smart city.

• Smart indoor services. Over the last decade, IoT technology has been advanced rapidly, which
will flourish the smart indoor services, like smart homes, indoor navigation in shopping malls, and crowd
monitoring. Different from outdoor scenarios, one critical issue for indoor localization is the severe non-
line-of-sight (NLoS) signal propagation that may significantly degrade the localization accuracy [12, 13].
Meanwhile, the privacy protection of location information is another important issue for public indoor
localization services [5]. One of the key problems is to identify what kind of location information needs
to be protected. For example, for some public devices, their location information should be accessible to
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Table 1 The localization requirements of different applications for 5G/6G networks

Usage scenario Application Requirement

Intelligent interactive networks

Multisensory XR
Centimeter-level accuracy (i.e., 1–10 cm);

low latency (less than 20 ms)

WBCI

Centimeter-level accuracy;

low latency (millisecond-level);

high requirements on cooperative localization among IoT devices

Tele-presentation and Tele-control

Centimeter-level accuracy;

high reliability;

calibration between two different localization systems

Smart city

Smart indoor services
NLoS-based localization;

privacy information classification and protection

Smart transportation

Submeter-level accuracy;

wide coverage;

high mobility tracking;

cooperative localization in V2X communication cases

Automatic factory CRAS

Cooperative localization among massive IoT devices;

at least submeter-level accuracy;

high reliability;

low latency

all user devices, while that for user personal devices or some kernel public devices needs to be protected.

• Smart transportation. The research on smart transportation is still ongoing, with several stan-
dards proposed, like dedicated short-range communications (DSRC) [14] and vehicle-to-everything
(V2X) [15]. Autonomous driving [16] and vehicle-to-vehicle (V2V) communications [17] are envisioned
as two attractive developing trends of smart transportation, both of which call for advanced localization
technologies. For autonomous driving, the 3D mapping for real-time scenarios is critical, which requires
accurate distance information between the vehicle and obstacles to construct the environment model.
Compared with other use cases, for smart transportation, the localization systems should be designed
not only for high accuracy, but also for wide coverage and robustness in highly mobile scenarios.

(3) Automatic factory. The development of connected robotics and autonomous systems (CRAS)
like autonomous robotics and drone-delivery systems, promotes the progress of automatic factory [3],
such as smart storage, autonomous production, and autonomous delivery. To enable effective cooperation
among various IoT devices, the accurate localization is the prerequisite. Different from other applications,
for automatic factory, cooperative localization among massive IoT devices is of critical importance, which
will require the highly-accurate, low-latency, and highly-reliable location information of the massive
devices to build the end-to-end (E2E) communication links.

Table 1 summarizes the main localization requirements of different applications for 5G/6G networks.
It is observed that achieving highly-accurate, low-latency, and highly-reliable localization will play an
important role in future wireless networks.

To achieve the above goals, the underlying technologies of 5G-and-beyond mobile communication, like
millimeter wave (mmWave), massive multiple-input multiple-output (MIMO), and ultra dense networks
(UDNs), can be utilized for improving the localization performance. The mmWave communication op-
erates at frequencies around 30 GHz and above, with signal bandwidth up to 2 GHz, which is able to
provide high temporal resolution for time-based localization [18]. Furthermore, extremely large-scale
MIMO (XL-MIMO) consisting of thousands of antenna elements can achieve angular resolution less than
1◦ for angle-based localization [19]. Besides, UDNs are expected to increase the likelihood of line-of-sight
(LoS) links, which can also be exploited for improving localization performance [18].

Furthermore, one promising trend of future wireless networks is to integrate communication, comput-
ing, control, localization, and sensing (3CLS) [3], which can maintain the key performance indicators
(KPIs) by appropriately managing the radio resources according to the real-time locations of mobile
terminals. Therefore, as a part of the 3CLS, the integrated localization and communication (ILAC) is
critical to explore the full potential of wireless networks in the following aspects.

• Radio signals can simultaneously carry data and location-related information of the transmitters,
which renders ILAC a natural choice for the most efficient utilization of radio resources and cost-effective
sharing of wireless infrastructure.

• Channel estimation for communication and location estimation for localization share similar signal
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processing procedures, which makes it possible to share certain hardware components, for cost-effective
and compact wireless devices.

• The location information of mobile terminals can be utilized for improving communication perfor-
mance, which is referred to as the location-aware communication [20–22], such as location-aided channel
estimation, beam alignment, and network optimization.

• Advanced communication technologies can be utilized for localization performance enhancement, and
a unified design on signal waveforms, coding, modulation, and radio resource allocation can be pursued.

While there are extensive studies focusing on wireless communications or localizations [23–30], to our
best knowledge, a tutorial overview on ILAC to fully utilize the network infrastructure and radio resources
for dual purposes is still missing. In [23–25], the authors provided surveys on indoor localization. Specif-
ically, Ref. [23] focused on the principles of different localization approaches and provided an overview
on various localization infrastructures. In [24], the advanced techniques, such as data fusion, cooperative
localization, and game theory, were highlighted to improve the localization performance. In [25], the
authors provided an up-to-date overview on indoor localization with emphasis on IoT scenarios. Both
Refs. [26, 27] gave overviews on the enabling technologies for network localization, tracking, and nav-
igation, where Ref. [26] mainly focused on the mathematical theories of different indoor tracking and
mapping methods. and Ref. [27] gave a comprehensive review on localization techniques in cellular net-
work, WLAN, and wireless sensor networks (WSNs). In [28, 29], the authors discussed the localization
techniques from the signal processing perspective. In [30], a survey of cellular-based localization was
given, which discussed the evolution of the conventional cellular localization methods, together with the
envision on the 5G new radio (NR) localization.

In this article, we aim to provide a tutorial overview on ILAC towards 6G. To this end, we first give
a holistic introduction on wireless localization basics, in terms of the main definitions and classifications
of localization systems, different localization approaches, fundamental performance analysis and metrics,
the major localization infrastructures, and some advanced localization related techniques. Then we focus
on the ILAC targeting for the future wireless network design. To this end, we first provide an overview
on the recent third generation partnership project (3GPP) standardization for 5G localization, and then
discuss the enabling technologies of 5G networks towards cm-level localization accuracy. After that, we
present the state-of-the-art location-aided communication techniques to expose how wireless localization
and communication inter-play with each other in different network layers, and discuss the techniques of
localization and communication co-design to fully utilize the network infrastructures and radio resources
of wireless networks. Furthermore, a discussion on ILAC for aerial-ground integrated networks will
be given, which aims to facilitate the ubiquitous wireless coverage, moving from the conventional two-
dimensional (2D) plane to the 3D space. Finally, we give an architecture of future wireless networks, and
point out some promising future research directions for ILAC.

2 Wireless localization basics

2.1 Definition and classification of wireless localization

As illustrated in Figure 1, a wireless localization system aims to estimate the location of the targeting
object based on the reference signals propagated between the reference nodes and the targeting object,
Following the standard localization literature [26], we term the targeting object as the agent node and the
reference nodes as the anchor nodes (ANs) throughout this article. Compared to a closely related termi-
nology, wireless positioning, which estimates the position of the agent node relative to the ANs, wireless
localization further locates the estimated position on a coordinate of a map based on the locations of the
ANs. Nonetheless, the terminologies positioning and localization are often used interchangeably [30].

Typically, a wireless localization system consists of two major components: a set of ANs and a location
estimation unit that can be deployed either on the agent node or a remote site. The procedures of
localization usually include two stages. In the first stage, specific reference signals are transmitted either
by the ANs or the agent node, which are measured by the receiver to obtain some location-related
information, such as received signal strength (RSS), time of arrival (TOA), time difference of arrival
(TDOA), or angle of arrival (AOA). In the second stage, such measurements are collected by the location
estimation unit to estimate the location of the agent node. Localization systems can be categorized from
various perspectives, like based on location estimation algorithms [27] or localization infrastructures [24].
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Figure 1 (Color online) A general architecture of wireless localization, with heterogeneous wireless infrastructures including

cellular networks, navigation satellites, and WLAN.
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Figure 2 (Color online) An illustration of self-localization and remote localization systems. (a) For self-localization, the location

estimation is performed by the agent node itself. (b) For remote localization, the location estimation is performed by a remote

central station.

One popular classification is to consider where the location estimation is performed [31], based on which
we have self-localization or remote localization systems.

2.1.1 Self-localization

As illustrated in Figure 2(a), for self-localization systems, a location estimation unit is deployed on the
agent node, which receives reference signals transmitted from several ANs. The agent node has the
capability to perform appropriate signal measurements, based on which its location is estimated. Self-
localization systems have several advantages. First, since almost all localization-relevant operations are
performed locally at the agent node, the localization speed is mainly dependent on the computational
capability of the agent node. Therefore, such systems are easier for performance enhancement via updat-
ing the computational or measurement units of the agent node, without having to modify the network
infrastructure. Second, self-localization systems have the inherent mechanism for user privacy protection,
since the agent node only passively receives signals transmitted from ANs, with little risk of location in-
formation leakage from the user side. Finally, for some dynamic localization scenarios like tracking and
navigation, various onboard sensors like inertial measurement units (IMUs) can be handily equipped on
the agent node to provide some motion information for improving the localization accuracy [28]. However,
self-localization systems have high hardware requirements on the agent node, such as high caching and
computational capability for signal measurement and location estimation. Therefore, such systems, like
global positioning system (GPS) or inertial navigation system (INS), can only be deployed on the devices
with powerful caching and computational components.
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2.1.2 Remote localization

For remote localization systems, as illustrated in Figure 2(b), the reference signals are transmitted from
the agent node to ANs. Upon receiving the reference signals, the ANs would send their respective
signal measurements to a remote central station, where the location estimation is performed. The main
advantage of remote localization systems over the self-localization counterparts is the less demanding on
the agent node, since almost all time-consuming and complex computing operations are performed at the
remote central station, like the cellular base stations (BSs) or the computing center. Therefore, remote
localization is especially appealing for resource-limited devices, such as IoT devices and wireless sensor
nodes. In addition, different from self-localization systems where the location information is only acquired
by the agent node, remote localization systems can preserve locations for all agent nodes in the area of
interest, which can be utilized for various purposes, like location-aware communication [20]. However,
since all location information of agent nodes is stored in a remote server, the information privacy and
security is a critical issue for remote localization.

2.2 Basic localization techniques

In general, localization techniques can be classified into two main categories: direct localization and
two-step localization. For direct localization [32–34], the received signals are directly used to estimate
the location of the agent node, whereas for two-step localization, the location-related information, such
as RSS, TOA, TDOA, and AOA, is firstly extracted from the received signals, and then used for target
localization. Note that in principle, direct localization can achieve better performance than two-step
localization. However, by considering the complexity and implementation constraints, two-step localiza-
tion approaches are usually used in practical systems. Typically, the two-step localization approaches can
be further classified into geometric-based, scene analysis (also known as fingerprinting), and proximity
approaches [23, 35], as discussed in details in the following.

Consider a basic wireless localization system consisting of N ANs and one agent node. The locations
of the ANs are known, denoted by pn, n = 1, . . . , N , while that of the agent node needs to be estimated,
denoted by w. Regardless of self- or remote localization, a two-step localization approach can be inter-
preted as a parameter estimation problem. For the first step for signal measurement, the location-related
information is obtained from the received signals, which are in general affected by multi-path effects and
NLoS propagation. The general measurement model can be expressed as

rn = h(pn,w) + en, n = 1, 2, . . . , N, (1)

where rn denotes the generic signal measurement associated with the nth AN, h(·) is a nonlinear function
which contains all necessary information to compute the location of the agent node, and en represents
the measurement error. Note that for geometric-based methods, the exact expressions of h (·) can be
established (as given in Subsection 2.2.1) based on algebraic relationships between ANs and the agent
node. However, for fingerprinting-based methods, the pre-built fingerprints are usually treated as h (·).
For the second step for location estimation, the main task is to solve the systems of nonlinear equations
in (1) to estimate w based on the obtained signal measurements {rn}Nn=1. Such nonlinear equations are
difficult to solve directly and deserve detailed discussion. In this subsection, we mainly focus on the
principles and characteristics of different measurement models, while a comprehensive analysis about the
location estimators to solve those nonlinear equations is deferred to Subsection 2.3.

2.2.1 Geometric-based localization

As illustrated in Figure 3, geometric-based localization technologies exploit the geometric properties of
triangles to locate the agent node. Typically, geometric-based methods have two variations: trilatera-
tion and triangulation. Trilateration uses the distance-related signal measurements, like RSSs [36–38],
TOAs [39–44] or TDOAs [45–47] of the received signals to locate the agent node. On the other hand,
triangulation usually measures the AOAs of the received signals, and locates the agent node at the in-
tersection of angle direction lines [48, 49], where the AOAs can be measured with the aid of directional
antennas or antenna arrays.

RSS. RSS-based localization uses the average signal power attenuation between the ANs and the agent
node to estimate their distances, based on which a geometric model is formulated to estimate the location
of the agent node [36–38]. For example, as illustrated in Figure 3(a), the location of an agent node can
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Figure 3 (Color online) Geometric-based localization in 2D space with perfect signal measurements, where pn ∈ R
2×1, n = 1, 2, 3,

denote the ANs, w ∈ R
2×1 is the agent node to be located. (a) RSS- or TOA-based localization, where dn, n = 1, 2, 3 denote

the actual distances between the agent node to the three ANs. (b) TDOA-based localization, where dn,1, n = 2, 3, represent the

relative distance between a pair of ANs to the agent node. The two pairs of red and black lines correspond to the hyperbola curves.

(c) AOA-based localization, where θi, i = 1, 2 are the angles between the ANs and the agent node.

be ideally determined in 2D space with three ANs. In general, the average received power Pr,n in dB
associated with the nth AN can be modelled as [50]

Pr,n = P0 − 10αn log10 dn + eRSS,n, n = 1, 2, . . . , N, (2)

where P0 is the reference received power at a reference distance of 1 meter (m), dn = ‖pn −w‖ is the
actual distance between the nth AN and the agent node, αn denotes the path loss exponent, and eRSS,n

represents the RSS measurement error. Assuming that P0 and αn, n = 1, 2, . . . , N are known, the distance
between the agent node and each of the ANs can be estimated. The generic model in (1) for RSS-based
localization can be written as

rRSS,n = hRSS(pn,w) + eRSS,n, n = 1, 2, . . . , N, (3)

where rRSS,n = Pr,n−P0, and hRSS(pn,w) = −10αn log10 (‖pn −w‖). The remaining task is to estimate

w based on the obtained {rRSS,n}Nn=1 in (3), which is discussed in Subsection 2.3.
The main advantage of RSS-based localization lies in that it does not require the time synchronization

among different nodes, and RSS measurements are readily available for almost all practical wireless sys-
tems. In addition, different from TOA, TDOA, or AOA-based localization, RSS measurements do not
rely on line-of-sight (LoS) signal propagation. However, the main drawback of RSS-based approaches is
the poor localization accuracy, especially in clutter environments, since the signal attenuation in these en-
vironments is only weakly correlated with distance, leading to poor accuracy for distance estimation [36].
Besides, an accurate signal propagation model is necessary for the reliable RSS-based distance estimation,
which is challenging due to the unpredictable variations of the channel behavior. Therefore, in practice,
RSS-based localization is mostly adopted for applications with coarse localization accuracy requirements.

TOA. As illustrated in Figure 3(a), TOA-based approaches first estimate the distances between the
agent node and each of the ANs by using the signal propagation delay or time of flight (TOF), denoted
by τf, and then build the trilateration model to locate the agent node [39–44]. Typically, depending on
how τf is defined, TOA-based methods can be further divided into one-way TOA (OW-TOA) [42] and
two-way TOA (TW-TOA) [43].

For OW-TOA localization, node A (either the AN or the agent node) transmits to node B a packet
that contains a timestamp τs recording the time when the packet was sent, and node B then measures
the TOA of the received signal, denoted by τr. If the time clock between the ANs and the agent node is
perfectly synchronized, it is clear that τf can be determined by node B as τf = τr − τs, and the distance
between nodes A and B can be calculated as d = τf · c, where c is the speed of light. However, OW-TOA
methods have two main drawbacks. First, a small time synchronization error between the agent node and
ANs may significantly degrade the distance estimation. Second, the transmitted signal must be labeled
with a timestamp to allow the receiving node to calculate τf, which increases the complexity of the signal
structures and may cause additional estimation error.

On the other hand, for TW-TOA localization, node A transmits a packet to node B, which responds
by sending an acknowledgement packet to node A after a response delay τd. Provided that τd is known,
node A can calculate its distance to node B based on the signal round-trip time of flight (RTOF), i.e.,
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τRT = 2τf + τd. TW-TOA addresses the first drawback of OW-TOA by avoiding the requirement of time
synchronization between the two nodes. However, in practice, it is still difficult for the measurement node,
i.e., node A, to know the exact response delay τd. Although τd could be ignored if it is relatively small
compared with τf in long-range signal propagation, it critically affects the performance for short-range
scenarios. Furthermore, while TW-TOA method eliminates clock synchronization error between the two
nodes, relative clock drift could compromise the distance estimation accuracy. In addition, timestamp is
still needed for TW-TOA to compute the RTOF of the transmitted signal.

Mathematically, a general TOA-based measurement model is formulated as [39, 41]

c · τf,n = dn + eTOA,n, n = 1, 2, . . . , N, (4)

where τf,n is the measured TOF of signal propagation between the nth AN and the agent node, which
is typically affected by positive bias due to the NLoS propagation and system errors, as captured by
the additional measurement error eTOA,n. Following similar notations in (3), let rTOA,n = c · τf,n and
hTOA(pn,w) = dn = ‖pn −w‖, the generic model in (1) for TOA-based localization can be written as

rTOA,n = hTOA(pn,w) + eTOA,n, n = 1, 2, . . . , N. (5)

By solving systems of nonlinear equations in (5), the location of the agent node can be estimated.
TDOA. For each TDOA measurement, the agent node will lie on a hyperboloid with a constant

distance difference between a pair of ANs to the agent node. Specifically, the equation of the hyperboloid
is given by [23]

di,j = ‖pi −w‖ − ‖pj −w‖ , i 6= j, (6)

where di,j denotes the relative distance between the ith and jth ANs to the agent node, which can
be estimated by the TDOA measurements. For instance, in 2D localization cases, as illustrated in
Figure 3(b), the location of the agent node w could be theoretically estimated from the two intersections
of the two hyperbolas with two pairs of foci, i.e., p1 versus p2 and p1 versus p3. Assuming that a reference
signal was sent at an unknown time τ0, which is then received by the ith and jth measurement units at
time τi and τj , respectively. The TDOA between the ith and jth measurement units is [35]

τi,j = (τi − τ0)− (τj − τ0) = τi − τj . (7)

For a localization system consisting of N ANs, there are N(N − 1)/2 TDOAs from all possible pairs
of ANs, but only N − 1 of them are non-redundant. Without loss of generality, we consider the first
measurement unit as the reference and the non-redundant TDOAs are τn,1, n = 2, 3, . . . , N . In practice,
TDOA measurements suffer from positive bias errors introduced by clock synchronization error among
ANs, the multi-path effects, and so on. Therefore, similar to (4), the TDOA measurement model is

c · τn,1 = dn,1 + eTDOA,n, n = 2, 3, . . . , N, (8)

where dn,1 is the relative distance between the nth AN and the 1st AN to the agent node, which is defined
in (6), and eTDOA,n represents the measurement error. Following the definition in (3) and (5), the generic
model in (1) for TDOA-based localization can be expressed as

rTDOA,n = hTDOA(pn,w) + eTDOA,n, n = 2, 3, . . . , N, (9)

where rTDOA,n = c · τn,1 and hTDOA(pn,w) = ‖pn −w‖ − ‖p1 −w‖.
TDOA-based methods overcome the drawbacks of the TOA-based methods. First, it only requires

time synchronization among ANs, which can be achieved by using wire backbone networks [35]. Another
advantage of TDOA-based localization is that the timestamp is no longer needed, as evident from the
TDOA computation in (7). This simplifies the structure of the transmitted signals and avoids the potential
sources of error. However, all time-based positioning methods, like TOA and TDOA, rely heavily on the
LoS path to compute TOA or TDOA information, which renders them venerable to NLoS environment.

AOA. AOA-based localization uses the angles between ANs and the agent node to determine the
location of the agent node [48, 49]. As shown in Figure 3(c), for 2D localization, AOA-based methods
require only two known ANs with two measured angles to determine the location of the agent node. To
measure the AOAs, the ANs should be equipped with antenna arrays or directional antennas with spatial
resolution capabilities.
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For 2D localization, the actual AOA between the agent node w = [wx, wy]
T and the nth AN pn =

[px,n, py,n]
T
can be expressed as [35]

θn = tan−1

(

wy − py,n
wx − px,n

)

, n = 1, 2, . . . , N, (10)

where θn ∈ (−π,π) represents the azimuth angle in a 2D plane. In the presence of angle estimation
errors, the AOA measurements can be modeled as

rAOA,n = hAOA(pn,w) + eAOA,n, n = 1, 2, . . . , N, (11)

where rAOA,n is the measured AOA with the error eAOA,n, and hAOA(pn,w) = tan−1(
wy−py,n

wx−px,n
). For 3D

localization, considering the agent node at w = [wx, wy, wz ]
T
and the ANs at pn = [px,n, py,n, pz,n]

T
, n =

1, 2, . . . , N , their azimuth and elevation angles can be expressed as [49]

[

θn

φn

]

=









tan−1

(

wy − py,n
wx − px,n

)

tan−1

(

wz − pz,n
(wx − px,n) cos θn + (wy − py,n) sin θn

)









, (12)

where φn ∈ (−π/2,π/2) represents the elevation angle. Therefore, similar to (11), the AOA measurement
model in 3D space is

rAOA,n = hAOA(pn,w) + eAOA,n, n = 1, 2, . . . , N, (13)

where rAOA,n = [θ̂n, φ̂n]
T is a vector consisting of the measured azimuth θ̂n and elevation φ̂n with

measurement errors eAOA,n = [eθn , eφn
]
T
, and hAOA(pn,w) = [θn, φn]

T
is defined in (12).

The advantage of AOA-based localization lies in that it does not require time synchronization between
the measuring units, and 2D localization only requires two ANs. However, the ANs for AOA-based
localization need to equip with highly directional antennas or large antenna arrays for highly accurate
angular resolution. Besides, in the complex multi-path environment, like urban areas or indoor scenarios,
the AOA estimation is subject to significant errors due to the NLoS propagation.

2.2.2 Scene analysis/fingerprinting-based localization

Since the performance of geometric-based localization approaches degrades significantly in complex envi-
ronments, alternative approaches based on scene analysis or fingerprinting have been proposed [51–56].
Such methods first exploit the data collected by the sensors, like cameras, accelerometer, or specific WiFi
access points (APs), to extract unique geotagged signatures, i.e., fingerprints, and then pinpoint the lo-
cation of the agent node by matching the online signal measurements against the pre-recorded geotagged
fingerprints. Depending on the types of fingerprints, fingerprint-based localization can be classified into
visual-, motion-, and signal-based [54]. In this article, we mainly focus on radio frequency (RF) signal
fingerprint-based methods. In many applications, signal fingerprints usually correspond to the RSS indi-
cators (RSSIs) instead of TOA, TDOA or AOA [55]. The main reason is that the time- or angle-based
signal measurements rely heavily on LoS geometric assumption, which is hardly satisfied in complex en-
vironments. Therefore, a variety of RSSI fingerprint-based localization systems have been developed, like
RADAR system [57] that employs WiFi signals for indoor localization.

In general, fingerprinting-based localization includes offline training and online localization phases. As
illustrated in Figure 4, taking the 2D localization as an example, the area of interest is firstly divided
into L cells, where the location of the lth cell is known, denoted by zl = [zx,l, zy,l]

T
, l = 1, 2, . . . , L. For

offline training, a mobile test node travels the L cells and communicates with the N ANs to measure the
RSS fingerprints, which are denoted by sl = [sl,1, sl,2, . . . , sl,N ]

T
for measurements at zl, l = 1, 2, . . . , L.

Then, the entire radio map of the area of interest is obtained as F = [s1, s2, . . . , sL]
T, which would be

stored in a database for online localization. For online localization, a real-time RSS measurements of
the agent node at the location of w = [wx, wy ]

T
are measured as sw = [sw,1, sw,2, . . . , sw,N ]

T
, and the

location of the agent node can be estimated as ŵ = [ŵx, ŵy ]
T based on a rule g(·) that compares the

received online measurements sw against the radio map F [52, 56], i.e.,

ŵ = g (F , sw) . (14)
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Figure 4 (Color online) The procedures of fingerprint-based localization, where pn, n = 1, 2, 3 denote the ANs. (a) Offline

training phase, where sl is the RF fingerprint at the cell zl. After the test node travels the whole area of interest, the radio

map F consisting of all fingerprints in the area will be stored in a database. (b) Online localization phase, where the online RSS

measurements sw of the agent node is sent to the database. After pattern matching sw against with the radio map F , the location

of the agent node can be estimated as ŵ.

Depending on the mathematical model of RSS fingerprints, there are two main conventional localization
approaches: deterministic and probabilistic.

Deterministic. For deterministic approaches, the measured RSSs are assumed to be static. In general,
the location of the agent node is estimated to be the location of the cell, whose fingerprint is the closest
to the online RSS measurements [56], i.e.,

ŵ = arg min
l=1,...,L

d (sl, sw) , (15)

where d(·) denotes a certain distance metric. For example, applying the Euclidean distance metric in
(15), we can obtain

ŵ = arg min
l=1,...,L

‖sl − sw‖ . (16)

Solving (16) to estimate the location of the agent node is known as the nearest neighbor (NN) method.
Another well-known deterministic method is the K-nearest neighborhood (KNN) [23, 53], where the
location estimation is obtained by averaging the locations of the K cells in the radio map that have
the nearest distances. The weighted KNN (WKNN) is a variant of the KNN method [52, 56], where the
selected locations of the closest cells are combined by assigning weights to estimate the location of the
agent node, where the weights are usually proportional to the inverse of their corresponding d (sl, sw). In
general, KNN and WKNN methods can achieve better performance than NN method. However, as the
density of the radio map increases, NN method may achieve comparable performance as KNN or WKNN
methods. Technically, RF fingerprinting methods originate from machine learning classification, so other
machine learning methods such as support vector machine (SVM) and linear discriminant analysis (LDA)
can be also used for location fingerprinting [23]. Such methods can achieve better localization accuracy
compared with KNN, WKNN, or NN, but with higher computational complexity. The main advantage
of the deterministic approaches is their simplicity. However, a single static RSS fingerprint of a cell may
not be sufficient to uniquely represent the feature of the cell due to the time-varying nature of wireless
signal propagation, so probabilistic approaches are developed.

Probabilistic. Probabilistic methods use statistical inference between online signal measurement sw
and the stored radio map F to estimate the location of the agent node, where the RSS fingerprint at a cell
is treated as a random vector and the knowledge of RSS distribution in the area of interests is acquired
through offline training. The underlying principle of probabilistic localization is the maximum a poste-
riori (MAP) estimation, which estimates the location of the agent node by maximizing the conditional
probability of the location given the online RSS measurements [58], i.e.,

ŵ = arg max
zl,l=1,...,L

P (zl|sw) , (17)

where P (zl|sw) is the conditional probability of the agent node at location zl given the online RSS
measurements sw. In the absence of a priori knowledge about the location of the agent node, the
probabilities of the agent node at the each cell of the radio map are equal. Then by using the Bayes’
formula, Eq. (17) can be further transformed into

ŵ = arg max
zl,l=1,...,L

P (sw|zl) , (18)
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Figure 5 (Color online) Proximity-based localization using RSS measurements, where p1, p2 and p3 denote the ANs, w denotes

the location of the targeting agent node, and Pr,n, n = 1, 2, 3 represent the RSS measurements. The location of the agent node

would be determined by comparing the RSSs under certain proximity constraints.

which is known as maximum likelihood (ML) estimation, where P (sw|zl) is the probability of RSS distri-
bution at the given location zl. Therefore, the probabilistic localization methods rely on the estimation of
the conditional probability P (sw|zl). There are two main approaches to approximate P (sw|zl), namely,
parametric and non-parametric estimation [23, 56]. For parametric estimation methods, the known ana-
lytical distribution functions, such as Gaussian, lognormal, and kernel functions, are used to approximate
temporal RSS characteristics. However, these parametric estimation methods usually require some prob-
abilistic assumptions (like the probabilistic independence), which makes them challenging to apply in
some practical situations. For non-parametric estimation, the fingerprint distributions are proportional
to the current centralized histogram, which is known as histogram matching [56]. However, for such
methods, a large number of time samples are needed for each cell to generate a histogram.

Compared with geometric-based methods, the main advantage of fingerprinting methods is their robust-
ness to signal measurement errors introduced by multi-path effects. This is because that fingerprinting
methods transform localization problems into the problems of pattern matching by dividing the process
of localization into offline training and online matching phases. In fingerprinting methods, a location is
characterized by its detected signal patterns. Therefore, without having to know the exact locations of
ANs, fingerprinting requires neither distance nor angle measurement, rendering it especially feasible in
cluttered environments, like indoor or urban scenarios. However, such methods also have some draw-
backs. First, for offline training, it is labor intensive and time-consuming to extract the RF fingerprints
and construct the radio map. The selected RF fingerprints must uniquely correspond to a given location
and should have low variability during a certain time interval. The process of training RF fingerprints
is time-consuming since the distribution of RSS fingerprints is usually non-Gaussian, skewed, and multi-
modal. In addition, since the signal propagation environment is inherently time-varying, the radio map
needs to be updated regularly. Furthermore, for online localization, it is necessary to limit the search size
and exploit efficient pattern matching algorithms for reducing the cache consumption and computational
complexity. Therefore, compared with geometric-based localization, fingerprinting is more suitable for
small-size environments.

2.2.3 Proximity-based localization

The principle of proximity-based localization is that the location of the agent node is determined according
to proximity constraints [59–61]. The mathematical model behind such proximity methods is similar to
that of the deterministic approaches in fingerprinting-based localization. As illustrated in Figure 5, such
methods usually use RSS measurements to detect the agent node in a dense grid of ANs, and the location
of the AN which has the strongest RSS is treated as the location of the agent node. However, different
from fingerprinting methods, proximity location estimation depends on the locations of the actual ANs,
thus the localization accuracy relies on the density of ANs, which can only be improved by increasing the
number of ANs. In general, proximity method is simpler to implement than other localization techniques.
However, this method can only provide a very coarse localization service, so it is usually used in systems
with low requirements on the location accuracy. The representative application for this method include
Cell-ID (CID) [30], RFID [24], and bluetooth-based localization systems [27], which are often used in
cellular and IoT networks. Another use case of proximity-based localization is to reduce the search size
of fingerprint-based localization before fingerprints pattern matching is performed.

A summary of the aforementioned localization approaches is provided in Table 2, which compares their
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Table 2 Summary of different localization techniques

Model Location-related information Advantages Disadvantages

Geometric-based

RSS

Time synchronization is not required;

LoS path is not necessary;

available for almost all wireless systems

Low accuracy;

vulnerable to complex environments

TOA High accuracy for LoS scenarios

Time synchronization between ANs and

the agent node is necessary;

timestamp is required;

LoS path is assumed

TDOA

High accuracy for LoS scenarios;

time synchronization between ANs and

agent node is not needed;

timestamp is not needed

LoS path is assumed

AOA
Time synchronization is not required;

two ANs are sufficient for 2D localization

Directional antennas or arrays are needed;

LoS path is assumed in general

(some advanced methods can work on

NLoS condition, which will be discussed

in Subsection 3.2)

Scene analysis

(or fingerprinting)
Fingerprints

Accuracy can be very high;

robust to clutter environments;

LoS path is not required

Training phase is labour intensive and

time-consuming;

accurate mapping from locations to

fingerprints is needed;

radio map needs to be updated regularly

Proximity RSS
Simple and inexpensive;

easy to implement
Very low accuracy

differences on measurement models, advantages, and disadvantages.

2.3 Location estimators

In general, there are two categories of location estimators, namely, nonlinear and linear, to solve the
localization problems defined in (1). The nonlinear estimators directly solve the problems by minimizing a
cost function constructed from (1). Such nonlinear estimators usually result in high localization accuracy.
However, sometimes the global solution of such schemes may not be guaranteed since their cost functions
are usually multi-modal, and nonlinear estimators usually have high time complexity if grid or random
search is involved. By contrast, linear estimators which convert the nonlinear equations into a set of linear
equations can find efficient solutions quickly, with degraded localization accuracy compared to nonlinear
estimators.

2.3.1 Nonlinear estimators

Typical nonlinear estimators include nonlinear least squares (NLS), weighted NLS (WNLS) and ML
estimators [35]. Base on the generic model (1), the general cost function of the NLS estimator is defined
as [41]

VNLS (w) =

N
∑

n=1

(rn − h(pn,w))
2

= (r − h (w))T (r − h (w)) , (19)

where r = [r1, . . . , rN ]
T
and h(w) = [h(p1,w), . . . , h(pN ,w)]

T
are N dimensional vectors. The solution

of NLS estimator corresponds to the estimated location ŵ that minimizes the cost function (19), i.e.,

ŵ = argmin
w

VNLS(w). (20)

The NLS estimator does not rely on any assumption about the error statistics. However, when the
covariance of the error vector e = [e1, . . . , eN ]

T
is available, we can obtain the WNLS estimator, which

is defined as [58]

ŵ = argmin
w

VWNLS(w)
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= argmin
w

(r − h (w))T C−1(e) (r − h (w)) , (21)

where C(e) = E
[

eeT
]

denotes the covariance of e, and E [·] represents the expectation operation. Fur-
thermore, when the error probability distribution Pe(e) is known, the ML estimator can be used for
location estimation [62, 63], i.e.,

ŵ = argmin
w

VML(w)

= argmin
w

logPe(r − h(w)). (22)

Note that when the errors satisfy the zero-mean Gaussian distribution, the ML and WNLS estimators
have the same performance. In summary, the NLS estimator is simpler than WNLS or ML estimators
and can be a practical choice if the noise information is unavailable, while when the error covariance
matrix is available, WNLS can perform better than NLS, and the ML is optimal, since it can attain the
the Cramer-Rao lower bound (CRLB) [64, 65], which is discussed in Subsection 2.5.

In general, there are two ways to solve the optimization problem in (20)–(22). The first one is to
perform a global exploration by using grid or random search techniques, such as genetic algorithm [66] or
particle swarm optimization [67]. However, although such methods can achieve high localization accuracy,
they are time-consuming and the global convergence may not be always guaranteed. The other way is
the iterative search algorithm, which requires a good initialization to avoid trapping at the undesired
local minima. There are commonly three iterative search schemes, namely, Newton-Raphson [68], Gauss-
Newton [69], and steep descent methods [70].

2.3.2 Linear estimators

For geometric-based localization, since the function h(·) has an explicit expression given by the alge-
braic relationships between ANs and the agent node, as discussed in Subsection 2.2, the corresponding
localization problems may be also solved in closed-form through linear estimators. The linear estimators
mainly include the linear least squares (LLS) and weighted LLS (WLLS). The aim of linearization is to
covert the nonlinear equations in (1) into linear forms, based on which the location of the agent node can
be estimated through ordinary least squares (LS) techniques. Taking the 2D TOA-based measurement
model in (5) as an example, by taking squares on both sides of (5), we have

r2TOA,n = ‖pn −w‖2 + e2TOA,n + 2eTOA,n ‖pn −w‖ , (23)

where n = 1, 2, . . . , N . Let mTOA,n = e2TOA,n + 2eTOA,n ‖pn −w‖ be the error term, and Eq. (23) can
be further simplified into

r2TOA,n = ‖pn −w‖2 +mTOA,n

= p2x,n + p2y,n + w2
x + w2

y − 2wxpx,n − 2wypy,n +mTOA,n

= p2x,n + p2y,n + ξ − 2wxpx,n − 2wypy,n +mTOA,n, (24)

where ξ = w2
x + w2

y is a dummy variable in the third simplification step. According to [58], with the
assumption that the errors are relatively small, we can eliminate mTOA,n and linearize (24) into the
following compact form:

Aθ = b, (25)

where

A =









−2px,1 −2py,1 1
...

...
...

−2px,N −2py,N 1









, θ = [wx, wy, ξ]
T
, b =









r2TOA,1 − p2x,1 − p2y,1
...

r2TOA,N − p2x,N − p2y,N









.

Then the LS solution of (25) is found by

θ̂ =
(

ATA
)−1

ATb, (26)

where the first and second entries of θ̂ are the estimated location of the agent node. An alternative way
for LLS TOA-based localization is proposed in [71], which subtracts the first equation of (25) from the
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Table 3 Comparison of different location estimators

Measurement model Estimator Advantage Disadvantage

Geometric-based;

fingerprinting;

proximity

NLS
High accuracy;

error statistics are not required

Global optimal solution cannot be guaranteed;

high complexity

WNLS Higher accuracy than NLS

Error covariance is needed;

global optimal solution cannot be guaranteed;

high complexity

ML
Highest accuracy compared with other estimators;

can achieve the theoretical CRLB

Requires error probability distribution information;

global optimal solution cannot be guaranteed;

high complexity

Geometric-based

LLS

Closed-form solution is guaranteed;

computationally efficient;

error statistics are not required

Low accuracy especially for clutter environments

WLLS
Higher accuracy than LLS;

computationally efficient

Error statistics are needed;

may require iterative computation

remaining equations. Assuming that the noise is sufficiently small, the linearization form of (5) can be
obtained by (25) with

A =









−2(px,2 − px,1) −2(py,2 − py,1) 1
...

...
...

−2(px,N − px,1) −2(py,N − py,1) 1









,

and

b =









r2TOA,2 − r2TOA,1 + ‖p1‖2 − ‖p2‖2
...

r2TOA,N − r2TOA,1 + ‖p1‖2 − ‖pN‖2









.

Similar to TOA, the equivalent closed-form solutions for TDOA [72,73], AOA [74,75], and RSS [76] based
on localization can also be obtained. Although the LLS estimators provide a closed-form solution, the
solutions are sub-optimal in general, due to the discarding of information in the linearization process,
and it only performs well when the noise is relatively small. The WLLS estimator [77] is more generic
than LLS scheme by making the use of the mean and covariance information of the measurement errors,
which can provide higher localization accuracy.

A comparison of different location estimators, in terms of their advantages, drawbacks, and their
corresponding measurement models, is provided in Table 3.

2.4 Main sources of error and mitigation techniques

Localization performance is fundamentally limited by various estimation biases and measurement errors.
Here, we discuss three main sources of error, together with their corresponding mitigation techniques.

2.4.1 Multi-path fading

Multi-path fading commonly exists in wireless channels, which can considerably degrade the localization
performance, especially for indoor localization scenarios. In particular, for narrowband localization sys-
tems in clutter environments, the signals that arrive at the receiver via different paths are superimposed
with each other, resulting them unresolvable at the receiver. Moreover, the multi-path effect varies with
signal propagation environments, making the signal detection more difficult. To mitigate this effect,
some diversity combining techniques are proposed, and for the ultrawide bandwidth (UWB) systems, the
multi-path components are usually resolvable temporally without resorting to complex algorithms [78,79].
However, in harsh environments, a large number of multi-path components still degrade the localization
performance, especially for the geometric-based algorithms which need to distinguish the LoS path from
a large number of NLoS paths to obtain the location information of the agent node. On the other hand,
multi-path effect may also be exploited to achieve cm-level localization accuracy in indoor environment,
via the technique called time-reversal (TR) [80, 81]. TR is a transmission technique that leverages the
multi-path channel as a matched filter and focuses the energy of transmitted signals onto the intended
location. The authors proposed a TR-based fingerprinting localization method in [80], which can achieve
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10 cm localization accuracy in indoor environment, where the channel impulse responses in different
locations were stored as fingerprints, and a TR-based method was used to capture the features of the fin-
gerprints. In [81], a TR-based indoor tracking system with decimeter level accuracy was proposed, where
the TR-base method was used for distance estimation, combined with the IMUs for angle estimation.

2.4.2 NLoS propagation

The adversary impact of NLoS propagation lies in that the received NLoS signals weaken the correlation
between signal measurements and link distance, since it will introduce a positive bias to the range estimate.
In general, there are three methods to cope with the NLoS condition [35]. The first method is based on
the statistical information of the NLoS error. By assuming a scattering model of the environment, the
statistics of signal measurements can be obtained, and then the well-known techniques, like MAP or ML,
can be used to mitigate the effects of NLoS errors. However, the difficulty of such methods is to obtain
an accurate model, which may change with terrain and/or the construction/demolition of buildings. The
second method uses all NLoS and LoS measurements with appropriate weights to minimize the effects
of the NLoS contributions, where the weights are generated from the localization geometry and the ANs
layout. Although this method is effective even in the cases without LoS measurements, its solution is
unreliable because the NLoS errors are always present. The third method is to identify and discard those
NLoS measurements, and perform localization only based on the LoS measurements. In essence, the
problem of NLoS identification in this method is converted into a statistical detection problem, where the
NLoS and LoS conditions are considered as two hypotheses, and the goal of the problem is to figure out a
metric to differentiate the NLoS and LoS hypotheses. For instance, we can identify the NLoS path based
on the statistics of range measurements. Usually, the NLoS range measurements which are positively
biased with non-Gaussian distribution tend to have a larger variance compared with the LoS counterpart
with Gaussian distribution. However, in some harsh environments, almost all measurements come from
NLoS paths, so there are insufficient LoS measurements for localization. For such cases, the localization
methods using NLoS measurements and geometrical information are proposed [35]. In general, these
NLoS localization techniques can be divided into two categories. One is NLoS localization using signal
measurements combining with the priori knowledge of the environment map. The other is the localization
using the measurements from scatters [13,82], which turns the multi-path “from foe to friend”. Note that
in the latter method, the NLoS measurements are first identified, and then the geometrical relationship
among the ANs, the agent node, and the scatters is used to locate the agent node.

2.4.3 Systematic error

Systematic errors refer to those errors that originate from the localization system itself, such as the
imperfect signal measurements and radio miscalibration. For instance, in time-based localization sys-
tems, the ANs are equipped with the oscillators for time synchronization. However, the oscillators often
experience independent frequency drifts, resulting in clock drift and offset, that may degrade the local-
ization accuracy. Systematic errors often bias the location estimators, making the mean of the estimator
larger than the true value. These errors are usually constant with respect to the targeting location and
cannot be eliminated by averaging over multiple repeated measurements. Nevertheless, some techniques
can effectively mitigate these errors. For example, real-time infrastructure calibration can mitigate the
localization performance degradation, where wireless links among ANs are made periodically to calibrate
the parameters of the localization system. Alternatively, some techniques like clock offset correction and
recursive Bayesian approach have been proposed to tackle systematic errors [83, 84].

2.5 Performance metrics

The performance of localization systems can be evaluated from various aspects. In this subsection, we
outline the main performance evaluation metrics, including accuracy, precision, complexity, coverage
and scalability, while a performance comparison across several localization infrastructures is given in
Subsection 2.6.

2.5.1 Accuracy

Accuracy (or location error) is usually measured as the Euclidean distance between the estimated location
ŵ and the actual location w of the agent node, which is typically the most important performance metric
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to analyze the overall system performance. In practice, various statistics can be adopted for this evaluation
criterion, such as the mean square error (MSE) of the location estimates, which is defined as

eMSE(ŵ) = E

[

‖ŵ −w‖2
]

= tr (C (ŵ,w)) + ‖E (ŵ)−w‖2 , (27)

where tr(·) indicates the matrix trace, and C (ŵ,w) denotes the covariance matrix of ŵ and w, which is
defined as

C (ŵ,w) = E
[

(ŵ −w)(ŵ −w)T
]

. (28)

The first and second terms of (27) represent the variance and bias of the estimated location, respectively.
Note that the bias is usually a constant unknown error introduced by the signal measurement, which can
be mitigated through appropriate methods. For unbiased cases, the CRLB gives the lower bound on the
variance of ŵ [64, 65], i.e.,

C (ŵ,w) � I−1 (w) , (29)

where � denotes that the matrix C (ŵ,w) − I−1 (w) is positive semidefinite, and I(w) is the Fisher
information matrix (FIM) of w, given by [41]

I (w) = −E

[

∂2 lnP (r | w)

∂w∂wT

]

, (30)

where P (r | w) denotes the conditional probability density function (PDF) of the measurement vector r.
Taking the 2D TOA-based localization as an example, the measurement vector can be generated by (5),
which is a vector of the measured distances between the agent node and each of ANs, denoted by

r = d̂ =
[

d̂1, d̂2, . . . , d̂N

]T

. (31)

For convenience, here we consider the measurement errors eTOA,n, n = 1, . . . , N that are zero-mean

Gaussian distributed, and the conditional PDF of measured distance d̂ is
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, (32)

where dn, n = 1, . . . , N denote the actual distances between each AN and the agent node. By substituting
(32) into (30), the FIM can be calculated as [63]
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. (33)

Then substituting (33) into (29), the CRLB for the TOA-based localization method can be obtained. In
a similar manner, the FIMs for TDOA, RSS, and AOA measurements can also be obtained. The CRLB
implies that the MSE of location estimates satisfies the following bound:

eMSE(ŵ) = E

[

‖ŵ −w‖2
]

> tr (C (ŵ,w)) > tr
(

I−1 (w)
)

. (34)

Another useful evaluation criterion is the root mean square error (RMSE), which is the root of the MSE
with the following bound [28]:

eRMSE(ŵ) =

√

E

[

‖ŵ −w‖2
]

>
√

tr (Cov (ŵ)) >
√

tr (I−1 (w)). (35)
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The CRLB determines the attainable location accuracy of the unbiased system. However, many practical
estimators are biased because of signal NLoS propagation and other factors, so in practice the system
performance may not achieve the CRLB. Other bounds like the Bayesian Cramer-Rao bound [85], Weiss-
Weinstein bound [86], and extended Zik-Zakai bound [87] are tighter but require more complicated
evaluations compared with CRLB.

2.5.2 Precision

Precision reveals the variation of location estimation with respect to the localization accuracy [23]. Specif-
ically, precision measures the statistical characterization of the accuracy which varies over many local-
ization trials. In some studies, the geometrical dilution of precision (GDOP) is also used to measure the
variation of localization errors [23]. Taking the TOA-based localization as an example, the GDOP is
defined as [41]

GDOP =
eRMSE(ŵ)

eRMSE(d̂)
, (36)

where the numerator and denominator are the RMSE of the location estimate and the range estimate,
respectively. The smaller GDOP value means the better performance on localization precision. In addi-
tion, the GDOP also reveals the relation between the achievable localization accuracy and the geometry
distribution of the ANs, which can be adopted as a criterion for ANs placement and selection to minimize
the GDOP value.

Another evaluation metric is the localization error outage (LEO), which is defined as the probability
when the localization error exceeds a certain threshold eth [26], i.e.,

LEO(eth) = Pr {‖ŵ −w‖ > eth} . (37)

An equivalent expression of (37) is the cumulative distribution function (CDF) of the localization error
defined by

CDF(eth) = 1− LEO(eth), (38)

which denotes the success probability of location estimations with respect to a predefined accuracy.
In practice, the LEO or CDF reveals the probability of confidence in the location estimate. When the
accuracies of two localization algorithms are the same, the algorithm that gives lower LEO or higher CDF
values has better precision [26]. For example, a localization system with CDF(1.5) = 0.9 (a precision of
90% within 1.5 m) performs better than that with CDF(1.5) = 0.5 (a precision of 50% within 1.5 m).

2.5.3 Complexity

The complexity of a localization system depends on the hardware, process of signal measurement, and
computational complexity of the localization algorithm [23]. In general, it is difficult to analytically derive
the complex formula of different localization techniques. Therefore, the computational complexity of the
location estimators is usually treated as the complexity of the localization system. There is always a
trade-off between accuracy and complexity in the sense that more accurate localization usually requires
higher computational complexity. On the other hand, the location update rate or latency can be also used
as a criterion to evaluate the system complexity, which reflects the time delay between two consecutive
location updates for the same agent node and is very important for navigation.

2.5.4 Coverage and scalability

In general, the localization performance degrades as the distance between each AN and the agent node
increases. The coverage refers to the maximum area where the localization system can provide effective
localization services with guaranteed performance in terms of accuracy, precision, latency, and so on. In
general, the coverage can be roughly classified into global, local, and indoor coverage depending on dif-
ferent localization infrastructures. On the other hand, as the localization coverage increases, the wireless
channels may become congested and the localization system needs to perform more signal measurement
and calculation operations, so the scalability reflects the adaptive capability of the localization system
when the localization scope gets large [23].



Xiao Z Q, et al. Sci China Inf Sci March 2022 Vol. 65 131301:18

Table 4 Comparison of different localization infrastructures

Localization infrastructures Example Techniques Type Performance

GNSS GPS OW-TOA/TDOA Trilateration

10–20 m accuracy;

global coverage;

about 30 s latency

Cellular networks

2G

CID + TA Proximity

About 550 m accuracy;

local area coverage;

low latency

E-OTD Trilateration

50–300 m accuracy;

local area coverage;

medium latency

3G

OTDOA/UTDOA Trilateration

50–200 m accuracy;

local area coverage;

medium latency

RFPM Scene analysis
Over 50 m accuracy;

local area coverage

A-GPS Trilateration

10–50 m accuracy;

global coverage;

high latency

4G

E-CID Angulation + Proximity

About 150 m accuracy;

local area coverage;

low latency

OTDOA/UTDOA Trilateration

25–200 m accuracy;

local area coverage;

medium latency

A-GNSS Trilateration

Less than 10 m accuracy;

global coverage;

high latency

WiFi IEEE 802.11 RFPM Scene analysis

1–5 m accuracy;

50–100 m coverage in general;

medium latency

UWB IEEE 802.15.4a TOA/TDOA Trilateration

0.1–1 m accuracy;

indoor area coverage;

medium latency

VLP IEEE 802.15.7 RSS/TOA/TDOA/AOA
Trilateration/triangulation/

fingerprinting/promixty

cm-level accuracy;

medium latency;

indoor area coverage

2.6 Localization infrastructures

There are two basic approaches to deploy the localization systems. The first one is to build a dedicated
localization infrastructure, like the GNSS. The second approach is to reuse the existing wireless network
infrastructures with the signals of opportunity (SoOP), like cellular networks, WLAN, to provide wireless
localization services, in addition to communication services. For the first approach, the main advantage
is that it can achieve high localization performance by using specific reference signal and professional
hardware, while the drawback is the cost of the hardware and the limitation on the system scalability.
For the second approach, it avoids the expensive and time-consuming deployment of infrastructure, but
such systems usually rely on sophisticated algorithms to improve the performance. In this subsection, we
mainly discuss the most popular localization infrastructures, including GNSS, cellular networks, WiFi,
and UWB based on localization systems, and a detailed comparison on their performance is given in
Table 4.

2.6.1 GNSS

Several countries in the world have already developed and launched various GNNSs, including the GPS by
the U.S.A, the Galileo by Europe, the Beidou by China, the GLONASS by Russia, as well as other regional
systems like the Japanese Quasi-Zenith satellite system (QZSS) and the Indian regional navigational
satellite system (IRNNS). Although all of these GNNSs introduce different innovations at the system and
signal levels, they share common theoretical and functional principles. Taking the most popular GPS
as an example, it is a self-localization system based on a man-made constellation of 27 earth-orbiting
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satellites. The localization techniques behind GPS are the OW-TOA or TDOA methods, where at least
four clearly visible satellites are required for the agent node to localize itself in terms of latitude, longitude,
and altitude. In general, the localization accuracy of GPS ranges from 10 to 20 m [88], and the precision
performance is highly dependent on the geometric distribution and selection of satellites, which can be
measured by the GDOP value. The stand-alone GPS suffers from the problem of time to first fix (TTFF)
or cold start; that is, when a GPS receiver is first turned on, it needs a long time (about 30 s or even a
few minutes) to acquire the satellite signals. To this end, an assisted-GPS (A-GPS) technique has been
developed [88, 89], which uses a location server equipped with the GPS receiver that can simultaneously
detect the satellites to help the user equipment (UE) to acquire GPS signals more quickly. Although GPS
can provide localization services globally, its performance is degraded in severe scattering environments,
like indoor or urban areas.

2.6.2 Cellular networks

Initially, cellular networks were designed for communications, and all UEs in the networks that need
location services resorted to the GNSS. However, due to the poor performance of the GNSS in urban and
indoor environments, the cellular-based localization was proposed as a good complementary of GNSS to
enhance its performance and robustness. The first cellular-based localization system is the E-911 [90]
introduced by the Federal Communication Commission (FCC) of the U.S.A to provide emergency services.
Moreover, since the location information within the cellular networks can be exploited for commercial
services and network optimization, in the subsequent cellular networks standards from 2G to 4G, more
advanced cellular-based localization techniques were proposed. For cellular networks, both the uplink
and downlink between the BSs and UEs can be exploited for localization. In 2G cellular standard,
the localization schemes in global system for mobile communications (GSM) and code-division multiple
access (CDMA) network include CID, timing advance (TA), and enhanced observed time difference (E-
OTD) [31,91–93], which are mainly based on the uplink time-based measurements that required strict time
synchronization, leading to coarse localization accuracy, ranging from 50 to 550 m. In 3G networks, the
specific location measurement units (LMUs) were introduced in wideband CDMA (WCDMA) systems,
which can be integrated with the BSs to improve the signal measurement performance. The uplink
localization methods in 3G networks are similar to those in 2G networks, where the enhanced CID (E-
CID) and uplink TDOA (UTDOA) are the improved versions of CID and E-OTD, respectively [30].
Different from 2G localization, the localization method based on the downlink signals was specified in 3G
networks, i.e., observed TDOA (OTDOA). The OTDOA information is measured as the reference signal
time difference (RSTD) by the UE, which then reports the RSTD to cellular networks to calculate its
location. Moreover, an RF pattern matching (RFPM) method was proposed in the 3GPP Release 10 [94].
In addition, the A-GPS method is adopted by 3G networks, which can provide location services in GPS-
denied areas. In general, the localization accuracy of 3G networks ranges from 50 to 200 m [95–97]. The
location services in 4G long term evolution (LTE) were firstly defined in Release 9 [98]. Different from 2G
or 3G networks, the 4G networks specify the LTE positioning protocol (LPP) [99] to exchange information
between UE and the remote location server. Furthermore, a dedicated positioning reference signal (PRS)
was introduced in LTE standards, which has high configurability in terms of power, time, and frequency
allocation, and can improve localization performance [100]. In the forthcoming 5G networks, the location
information is becoming more critical for various applications [18], including content prefetching, radio
environment mapping, proactive radio resource management (RRM). All of the prospective applications
require the localization services with higher accuracy. Moreover, the availability, scalability, security, as
well as privacy are also new challenges for localization systems [24]. Fortunately, the 5G communication
systems enabled by higher carrier frequencies, wider signal bandwidths, denser networks, and massive
MIMO technologies can bring new opportunities for localization, which will be discussed in Section 3.

2.6.3 WiFi

WiFi technology can be used as a promising indoor localization scheme, thanks to its ubiquitous avail-
ability and handy for short-range RSS measurements. It usually operates in two unlicensed bands, i.e.,
2.4 GHz (IEEE 802.11b/g) and 5 GHz (IEEE 802.11a), with a range of 50–100 m in general [55], and has
now increased to about 1 km in IEEE 802.11ah [101]. The main advantage of WiFi-based localization
is its almost ubiquitous availability since most smart devices today are WiFi enabled. However, WiFi
signals transmit on the unlicensed industrial, scientific and medical (ISM) band which are vulnerable
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to interference [55]. The most commonly known WiFi-based localization approach is the RSS-based
fingerprinting, while TOA-, TDOA- and AOA-based methods are relatively less used since angular and
time delay measurements are complex. In general, the accuracy of typical WiFi localization systems is
approximately 1–5 m with a few seconds update rate [102–104]. Recently, the accuracy of WiFi-based
localization systems has achieved decimeter-level in certain scenarios [105, 106]. There are many survey
papers providing reviews about WiFi-based localization [54,55,104]. In [55], the authors provided a com-
prehensive overview about WiFi-based indoor localization techniques, while in [54] the authors focused
on the outdoor fingerprinting-based localization with WiFi signals. In [104], the localization methods
with the use of available measurements performed on smartphone are reviewed.

2.6.4 UWB

The UWB signal refers to the signal whose spectrum is larger than 500 MHz in the frequency range from
3.1 to 10.6 GHz [107, 108]. In general, the UWB spectrum can be acquired either by generating a series
of extremely short duration pulses less than 1 ns or by aggregating a number of narrowband subcarriers.
The first UWB standard is IEEE 802.15.4a, which was designed for low-rate wireless personal area
networks (WPAN) in short range [109]. Different from conventional narrowband signals, UWB signals
have higher temporal resolutions, lower transmission power consumption, and the ability to resolve multi-
path and penetrate obstacles, which makes it quite promising to provide centimeter-level localization
services [110, 111]. In general, the localization accuracy of UWB-based systems ranges from 0.1 to 1 m,
but the main drawback is its short coverage, which renders it most suitable for indoor environments [110,
111]. The UWB technology can be implemented on self- or remote localization systems, and it can
be incorporated with different localization techniques to improve the performance. For fingerprinting
localization, UWB fingerprinting enables the small ambiguity region even with a single AN, so that high
localization accuracy can be achieved for both LoS and NLoS scenarios. For geometric-based localization,
due to the high temporal resolution of UWB signals, the time-based localization methods can achieve very
high accuracy [109, 110]. However, UWB is not suitable for RSS- or AOA-based localization methods,
since the RSS and AOA measurements cannot benefit from the huge bandwidth of UWB.

2.6.5 Visible light positioning (VLP)

Visible light communication (VLC) is an emerging technology for high speed transmission, which uses
light devices and optical sensors to transmit data. The first well-known standard of VLC is IEEE
802.15.7, which defines the physical layer protocols for optical signal transmission [112]. On the other
hand, visible light can also be used for localization, which is referred to as VLP [113]. Different from
RF-based wireless localization, VLP can easily achieve centimeter-level localization accuracy. However,
the main drawback of VLP systems is their limited coverage, which makes them mostly suitable for indoor
scenarios. In [46], the authors proposed a TDOA-based localization method by using visible LEDs light,
which can achieve localization accuracy of less than 1 cm in an indoor space. In [114], an LED-based
fingerprinting localization method was proposed, which can achieve 0.81 m accuracy in a 30 m × 30 m
2D indoor space. In [115], the authors proposed an angle-based localization method, which measures the
angle difference of the arrival optical signal transmitted to a receiver for localization, and it can achieve
3.2 cm accuracy with time cost of 0.36 s.

2.7 Advanced localization techniques

In the above subsections, we mainly focus on the static localization problems for one agent node. In
this subsection, we discuss some advanced techniques for localization, including tracking, simultaneous
localization and mapping (SLAM), cooperative localization, and data fusion.

2.7.1 Tracking

The problems of tracking can be viewed as a sequence of independent localization problems, but in a
more general sense, besides location estimation, it further involves the estimation of velocity, acceleration,
and all past states of the mobile agent node. Compared with static localization, tracking entails mobility
modeling to describe the agent node’s movement. Mathematically, the problems of tracking can be
formulated as

xt = ζ(xt−1) + zt, (39a)
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yt = h(xt) + vt, (39b)

where xt denotes the global state of the agent node at time step t, including its location, velocity,
acceleration, while yt is the measurement at step t; the function ζ(·) models dynamics of the agent node,
and the function h(·) is the measurement model; zt and vt represent the additive random noise of the
state dynamics and measurement, respectively. The goal of tracking is to obtain a time succession of
the agent node’s states x = {x1, . . . ,xT } from a set of measurements y = {y1, . . . ,yT }. Therefore, the
tracking problem can be viewed as an estimation problem. To operate in real-time, various filtering-based
techniques have been proposed, such as the Bayesian filtering methodology, like Kalman filer (KF) [83],
extended KF (EKF), and particle filter (PF) [84]. For a more comprehensive review on tracking, readers
may refer to [26, 27].

2.7.2 SLAM

Different from the localization problems, for SLAM, the locations of the ANs may not always be prior
known, and the goal is to locate a set of fixed ANs and construct a map of the surrounding environment
when a mobile node navigates through a predetermined path. Typically, for the simplest SLAM problem,
only one mobile node performs the environment surveying and locates the ANs, while for more sophisti-
cated cases cooperative SLAM is involved. Different from tracking, for SLAM, the navigation scheme of
the mobile node may also affect its state, thus the dynamics equation in (39a) can be revised as [26]

xt = ζ(xt−1) + ut + zt, (40)

where ut is a control parameter used to guide the mobile node following the predetermined path. Note
that since the location of ANs is unknown, the state xt should contain the mobile’s state for the classical
tracking as well as the ANs’ locations. In practice, the mathematical tools to solve the tracking problems
are also suitable for the SLAM problem, especially the EKF which is widely used for SLAM. More
comprehensive overviews on this topic are given in [116–118].

2.7.3 Cooperative localization

In many application scenarios, due to the presence of NLoS propagation, some agent nodes are difficult to
directly communicate with a sufficient number of ANs for localization, which may degrade the localization
accuracy. To this end, the cooperative localization techniques have been proposed [119–121], which
can improve the localization performance, particularly in complex environments. For noncooperative
localization, all agent nodes need to communicate with ANs, thus a high density of ANs or long-range ANs
transmission coverage is required. Compared with noncooperative localization, cooperative localization
allows the inter-communication among agent nodes, and the agent node can obtain information from both
ANs and other agent nodes, so cooperative localization can not only improve accuracy but also extend the
localization coverage. The cooperative localization is also a parameters estimation problem, which can be
solved through two kinds of methods. One is the deterministic method, which includes the classical LS,
multidimensional scaling, multilateration [122–124]. However, such methods rely on the assumption of a
Gaussian model for all measurement uncertainties, which may not be effective in some practical scenarios.
The other category is the probabilistic method, which is known as belief propagation (BP) [121, 125].
Such methods can not only obtain the location estimations but also measure the uncertainty of these
estimates. A detailed fundamental analysis about cooperative localization can be found in [64], where the
equivalent Fisher information (EFI) for cooperative networks was derived. In [121], the authors discussed
the main cooperative localization approaches from the perspective of estimation theory and factor graphs.

2.7.4 Data fusion

Due to the multi-path effects, the performance of localization systems that only use a single type of
measurement is severely limited in complex environments. To this end, the study on fusing different types
of information to improve the localization performance has gained momentum [83,84,126,127]. So far, the
wireless network has become heterogeneous with various wireless technologies, such as cellular networks,
WLAN, RFID, and Bluetooth. Therefore, hybrid data fusion (HDF) has attracted research interest for
unlocking the full potential of localization systems [27]. An example of data fusion localization is the
SiRstarV [27], which combines real-time data from GNSS satellites, WLAN, cellular, as well as multiple
IMU sensors to improve the localization performance. Numerical results show that its positioning error is
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within 9 m for 68% cases and 13.1 m for 95% cases over several tests [128]. A generic framework of fusion
technologies used for tracking is provided in [126], where fusion exists across all stages of localization
systems. In the signal measurement stage, different signal measurements like TOA, TDOA, AOA, and
RSS are combined. In the position estimation stage, different localization techniques such as trilateration,
triangulation, and fingerprinting are performed. Finally, a temporal filter like EKF is applied to smooth
the estimated user trajectory with the help of information gathered from IMU sensors.

3 Integrated localization and communication for 5G and beyond

The future mobile communication networks are expected to realize the vision of Internet of Everything
(IoE) with versatile networks not only for ubiquitous communications, but also for seamless localization
and intelligent automatic control with high accuracy [3,129]. To fulfill this magnificent goal, it is necessary
to develop high performance localization techniques, so as to not only meet the requirements of various
emerging commercial and industrial location-based services, but also to improve the communication
performance in various aspects at different network layers. In this section, we first overview the recent
3GPP standardizations on localization technologies in 5G NR from Release 15 to Release 17, and discuss
the developing trends of the localization systems. Then we discuss the enabling technologies of 5G
networks towards centimeter-level localization. Since the accurate location information is beneficial for
communications, we overview the location-aware communication techniques in different network layers.
After that, due to the correlation between communication and localization, we discuss the co-design of
localization and communication systems and attempt to give some insights for future network design.
Finally, as a promising vision of 6G, we discuss the development trends of localization and communication
techniques in future aerial-and-ground integrated networks.

3.1 3GPP standardizations for 5G localization

Compared with 4G-LTE, 5G networks enabled by higher carrier frequencies, wider bandwidth, and mas-
sive antenna arrays are expected to achieve enhanced localization performance in terms of accuracy,
reliability, coverage and latency [130]. In general, the localization accuracy of LTE is between 25 and
200 m, while that of 5G networks is expected to be on the order of submeter-level or even cm-level, as re-
ported by 3GPP [1]. In Release 15, a general description of location services (LCS) and the corresponding
requirements are given in TS 22.071 [1]. Release 15 specifies the CID and radio access technology (RAT)—
independent positioning methods by reusing LPP [99], but the RAT-dependent positioning methods are
excluded. In Release 16, the recent new use cases of localization are identified in TR 22.872 [131], which
mainly includes wearables, advertisement push, flow monitoring and control, as well as an emergency
call. The accuracy requirements for such applications range from 1 to 3 m in indoor scenarios, and below
50 m horizontal and 3 m vertical in outdoor scenarios, with less than 10 s TTFF and 1 s latency. Such
requirements cannot be satisfied with the current cellular networks, e.g., LTE, so a study item was con-
cluded in March 2019 to investigate the NR positioning support, and the technical report is summarized
in TR 38.855 of Release 16 [132]. In Release 16, the regulatory requirements on positioning are listed as
follows.

• Horizontal positioning error is less than 50 m for 80% of UEs.
• Vertical positioning error is less than 5 m for 80% of UEs.
• E2E latency and TTFF are less than 30 s.

These are regraded as the minimum performance targets for NR positioning studies. Furthermore, for
commercial use cases in indoor and outdoor scenarios, the localization technologies should meet the
following requirements.

• For indoor scenarios, the horizontal and vertical positioning error are less than 3 m for 80% of UEs.
• For outdoor scenarios, the horizontal positioning error is less than 10 m, and vertical positioning

error is less than 3 m for 80% of UEs.
• E2E latency is less than 1 s for both indoor and outdoor scenarios.

In order to fulfill the above requirements, Release 16 recommends the following RAT-dependent local-
ization methods, including downlink TDOA (DL-TDOA), downlink AOD (DL-AOD), uplink TDOA
(UL-TDOA), uplink AOA (UL-AOA), multi-cell RTT (Multi-RTT), and E-CID. In addition, the combi-
nation of RAT-dependent and RAT-independent techniques like GNSS, Bluetooth, WLAN, and sensors
is also considered for NR positioning. The simulation results of these proposed NR positioning methods
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are presented in [132], which considers three different scenarios, i.e., urban macro (UMa), urban micro
(UMi), and indoor office (InH). The simulation results show that DL-TDOA can meet the regulatory
requirements in all scenarios, while under some specific evaluation assumptions, some other techniques
can meet the requirements of commercial performance [130]. To satisfy the increasing requirements on
localization accuracy resulting from new applications and industrial IoT (IIoT) use cases, the studies
on NR positioning enhancements are ongoing in Release 17 (TS 38.857). As the recommendation of TS
38.857, the NR positioning in Release 17 should meet the following exemplary performance targets.

• For general commercial use cases (e.g., TS 22.261 [133]), the submeter-level positioning accuracy
should be guaranteed.

• For IIoT use cases (e.g., TR 22.804 [134]), positioning error should be less than 0.2 m.
• The latency requirement is less than 100 ms generally, while for some IIoT use cases, the 10 ms

latency is desired.
Two main goals of TS 38.857 are: (i) study enhancements to support high accuracy, low latency, network
efficiency (or scalability), and device efficiency; (ii) study solutions to support integrity and reliability
of assistance data and position information. Furthermore, the enhancements on the combination of
diverse positioning techniques and the flexibility of the networks are further emphasized. To meet the
requirements of the emerging autonomous applications, the future localization technology should not only
guarantee the high accuracy, but also be able to determine the reliability and uncertainty or confidence
level of the location-related data.

3.2 Towards centimeter localization for 5G and beyond

Massive MIMO, mmWave, UDNs and device-to-device (D2D) communication are four underlying tech-
nologies of 5G networks, which can not only improve the communication performance, but also poten-
tially benefit localization [18]. For massive MIMO, the BS equipped with a large antenna array can
steer highly directional beams and provide high angular resolution, which can be utilized for angle-based
localization [135]. The mmWave technology can provide large bandwidth on the order of GHz, which of-
fers high temporal resolution, thereby ensuring more accurate time-based localization [136]. In addition,
since mmWave signals suffer from high path loss than the sub-6 GHz counterparts, the cell size in 5G
networks will shrink, which renders UDN a promising technology for 5G networks. The high density of
BSs in UDN will increase the LoS probability, which may also improve the localization performance. On
the other hand, the promising D2D communication, where two neighboring devices directly communicate
with each other while bypassing the BS, may flourish the device-centric cooperative localization.

3.2.1 mmWave massive MIMO localization

The main advantage of massive MIMO is its unprecedented potential of high spectral efficiency [137–139].
In massive MIMO systems, the BS equipped with a large number of antennas can serve a large number
of UEs simultaneously with high data rates in the same frequency through dense spatial multiplexing.
This is achieved via beamforming/precoding by large antenna arrays with high angular resolution, where
the channels among different UEs are asymptotically orthogonal [137,140]. In general, the large antenna
array can be deployed as a one-dimensional linear array or two-dimensional planar array, e.g., uniform
linear arrays (ULAs) [141] versus uniform rectangular arrays (URAs) [142]. For ULA with N antenna
elements, the beam can steer in 1D angles θ, and the unit-norm array response vector is [141]

a(θ) =
1√
N

[

1, e−j 2π
λ

d sin(θ), . . . , e−j(N−1) 2π

λ
d sin(θ)

]T

, (41)

where λ is the signal wavelength and d is the distance between the adjacent antenna elements. For URA
with N = Nx×Ny antenna elements, the operation of beamforming lies in 2D angles referred to azimuth
and elevation angles (θ, φ), and the unit-norm array response vector is [142]

[a(θ, φ)]nx,ny
= 1√

N
e−j 2π

λ
d sin(φ)[(nx−1) cos(θ)+(ny−1) sin(θ)],

nx ∈ {1, . . . , Nx} , ny ∈ {1, . . . , Ny} .
(42)

Another promising technology of 5G networks is mmWave communication, which can achieve high
data rate with low latency, due to its availability of the large bandwidth on the order of GHz [143]. In
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Figure 6 (Color online) Signal propagation in sub-6 GHz and mmWave systems. (a) For sub-6 GHz system with omnidirectional

antennas, signals suffer from rich scattering and poor multi-path separation capability. (b) For mmWave system with directional

antennas, signals will arrive at the receiver with very few paths due to the high carrier frequency and accurate antenna direction.

particular, mmWave communication operates at a carrier frequency range from around 30 to 300 GHz.
The mmWave communication at 60 GHz with bandwidth up to 7 GHz has been standardized for WPANs,
e.g., IEEE 802.11ad [144] and IEEE 802.15.3c [145]. In [136], the authors compared the raw resolution of
time-based localization across different frequency bands, where the raw resolution is defined as the ratio
of the speed of light and the available bandwidth. They revealed that mmWave signal specified in IEEE
802.11ad with bandwidth over 2 GHz can achieve raw resolution of roughly 15 cm, while that of the UWB
signal with bandwidth over 500 MHz is only about 60 cm. Compared with conventional location reference
signals, which are usually transmitted on the ISM frequency bands, and suffer from severe interference and
multi-path effects, mmWave signals can reduce the probability of interference and have the capability to
resolve the multi-path components thanks to the very large bandwidth [146]. Another important feature
of mmWave transmission is the channel sparsity; that is, only a limited number of propagation paths
can reach the receiver due to the short signal wavelength, which can be also exploited to enhance the
localization performance [147, 148]. However, to overcome the high path loss associated with mmWave
signals due to the short wavelength [149], mmWave transmission is usually combined with massive MIMO
for directional beamforming, for which the accurate angular information can be extracted and utilized
for localization. Therefore, mmWave massive MIMO-based localization may significantly outperform
the conventional angle-based localization at lower frequencies, which suffer from rich scattering and
poor multi-path separability [141]. As illustrated in Figure 6, compared with traditional sub-6 GHz
system, the limited scattering and high directivity are unique characteristics of mmWave massive MIMO
communications, which bring new opportunities for localization. In the following contents, we discuss the
mmWave massive MIMO localization in terms of channel model, parameter estimation, and localization
approaches.

Channel model. For convenience, we consider a MIMO system equipped with ULAs withNt antennas
at the BS and Nr antennas at the UE. The corresponding MIMO channel can be modeled as [150]

H(t) =

L
∑

l=1

αla(θr, l)a(θt, l)
Hδ(t− τl), (43)

where L denotes the total number of multi-paths, which is usually small due to the multi-path sparsity
in mmWave regime [150]; αl and τl represent the complex path gain and the delay of the lth path,
respectively; a(θr,l) and a(θt,l) are the antenna array response vectors for angles θr,l and θt,l seen by the
UE and BS, respectively. The sparsity of mmWave channel can be exploited to simplify the estimation
of channel parameters [147]. This method uses a virtual representation for (43) by sampling in time,
frequency, and/or space with the aid of the discrete Fourier transform (DFT). For instance, the beamspace
MIMO channel can be represented as

Hb(t) = UH
r H(t)Ut, (44)

where Hb(t) is the beamspace channel matrix, which is a linear equivalent representation of the antenna
domain channel matrix H(t), Ur and Ut are the DFT matrices whose columns are response and steering
vectors, respectively, which are orthogonal. Estimating parameters from Hb(t) is much easier than the
parameter estimation based on H(t), since the latter determines the parameters in a nonlinear manner.

Parameter estimation. For MIMO systems, the source localization involves the AOAs and AODs
estimation, which can be classified into localization for point sources and distributed sources [151, 152].
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For point source localization, the signal of each source emitted from a single AOA or the AOAs of different
sources is distinguishable. On the other hand, for the distributed source localization, the signal of each
source is emitted from an angular region. In general, point sources usually correspond to the LoS prop-
agation scenarios [151], while distributed sources are commonly used for the multi-path scenarios [152].
For distributed sources, they can be further classified into coherently distributed (CD) sources [153] and
incoherently distributed (ID) sources [154], depending on whether they are slowly time-varying channels
or rapidly time-varying channels.

In general, the parameters for estimation include the azimuth and elevation angles of signal departure
and arrival, signal propagation delay, Doppler shift, and the corresponding uncertainty of these param-
eters. The channel parameter estimation approaches can be categorized based on the source type. For
point sources, the authors in [155] categorized the channel parameter estimation methods into subspace-
based and compressive sensing methods. The subspace-based methods treat the parameters into tensors,
and use the tensor decomposition method to reduce the dimensionality. Such methods can achieve a
good balance between estimation accuracy and computational complexity [156]. Compressive sensing is a
promising method to recover the sparse signals, which is particularly suitable for mmWave massive MIMO
system due to its sparsity in angular and delay domain [157]. For distributed sources, the parameter esti-
mation can be classified into CD sources and ID sources estimation. The classical estimation approaches
for point sources have been successfully applied into CD sources estimation [158–160], and the multi-
ple signal classification (MUSIC) algorithms were employed to estimate the AOA of CD sources [153].
However, the parameter estimation for ID sources is more complicated. These methods can be gener-
ally divided into parametric methods and non-parametric methods. The parametric approaches include
ML [161], covariance matching [162] and pseudo-subspace [163]. The ML estimation is optimal [161], but
it suffers from high complexity. The LS estimator is proposed by using the covariance matrix matching
techniques to reduce the computational complexity [162]. The non-parametric approaches like beamform-
ing approaches [164] have lower computational complexity but with compromised performance compared
with parametric approaches.

Localization approaches. The conventional localization approaches can be also used in mmWave
MIMO systems for improving localization performance. In [165, 166], a 3D localization method was
proposed by using hybrid signal measurements in mmWave systems, which can jointly estimate the
position and velocity of the UEs and construct the environment maps. In [167], the method based on
RSS measurements of mmWave signals was proposed, which can achieve localization accuracy of one
meter. The mmWave-based object tracking was proposed in [168], where the RSS and signal phase were
used as the features for tracking an object. In [136], a set of feasible localization approaches in mmWave
bands were discussed, and the results demonstrated that mmWave localization can achieve decimeter
level localization accuracy. In [141,169], the methods for estimating the object’s position and orientation
by using mmWave MIMO were proposed, where the CRLB on position and rotation angle estimation
was derived. Moreover, due to the highly directional narrow beamforming of mmWave signals, the
beam training protocols that have been standardized in IEEE 802.11ad [144] can be used for improving
localization. With the beam training protocol, the strongest signals are selected for AOA, AOD, and TOA
estimation. Furthermore, the mmWave localization can turn multi-path from a foe into a friend [12]. By
considering the signal reflectors as virtual transmitters [12, 13], the high accurate localization is possible
even without the LoS link. A hybrid localization approach for massive MIMO systems combining with
TDOA, AOA, and AOD measurements was proposed in [170]. In [171], a fingerprinting-based localization
method in massive MIMO systems was proposed, where the uplink RSS measurements were used as
the fingerprints. In [172], the direct source localization (DiSouL) was proposed by jointly processing
the observations at the distributed massive MIMO BSs. In [173, 174], the combination of TDOA and
AOA measurements by using the EKF was proposed. A comprehensive discussion on massive MIMO
localization was given in [155]. An overview about the 5G mmWave localization for vehicular networks
is given in [175].

3.2.2 D2D communication and cooperative localization

To meet the ever-increasing throughput demand of various applications on mobile devices, one promising
method is to shift the current cell-centric architecture to device-centric architecture [176]. In traditional
cellular networks, all communications must go through the BSs even if both communication entities are
very close with each other, while D2D communication enables that two devices can communicate without
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Figure 7 (Color online) An illustration of the device-centric networks and four types of D2D communication. (a) Device relaying

from BS; (b) BS-aided D2D communication; (c) direct D2D communication; (d) device relaying from other devices.

traversing the BSs. The related use cases include multi-hop relaying [177], peer-to-peer (P2P) commu-
nication [178], machine-to-machine (M2M) communication [179], cellular offloading [180]. A detailed
survey of D2D communication was given in [17]. In general, D2D communication combining with densely
deployed small cells can achieve high data rate with high spectral efficiency and low latency, which paves
the way for cooperative localization. In this subsection, we outline the localization schemes based on
different types of D2D communications in cellular networks.

Depending on the role that the BSs played in different communication schemes, D2D communication
can be classified into four categories [181], namely, device relaying from BS, BS-aided D2D communication,
direct D2D communication, and device relaying from other devices, as illustrated in Figure 7. For device
relaying from BS, a device located at the edge of a cell can only receive weak signals transmitted from
the BS, which is assisted by other devices via relaying. In this case, device localization for the cell
edge users can be achieved by utilizing the assisting devices as the pseudo BSs with known location,
and the signal measurements among these devices can be used for localization. However, the location
information of the assisting devices might be inaccurate, which will degrade the localization accuracy
of the target device. Therefore, how to mitigate the effect of error propagation is a critical issue. For
BS-aided D2D communication, two devices communicate with each other via their direct link, together
with the assisted information provided by the BS. In this case, a device can measure the signals from both
the BS and the other device, which can be utilized for localization. Therefore, the assisting device acts
like an additional AN to provide extra information to improve the localization performance. By contrast,
in the architecture of direct D2D communication or device relaying from other devices, two devices
communicate with each other directly or indirectly via information relaying by other devices without
traversing the BS. In such architectures, for the target device, the relative distance and/or angles to
other devices can be obtained, and if the locations of other devices are known, cooperative localization
can be achieved. For the multi-hop based cooperative localization, the key problem is to perform location
estimation using multiple signal measurements from different devices. Based on the spectrum usage, D2D
communication can be classified into inband D2D communication, which reuses the cellular spectrum for
D2D data transmission, and outband D2D communication, which usually uses unlicensed spectrum. From
a localization perspective, the main advantage of inband D2D lies in the better spectrum utilization, which
avoids the consumption of extra hardware for other unlicensed spectrum, while the main drawback is
the potential high interference, which may severely degrade the localization performance. On the other
hand, the outband D2D communication transmits signals by using different wireless technologies, and the
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location-related information is measured from heterogeneous networks. In this case, how to coordinate
the signal transmission over different bands and data fusion for improving localization accuracy is a
key problem. Furthermore, for all cooperative localization schemes, it is critical to protect the location
privacy of the users and avoid the significant performance degradation simultaneously.

3.2.3 Localization in UDNs

Network densification is a promising technology to meet the ever-increasing demands on area coverage
and capacity enhancement in 6G mobile networks. In the extreme case, we would have UDNs, which
refer to such networks with more cells than users [182–184]. In [184], a quantitative definition of the UDN
was given, where a network can be considered as ultra-dense if the density of cells is no smaller than
103 cells/km2. In general, the densely deployed cells in UDNs can be classified into full-functioning BSs
(picocells and femtocells) and macro-extension APs (relays and remote radio heads) [183]. The coverage
area of all these cells is typically small, ranging from a few meters up to 100 m. The fundamental
difference of UDNs from traditional networks lies in that it not only enables higher data rates with
less energy consumption for communication, but also brings new opportunities for localization. First,
since more small cells are in the close vicinity of users, the localization error of CID-based methods
can be reduced. Furthermore, as the cell shrinks in UDNs, the probability of LoS link increases, which
is beneficial for accurate location-related measurements [174]. In [185], the authors proposed a joint
localization method combining TOA and DOA measurements, as well as a real-time UE tracking method
by using an EKF. The simulation results showed that the localization accuracy is below 1 m for 95%
of the case with the signal bandwidth below 10 MHz using one or two BSs in the 5G UDN. In [186], a
joint positioning and synchronization method based on centimeter wave dense 5G network was proposed,
which is able to estimate the clock offsets in addition to the UE’s location.

3.3 Location-aware communication

Accurate location information can be used not only for location-based services, like location-based ad-
vertising, autonomous driving, but also for improving the communication performance, which is known
as location-aware communication or location-aided communication. Location-aware communication has
received fast growing attentions in recent years, where the location information can be utilized in a
variety of ways to improve the communication performance in 5G-and-beyond networks, like reducing
the communication overheads and delays, minimizing the energy consumption, and increasing the com-
munication capacity. The utilization of location information in cognitive wireless networks was studied
in [22], where the location-assisted network optimization was discussed, including location-assisted dy-
namic spectrum management, handover, as well as network planning and expansion. In [21, 187], the
potential of location-aware communication in multi-user and multi-cell systems was discussed, with spe-
cial emphasis on utilizing location information for resource allocation. In [20], a comprehensive survey
about the location-aware communication was given based on the layers of the protocol stack, including
the physical, MAC, and network layers.

3.3.1 Physical layer

In the physical layer, the location information is usually used for channel estimation, beamforming, and
generating the radio environment maps (REMs) to reduce the interference and signaling overhead.

For location-aided beamforming, the accurate AOD and AOA of the LoS path can be exploited to
design the beam vectors of the transmitter and receiver, respectively. Compared with the conventional
beamforming methods based on full-band channel state information (CSI), the location-based beamform-
ing schemes do not require the full-band reference signals, and the narrowband pilots are sufficing [174],
which can reduce the energy and resource consumption especially for the UE. In [188], a beamforming
method was proposed based on the AOAs or AODs of the LoS path between ANs and the UE by using
the EKF to estimate and track the location of the UE. The results showed that if the LoS path is avail-
able, with the angular error below 2◦, the location-based beamforming scheme outperforms conventional
CSI-based schemes in terms of mean user-throughput and time-frequency resources efficiency. Another
major problem of beamforming with large antenna arrays is the huge training overhead, which can be re-
duced by utilizing accurate location information of the transmitter and receiver [189–191]. Location-aided
beamforming method for mmWave vehicular communication has been studied in [189], which can reduce
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channel estimation overhead and speed up the initial access. In [190, 191], a compressive sensing based
mmWave beamforming method was proposed, where the location information of the transmitter/receiver
was used to design the sensing matrix. Currently, the accuracy of location aided for beamforming is within
meter-level, while the more accurate location information of the UE can further reduce the overhead of
beamforming.

The high-precision REM [192–194] can be constructed by using the accurate location information
combined with channel quality metric (CQM) [20]. The main difference between the REM and geolocation
database is that REM contains the radio elements like the knowledge of large-scale fading and location-
based radio condition, which can be utilized for RRM without the CSI between the BSs and the UE [174].
The REM construction entails a training process, where a measurement center collects the CQM from
different locations of the area and performs a learning algorithm to obtain a number of radio scene
parameters, like the path loss exponent and shadowing variance, tagged with the actual locations [20]. In
general, the number of sampling points in the area of interest, the location accuracies of these points, the
dynamics of the propagation environment, and the accuracy of the propagation modeling can significantly
affect the REM performance. To compare the estimated REM with the true REM, some quality metrics
are proposed, including RMSE [195], correct detection zone ratio (CDZR) and false alarm zone ratio [196].
In general, a REM which can predict the large-scale channel fading in the area of interest needs at least
meter-level localization accuracy. The more accurate location resolution leads to more accurate REM.
However, since the REM construction must perform online, there is a trade-off between complexity and
accuracy.

An accurate REM can be used for RRM at different network layers to reduce the overhead and delay
of communications. In the physical layer, one of the best known applications is the REM-based spatial
spectrum access scheme in cognitive radio (CR) [197], where before the CR devices initiate a communi-
cation, they first query the REM database for the available frequencies depending on their locations, and
select the frequency bands from a set of received unoccupied frequencies. Furthermore, with the addi-
tional motion information of the UE, like velocity and orientation, we can predict the locations of the UE.
Combining the REM and the predicted UE locations, the proactive RRM can be achieved, which can not
only maintain the communication performance at a certain time but also adapt to the upcoming events.
For example, the authors in [198] outlined the adaptive mobile communication for the predicted capacity.
Moreover, if the predicted location of the UE and the accuracy of the REM are guaranteed, the proactive
RRM can enable a high robustness and low latency E2E communications without the instantaneous CSI
between the BS and UE [199]. Other applications of location-aided communication applications in the
physical layer have also been studied, such as location-aided MIMO interference channels and coordinated
multi-point (CoMP) transmission [200].

3.3.2 MAC layer

In the MAC layer, the accurate location information is beneficial for MAC layer RRM, like location-based
multicasting and broadcasting, scheduling, and load balancing. Compared with the physical layer, the
location accuracy requirements on the MAC layer is lower, usually range from several meters to tens of
meters. The geographical location aided broadcasting is referred to as geocasting. For mobile ad hoc
networks (MANET), broadcasting is an important method to quickly deliver message to the specific set
of nodes, especially when the route to the destinations is still unknown. The traditional broadcasting
methods based on flooding suffer from large bandwidth consumption and the broadcast storm problem
(BSP) [201]. In [202], the authors proposed a broadcasting protocol based on location-related information
in terms of distance and angle between transmitter and receiver, which can achieve high reachability and
bandwidth efficiency. Recently, in [203], the authors proposed a location aided probabilistic broadcast
(LAPB) algorithm for MANET routing, which selects the more effective nodes, according to an adaptive
probability based on location information, to broadcast route request. The simulation results showed
that the LAPB method is able to significantly reduce the overhead and alleviate the BSP in MANETs.
Another essential transmission scheme of ad hoc networks is multicasting, which can also benefit from the
accurate location information, and some location-based multicast routing protocols have been proposed
in [204–206].

Another well-known application is the location-aided radio resources scheduling, where the same re-
sources can be shared by two different communication links if the inter-interference level is below a certain
threshold. In [187], the authors proposed a location-aided round robin scheduling algorithm to solve the
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problem introduced by fractional frequency reuse that the fractional bandwidth can meet the heavy traffic
demand during rush hours, where some of the cell-central and cell-edge users are selected to share the same
frequency band with minimum intra-cell interference. Compared to alternative methods that select users
based on the instantaneous channel knowledge requiring all users to feedback CSIs, the location-based
scheme requires less feedback information and can achieve higher total throughput than the conventional
methods. In [207], a passive location resource scheduling scheme based on an improved genetic algorithm
was proposed. In [208], the authors proposed proactive scheduling schemes for delay-constrained traffic,
where the current user location and the priori statistics were used to predict the request arrival time
slots, which can significantly reduce the transmission energy compared to the reactive methods. For the
WSNs, the energy efficiency is a critical issue due to the limited lifetime of the sensors’ batteries, so the
authors in [209] proposed the location-based sleep scheduling schemes, which can dynamically schedule
the awake or asleep status of the sensors to reduce the total energy consumption.

The future wireless networks are expected to be highly heterogenous and dense, where different types
of APs, like WiFi, BlueTooth, and light fidelity (LiFi), coexist in the small areas, leading to the problems
of unbalanced traffic loads and inefficient resource utilization [210]. The load balancing technique is
critical to solving such problems [211], which can offload some traffic load from busy APs to idle APs.
For example, in [212–214], the authors considered the utilization of load balancing techniques to optimize
the handover overhead and throughput of the LiFi and WiFi integrated hybrid networks. The location
information can help the dynamic load balancing, which is an adaptive scheme depending on the UE
distribution within a cell [215]. Since the distribution of UEs can be obtained based on the accurate
locations of UEs, the location information can help the network APs to allocate resources more efficiently.
For instance, in [214], the authors proposed a location-aided load balancing scheme for hybrid LiFi and
WiFi networks, which aims to maximize the system throughput.

3.3.3 Network layer

In the network layer, location information can be used in various aspects, like geographic routing, location-
aware content delivery, to improve scalability and reduce network overhead and latency. The geographic
routing is usually referred to as the georouting, which utilizes the geographic location information of the
nodes in the networks to transmit the data packets to their destination [20]. Different from the topology-
dependent routing schemes, the georouting protocols depend on the physical location, eliminating the
requirements on topology storage and reducing the associated costs, which is especially suitable for
wireless ad hoc networks. The routing performance in ad hoc networks is affected by the following factors.
First, due to the lack of centralization, the wireless nodes in ad hoc networks may not operate with unified
standards. Furthermore, since ad hoc networks are usually dynamic and mobile (e.g., MANET), which
are formed and changed depending on the particular goals, with nodes joining in and leaving the network
from time to time, thus the topology of the ad hoc network is constantly changing [216]. All such
features of ad hoc networks bring new challenges to the design of routing protocols. The conventional
ad hoc routing protocols can be classified into proactive and reactive protocols. The main drawback is
that both of them require the topology information for message routing, which entails high maintenance
cost. Compared to the conventional routing schemes, the georouting protocols based on the geographic
location of the nodes can eliminate the need for topology information. In the georouting scheme, when
a node receives a packet, it will select the most appropriate node from its neighbours and deliver the
packet in a hop-to-hop manner based on the location of the targeting nodes. There is no specific route
for a particular destination, since the selection of the nodes depends on the different network states. One
classical georouting scheme is greedy forwarding, where the packets are forwarded to the neighboring
node which is closer to the destination at each hop [217]. In addition to improving routing performance,
other georouting protocols have been designed with particular goals. For example, in [218], the authors
proposed a georouting scheme which can feature quality of service (QoS) predictions based on the mobility
of the UE. In [219], an energy-efficient georouting protocol was proposed, which can guarantee delivery.
A more comprehensive overview on georouting was given in [216].

With the accurate location and tracking information of users, the location-aware adaptive content
delivery schemes can be achieved, which include adaptive quality streaming, in-network caching, and
content prefetching [220]. Such applications require the location and trajectory information of the mo-
bile users. The well-known adaptive quality steaming scheme is the HTTP-based adaptive streaming
(HAS) [221], where the mobility trajectories of users were exploited to optimize HAS quality adaptation,
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thereby preventing data stream stalls. In [221], the authors developed an adaptive algorithm which can
proactively switch the transmission rates based on the predicted user location and the stored REM. The
in-network caching techniques enable caching media content closer to the mobile user to reduce the delay
and the prevent congestion in busy hours [222], where the popular media content is stored at the edge of
the network. The location of users and their mobility patterns are used to predict the hot network regions
where the media content will most likely be requested, so in such cases, the coarse localization method
with tens or even hundreds of meter accuracy suffices. On the other hand, the content prefetching refers
to that with the help of the REMs and the predicted user’s location, the network is able to deliver con-
tent proactively. For accurate content delivery, it may require meter-level location service. Specifically,
when the networks are aware that the mobile UE will experience poor QoS based on the predicted UE’s
location, it can load a part or all of media content into the local storage of the UE in advance [220].
Therefore, content prefetching has the capability to provide seamless streaming services to users. In this
case, the accurate location information of UE can improve the effectiveness of prefetching [223].

3.4 Localization and communication co-design

Since radio signals can simultaneously carry data and location-related information of the transmitters, a
unified study on ILAC tends to be a natural choice. Currently, although localization systems can utilize
the existing communication infrastructures like cellular networks cost-effectively, the localization and
communication systems are mostly designed separately. This is mainly due to the fact that the two lines
of work in general have different design goals: one is to maximize the localization accuracy, while the
other is to maximize the reliable data transmission rate through the wireless channels subject to fading
and noise. Nevertheless, there is a growing trend that the designs of the communication and localization
systems can be aligned. For instance, increasing the signal bandwidth or signal-to-noise ratio (SNR) can
increase the localization accuracy as well as the channel capacity. Hence, in this subsection, we attempt
to discuss the study on ILAC for giving some insights on future network design.

Although there is extensive work on localization in cellular networks as discussed above, the studies on
localization and communication co-design are relatively rare. In [224–228], some beamforming schemes
for joint localization and data transmission in mmWave for 5G networks were studied, where the different
trade-offs between the localization accuracy and the data rate were derived. In [224], the authors studied
the trade-off between localization efficiency and downlink data rates by tuning the mmWave BS transmit
power. Specifically, the total transmit power of the BSs is fixed and divided into two parts: one associated
with localization and the other dedicated for communication. Hence, the optimal transmission scheme
exists to select the proper power splitting factor for supporting different QoS requirements. In [225], the
authors focused on optimizing the beam vectors at the BSs to minimize the overall power consumption
under certain data rate and localization accuracy requirements, where the data rate and the localization
accuracy were measured as the functions of beam vectors, and the CRLBs of localization accuracy for
both TOA- and TDOA-based localization methods were derived. In [226], by assuming a finite coherence
time, a trade-off between communication rate and localization accuracy for single-user LoS mmWave
communication was studied. Specifically, the total communication duration is fixed and partitioned into
beam alignment and data transmission stages, and both of which are quantified as functions of the code-
book size for beam alignment. The following trade-off between localization accuracy and communication
rate was revealed: more time spent for beam alignment leads to better SNR and improved localization
accuracy, but it will result in less time for data transmission and hence lower data rate. Moreover, in [227],
the impact of imperfect beam alignment on the rate-localization trade-off was considered. In [228], the au-
thors extended their prior work in [226] into a multi-user scenario, and the trade-off between the sum-rate
and localization accuracy in the uplink for multi-user mmWave communication system was researched.

In this subsection, we give the general architectures of the ILAC systems and consider their performance
trade-offs. For simplicity, we focus on the basic downlink case in the additive white Gaussian noise
(AWGN) channel. At the transmitter side, the signals for communication and localization can be designed
and transmitted separately, or a common signal can be shared and reused for the both of purposes, which
are referred to as separated signals and shared signals, respectively. At the receiver side, the localization
and communication systems can have their respective receivers that operate as an information decoder
(ID) and the LMU, respectively, or share a common receiver, where the channel estimation unit (CEU)
for communication can be reused for measuring location information from the common received signal,
which is referred to as separated receivers and shared receiver, respectively. Therefore, as illustrated in
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Figure 8 (Color online) An illustration of different architectures of ILAC systems. (a) Separated signals and receivers; (b) shared

signals but separated receivers; (c) shared signal and receiver.

Figure 8, the architectures of the ILAC systems can be classified into three categories: separated signals
and receivers, shared signal but separated receivers, as well as shared signal and receiver.

3.4.1 Separated signals and receivers

As illustrated in Figure 8(a), in this case, we consider a scenario that the total bandwidth is fixed,
denoted by Bt, which is divided into two orthogonal frequency bands for localization and communication
respectively. The signal for localization denoted by sL(t) has the bandwidth BL = kBt, where 0 6 k 6 1.
Therefore, that for communication, denoted by sC(t), has the bandwidth BC = (1− k)Bt, and there is
no interference between them due to orthogonality in the frequency domain. It is assumed that the two
signals have the same transmission power, i.e., E[|sC(t)|2] = E[|sL(t)|2] = P . The signals received at ID
and LMU are

yC(t) = hC(t)sC(t) + n(t), (45a)

yL(t) = hL(t)sL(t) + n(t), (45b)

where t ∈ [0, T ] is the observation time; hC(t) and hL(t) are the communication and localization channel
coefficients, respectively, where we assume E[|hC(t)|2] = E[|hL(t)|2] = 1 without loss of generality; n(t)
denotes the AWGN, with the noise power spectral density (PSD) of N0 for all frequencies. According to
Shannon’s channel capacity theorem [229], the maximum data transmission rate is

R = BC log2

(

1 +
P

N0BC

)

. (46)

On the other hand, considering the time-based ranging for localization, the CRLB is formulated as [109,
230]

E

[

(d− d̂)2
]

> CRLB =
c2

8π2β2PT/N0
=

c2

8π2β2 P
N0BL

, (47)

where it assumes a rectangular-shaped signal transmitted for localization, with BLT ≈ 1, and

β2 :=

∫ BL

−BL
f2 |SL(f)|2 df

∫ BL

−BL
|SL(f)|2 df

(48)

denotes the mean square bandwidth (MSB) of the signal sL(t), and SL(f) is the Fourier transform of
sL(t), which will increase as the signal bandwidth increases. Eqs. (46) and (47) reveal that increasing
the dedicated bandwidth can improve the data rate and decrease the CRLB. Therefore, as the total
bandwidth is fixed, there is a trade-off to select the proper bandwidth splitting factor to support differ-
ent QoS requirements for communication and localization, which is referred to as bandwidth splitting
scheme. Alternatively, we can consider that the two types of signals use the same frequency band with
bandwidth B, but with different transmission power, i.e., E[|sC(t)|2] = PC and E[|sL(t)|2] = PL. The
total transmission power for a single-user is fixed, i.e., P = PC + PL. For each receiver, the received
signal is

y(t) = hC(t)sC(t) + hL(t)sL(t) + n(t). (49)

Similarly, here we assume E[|hC(t)|2] = E[|hL(t)|2] = 1 for notational simplicity. In this case, the
receiving performance is typically characterized by signal-to-interference and noise ratio (SINR), and the
communication and localization performance can be obtained as

R = B log2

(

1 +
PC

N0B + PL

)

, (50a)
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CRLB =
c2

8π2β2 PL

N0B+PC

. (50b)

This reveals that signals with high power are beneficial for either data transmission or localization accu-
racy, so the appropriately splitting the transmission power is necessary to balance the trade-off between
communication and localization functionalities, which is referred to as the power splitting scheme.

3.4.2 Shared signal but separated receivers

As illustrated in Figure 8(b), in this case, a common signal is shared by localization and communication
systems, so the study on joint waveform optimization for improving the performance of such a dual-
purpose system is critical. Although the role of localization was already highlighted in the 3G era, the
dedicated reference signals for localization were not used until the 4G-LTE, with the introduction of
the PRS. Therefore, compared with the extensive research on waveform design for communications, that
localization in cellular networks is relatively rare. In [231,232], the authors studied the impact of different
signal PSD on time-based ranging accuracy. Conventionally, the signal power is uniformly distributed
over the available spectrum. However, the authors revealed that the uniform PSD is strictly sub-optimal
for signal propagation delay measurement. Actually, although the signal waveforms for localization and
communications are usually designed separately, they have some similar key requirements, like low latency,
high reliability, and low device complexity, rendering that their waveforms can be co-designed in future
networks. For instance, considering the single-carrier transmission scheme, the signal that has more power
concentrated at the edges of the spectrum is generally beneficial for time-based localization, which in the
time domain can result in an impulse-like autocorrelation for time-based ranging. Furthermore, in such
cases, the MSB of the signal can be greater according to (48), which leads to the lower CRLB for better
localization accuracy. However, for communication, the optimal signal PSD scheme is to concentrate the
signal power at the center of the mainlobe to reduce the inter-symbol-interference (ISI). Therefore, there
is a trade-off in terms of waveform design between localization and communication with different PSD
requirements. Moreover, it is important to integrate the geometrical information into waveform design for
future networks, and the waveforms should be adaptive with reconfigurable features, which can flexibly
configure their bandwidth, signal power, etc., depending on the real-time environment [232].

3.4.3 Shared signal and receiver

As illustrated in Figure 8(c), localization and communication systems can also share a common receiver
with the functionalities of LMU and ID, which can extract location-related information and decode data
from a common signal. In general, when channel parameters are unknown, the location-related infor-
mation estimation in multi-path environments is closely related to channel estimation, so the CEU for
communication can be also reused for localization. For instance, the energy detector for non-coherent
demodulation and the matched filter for coherent demodulation in communication systems can be cost-
effectively exploited for TOA estimation [233]. The path amplitudes and TOAs can be jointly estimated
using the ML approach, which can achieve the CRLB for large SNRs. A primary barrier of ML estima-
tors is the computational complexity, which results in time-consuming computation for accurate TOA
estimation. Therefore, a natural trade-off between localization and communication is that the more time
spent on channel estimation can give the more accurate localization performance, but results in the higher
communication latency.

3.5 Localization and communication in aerial-ground integrated networks

Integrating terrestrial networks (especially the cellular networks) and aerial networks to achieve ubiqui-
tous wireless connectivity in the 3D space is one of the visions for 6G [5]. In particular, with the high
mobility and on-demand deployment capability, unmanned aerial vehicles (UAVs) have been regarded
as a powerful tool to expand the wireless networks from the ground to the air space [234]. In general,
UAVs may be used as the low-altitude platforms (LAPs) to assist the terrestrial wireless communication
from the sky, which are typically deployed at an altitude below several kilometers, while the high-altitude
platforms (HAPs) consisting of floating BSs (e.g., balloons) are usually deployed in the stratosphere with
tens of kilometers above the earth surface. Compared with HAPs, UAV-based LAPs are easier and faster
for deployment and more flexible for reconfiguration for critical missions, and it is able to establish a
strong LoS communication link with the ground UEs directly without relying on extra communication
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infrastructure like dish antennas [235]. In general, UAV-aided communications have three main use cases,
i.e., UAV-aided ubiquitous coverage, relaying, and data collection [235]. On the other hand, UAVs with
their own missions may also be integrated into cellular networks as new aerial users, leading to the other
paradigm known as cellular-connected UAVs [236]. The 3GPP started a study item to exploit the po-
tential of LTE support for UAVs in March 2017 [237], and the related technical reports TR 36.777 was
released in December 2017 [238], followed by a work item. To achieve reliable data transmission for either
UAV-aided communication or cellular-connected UAVs, the robust, low latency, high data rate wireless
links between UAVs and terrestrial networks are necessary. Due to the high mobility, the accurate real-
time location of UAV is important for both safe operation and communication links maintenance. In
this subsection, we first focus on the localization problems in wireless networks involving UAVs, which
can be classified into two main categories, i.e., localization for UAVs and UAVs for localization, where
the UAVs play a role as agent nodes and aerial ANs, respectively. Then, we elaborate the importance of
real-time location information of UAVs for communication, which is referred to as location assisted UAV
communication.

3.5.1 Localization for UAVs

We first give an overview on the conventional localization and navigation methods for UAVs, and then
discuss the potential localization approaches when cellular-connected UAV is enabled in future networks.

Currently, the commonly used UAV localization and navigation systems can be mainly divided into
three categories, namely, GNSS, INS, and vision-based navigation. The GNSS (e.g., GPS) can provide
global coverage with meter-level localization accuracy for UAVs [239], while it is vulnerable to disruption
of satellite signals due to obstacles or signal blocking. On the other hand, INS is a self-localization system
by utilizing the motion information of the UAV for localization and navigation. However, the INS of UAVs
is expensive and unsuitable for small aircraft. Moreover, it suffers from bias errors caused by the integral
drift problem, which are continuously increasing with time, resulting in accuracy degradation [240]. To
tackle this problem, the combination of GPS and INS was proposed, where the data fused from GPS and
INS sensors through the navigation filter (e.g., EKF) can be used to improve localization performance. For
instance, in [240], the authors proposed a new INS/GPS sensor fusion approach based on state-dependent
Riccati equation nonlinear filtering, which showed better UAV localization performance compared to the
method based on EKF.

However, many applications require the UAV to operate in GNSS-denied environments, like cluster
urban and indoor scenarios. To this end, the methods based on image recognition, referred to as vision-
based navigation, have emerged as a promising alternative to INS/GPS, which can be used both in outdoor
and indoor environments. The various visual sensors (e.g., cameras) are used to acquire information of
surroundings, and the visual odometry and other similar methods were proposed to localize and navigate
the UAV based on computer vision [241]. The advantages of vision-based methods include that they
do not rely on external signals, and the visual sensors are cheaper and easier to deploy compared to
INS/GPS sensors. However, the main limitation lies in that the UAV needs to process a large amount of
sensing information in real time, especially for image processing, which greatly increases the computation
complexity. Therefore, vision-based localization methods are difficult to be applied for UAVs with low
power consumption and limited computing resources. Moreover, since the vision-based methods rely on
the visual information of the environment, the accuracy of these methods is usually poor in challenging
environments with low-visibility conditions, like dusty or smoking environments [242].

For indoor UAV localization, the radio signal based methods were also proposed, like UWB-based [242–
245] and WiFi-based systems [246,247]. In [243], the authors proposed an UWB-based indoor localization
system for UAV localization, which can achieve the RMSE under 10 cm in the horizontal plane and under
20 cm in 3D space for 95% cases. Furthermore, a method that combines IMU, UWB, and vision-based
schemes with EKF for UAV indoor localization was proposed in [245], where the 10 cm accuracy can
be achieved. In [246], the authors proposed an indoor UAV localization method based on WiFi RSSI,
where the distances between the UAV and WiFi APs were measured to locate the UAV. In [247], the
authors proposed an RSS fingerprint-based HiQuaLoc system for indoor UAV localization, where an RSS
interpolation algorithm was proposed to reduce the overhead on training phase.

Compared with GNSS, vision-based, and short-range radio-based localization approaches, cellular-
connected UAV can bring many new opportunities for UAV localization. First, the ubiquitous accessi-
bility of cellular networks may increase the localization coverage, which can cover outdoor and indoor
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Figure 9 (Color online) An illustration of 6D localization and HAP-assisted localization approaches for UAVs.

environments. Furthermore, cellular-connected UAVs can be a good complementary to improve the
GNSS performance, via techniques like differential GPS (D-GPS), to achieve more robust UAV naviga-
tion. Second, the wireless communication links between UAVs and cellular BSs, i.e., the control and
non-payload communication (CNPC) link and payload data link, can be exploited and reused as the
reference signals for UAV localization cost-effectively. Third, the legacy wireless localization techniques
in cellular networks from 2G to 4G, like OTDOA, UTDOA, E-CID, can be extended to the sky for UAV
localization. Finally, the new radio introduced by 5G, such as massive MIMO and mmWave communi-
cation, can be also exploited for UAV localization. Actually, some related studies like drone detection
and tracking based on cellular networks are ongoing. For instance, in [248], the authors studied the
amateur drone detection in 5G mmWave cellular networks, where the system design is outlined in terms
of the density of BSs, their directional antennas, and the bandwidth, to detect the unlicensed small-sized
drones. On the other hand, massive MIMO techniques with highly directional radiation pattern have
also be exploited for UAV detection and tracking in [249]. In [250], the authors studied the localizability
of UAVs with cellular networks, and it was concluded that the localizability for UAVs is more favor-
able than that for ground users since the former has better localization performance due to the higher
altitudes.

Here, we envision two promising localization techniques for UAVs in future networks, referred to as 6D
localization and HAP-assisted localization, as illustrated in Figure 9. For 6D localization, the goal is to
precisely estimate not only the 3D spatial location of the UAV, but also its 3D orientation in terms of roll,
pitch, and roll [251]. Different from the ground mobile devices for which the accurate real-time locations
are typically sufficient, for the flying UAV, the accurate orientation estimation is also quite important,
due to its high impact on flying gesture, power consumption, and hence the trajectory design. This
leads to the important problem of the 6D localization for UAVs. The massive antenna arrays deployed
on the BSs in 5G networks bring the opportunity to realize such a goal, by utilizing their high angular
resolution to locate the cellular-connected UAV. Furthermore, combining with mmWave technology with
the high carrier frequency and wide signal bandwidth, the antennas can be squeezed into a compact form
factor, which can be deployed on the UAV. Therefore, both the AOA and AOD can be estimated in
either uplink or downlink, as shown in Figure 9, and the location and the orientation of the UAV can be
estimated simultaneously, leading to 6D localization. However, since the BS antennas are typically down-
titled for ground users, the radio coverage in the sky may not always be guaranteed, which may degrade
the localization performance of UAVs. To this end, the HAPs assisted localization approach provide a
good complementary. For HAP-assisted localization, as shown in Figure 9, the quasi-static floating aerial
BSs can be treated as the additional ANs to assist the localization for UAVs. Compared with terres-
trial networks, HAPs can provide wide wireless coverage for very large geographic areas. Furthermore,
due to the high likelihood of LoS links in high-latitude space, the UAV localization accuracy can be
improved.
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3.5.2 UAV for localization

Apart from estimating the locations for UAVs, the located UAVs can be also used for locating other
devices in the networks, which is referred to as UAV-aided localization. UAV-aided localization can be
mainly divided into two categories. One is cooperative localization among UAVs, which is quite important
for the flying ad hoc networks (FANETs). The other is the UAV-assisted localization for terrestrial UEs,
where the UAVs with known locations are treated as the additional ANs for providing more reference
information to locate the agent node on the ground.

Cooperative localization among UAVs. Instead of developing single-UAV systems, a group of
small UAVs can form FANETs in the aerial space. In such cases, as shown in Figure 10, only a subset
of UAVs can communicate with the ground BSs, which is referred to as the UAV backbone networks,
while other UAVs outside the coverage of the ground BSs may establish a connection with the ground
through the UAV backbone networks [252]. Compared with the wireless nodes in vehicular ad hoc net-
works (VANETs) or MANETs on the ground, FANET nodes have much higher mobility with a more
dynamic network topology. Due to the performance degradation of GPS in urban and indoor scenarios
and the high mobility of UAVs, multi-UAV systems require the accurate real-time location information
of each UAV in FANETs, which renders the cooperative localization among UAVs important. Intuitively,
the cooperative localization approaches utilized in MANETs, VANETs, or other ad hoc networks on the
ground can be similarly exploited and applied in FANETs by extending the localization schemes from 2D
to 3D. For instance, the belief propagation technique which is usually used for cooperative localization in
WSNs can be utilized for multi-UAVs cooperative localization. In [253], a dynamic nonparametric belief
propagation method was proposed for UAVs cooperative localization, which can locate UAVs with fault
GPS successfully. In [254], the authors studied the cooperative localization between two UAVs, which
were equipped with heterogeneous sensors to gather more information in a limited time. In [255], the
authors proposed a cooperative localization method based on the inter-UAV relative range measurements,
which can locate the UAV when the GPS is unavailable. By assuming that all UAVs construct a ring
communication topological structure, a cooperative localization method based on information synchro-
nization was proposed in [256]. Typically, since there are many LoS links among UAVs, the cooperative
localization performance of UAVs should be better than that of terrestrial wireless nodes, though the
practical implementation is still challenging due to the high UAV mobility.

UAVs have higher altitude than ground BSs or UEs, which renders them easier to achieve wider coverage
area on the ground with high probability of LoS links. Therefore, when some ANs are not available to the
agent node, the flying UAV with a known location can be used as an additional AN to assist the terrestrial
localization. For instance, a UAV-aided localization method for ground vehicles was proposed in [257],
where each UAV first measures the RTOF of signals between the ground BSs and the UAV, and then
broadcasts the measurements to the ground vehicles for localization, which can achieve decimeter-level
relative position error between vehicles and meter-level absolute position accuracy. In [258], a range-based
drone-aided localization method for terrestrial objects was proposed, where a flying drone was treated as
a mobile anchor equipped with a GPS, and the distances between the drone and the ground objects were
measured by UWB signals, then the ground objects can estimate their own position through trilateration.
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3.5.3 Location-assisted UAV communication

Apart from navigation and tracking, the accurate real-time location information of a flying UAV is also
beneficial for communication in the following aspects.

• 3D REMs modelling. Currently, cellular networks are designed to cater for the terrestrial broad-
band communication, and thus BS antennas are typically downtilted to reduce the inter-cell interfer-
ence [259]. With the downtilted BS antennas, the UAVs may only be served by the sidelobes, and thus
the cellular coverage in the sky cannot always be guaranteed [260]. Therefore, the coverage holes exist in
the sky, and when a UAV flies over these areas, it may lose wireless connection to the cellular networks. To
overcome this problem, one useful approach is to construct 3D REMs about the area of interest to guide
the design of UAV trajectories to avoid these coverage holes. Similar to the 2D REM as we discussed in
Subsection 3.3, a 3D REM modelling also evolves a training process, where a UAV flies over the area of
interest and collects radio measurements from the sampling points of the area to construct the 3D REM.
Therefore, the localization accuracy of the flying UAV will affect the accuracy of the REM. For instance,
in [194], the authors proposed a method named simultaneous navigation and radio mapping (SNARM),
where the signal measurement of the UAV is used not only for optimizing the UAV trajectory, but also
for creating a radio map which can predict the outage probabilities of communication at all locations in
the area of interest.

• Proactive management of CNPC links. The wireless communication links of UAVs have two
main categories, namely, the CNPC link and payload data link. The CNPC link is a two-way communi-
cation link between a UAV and the ground control station (GCS), or other UAVs, which is responsible
for supporting the safe control from GCS to the UAV, sending reports from the UAV to GCS, and trans-
mitting collision alert between UAVs [235]. On the other hand, the payload data link is mainly used to
transmit mission-related data between the UAV and other entities, like the ground BS, mobile terminals,
and other UAVs. Different from the data link which requires a higher data rate but tolerates on latency
and reliability of the link, the CNPC link requires ultra-reliability, low latency, and high security to ensure
safe control to the flying UAV [236]. However, due to the building blockage and shadowing effects, the
CNPC links may suffer from delay and attenuation, and the interference from other UAVs and ground
BSs can also degrade the CNPC performance. To enhance the reliability and robustness of the CNPC
links, the combination of the 3D REMs and the predicted UAV location can provide opportunities for
proactive CNPC link management. With the predicted locations of all UAVs in the area of interest, the
GCS can proactively allocate the appropriate spectrum to provide CNPC link for the UAV according to
the pre-built 3D REMs, enhancing the reliability and reducing the interference.

• 3D beamforming and sub-sector partition. Another way to achieve the goal of ubiquitous
wireless connectivity in 3D space is the 3D beamforming, which also relies on the accurate UAV location.
Specifically, the accurate UAV location information can be used to obtain the azimuth and elevation angles
of the aerial-ground links, and further help for designing the beamforming weight vectors. Furthermore,
with the accurate 3D beamforming, the sectorization technique can be also extended to the 3D space,
where the elevation angles are used to further partition the horizontal sector in current cellular systems
to construct the sub-sectors for the aerial users [236]. With the help of these 3D network architectures,
the interference in UAV-aided communication can be significantly reduced. Moreover, the accurate UAV
location is also beneficial for RRM in these sub-sectors, like location-aided handover, multicasting, as we
discussed in Subsection 3.3.

4 Conclusion and future working directions

In this article, we have first provided an overview on the basics of wireless localization, and then discussed
the vision of future network design with ILAC towards 6G networks. In summary, an envisioned archi-
tecture of future 3D wireless networks is illustrated in Figure 11, and some related enabling technologies
and promising directions of future work are discussed as follows.

As shown in Figure 11, it is envisioned that the future 6G wireless networks will be artificial intelli-
gence (AI) enabled, heterogenous, and multi-tier networks consisting of space backbone networks (SBNs),
space access networks (SANs), aerial backbone networks (ABNs), aerial mobile networks (AMNs), and
terrestrial networks (TNs) [19, 261, 262].

The satellite networks are expected to play an important role in 6G networks due to their wide coverage,
especially in remote and ocean areas. Since various satellite systems on different earth obits are isolated



Xiao Z Q, et al. Sci China Inf Sci March 2022 Vol. 65 131301:37

Space backbone networks

Aerial backbone networks

Aerial mobile networks

Space access networks

GEO satellites

LEO satellites

HAPs

UAVs

BS link

D2D link

UAV link

HAPs link

Satellite link

RAN cloud

D2D networks
BS

Al-enabled
router

CN cloud

Data center

3D ERM modelling Proactive RRM

Localization
scheme selection

Figure 11 (Color online) An illustration of future 3D wireless networks.

and formed different autonomous systems (ASs) to provide specific services, like communications, navi-
gation, remote sensing, the real-time information sharing across different ASs is difficult [262]. Therefore,
in the future networks, the satellite networks can be divided into SBNs and SANs. The SBNs consisting
of several GEO satellites have the capabilities of data storage, routing and resource management, which
can function as the control and data center of the SANs consisting of LEO satellites [262]. LEO satellites
may be equipped with high-gain large antenna arrays to provide ubiquitous coverage to enable UE direct
communication [19]. For localization, the GNSS provided by the geostationary satellites will be still
important for mobile device localization and network synchronization due to its wide coverage.

For aerial networks, on-demand UAVs with high mobility can be deployed easily and quickly, which can
form the dynamic adjustable AMNs to provide temporary communication services for special missions,
like emergency communication services, UAV-aided relaying, and data collection [235]. However, due
to the limitations of UAVs on data storage and endurance, the ABNs consisting of floating HAPs like
airships are necessary for providing reliable wireless coverage for large areas, where the airships with the
computing and caching capabilities can be treated as the data center and gateways routing information
to SANs and TNs. For localization, since the locations of HAPs can be determined by the GNSS or the
terrestrial BSs with dedicated antennas to transmit reference signals, they can act as the aerial ANs to
locate the flying UAVs. Furthermore, since UAVs with high mobility may provide short-distance LoS
links to the ground devices, they can be used as the additional temporary ANs to improve the localization
performance of ground devices.

In the TNs, mmWave, massive MIMO, and UDNs technologies can be combined to improve the com-
munication and localization performance. Furthermore, as a promising trend, device-centric networks
will flourish the cell-free mobile communications, which will require high accurate cooperative localiza-
tion among devices for resource allocation. On the other hand, the future networks will become more
heterogenous, combining with various radio access standards, like 2G/3G/LTE/5G, WiFi, as well as the
Terahertz (THz) and visible light frequency bands. Therefore, the integrated resource allocation schemes
and protocols are required to leverage multiple frequencies to provide seamless wireless connectivity
for mobile devices. For localization, the system needs to select the appropriate localization approaches
and reference signals depending on the surrounding radio environments of the mobile devices for better
performance.

Finally, AI-enabled cloudization is a promising trend of future wireless networks, as illustrated in
Figure 11, which can be mainly divided into RAN cloud and CN cloud. The distributed AI units
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deployed at the edges of the RAN assist signal reconstruction, which is beneficial for data decoding and
signal measurements to improve communication and localization performance, respectively. In the CN
cloud, the centralized AI units can be used to construct the 3D REMs, which can be used to assist the
localization scheme selection and proactive RRM for communications. As a vision of 6G, the AI-enabled
networks are expected to autonomously optimize and manage the resource to dynamically maintain
communication performance of the UE according to its accurate real-time location.

However, to achieve the above visions, there are still many challenges to be addressed. Note that
while some challenges have already been discussed in Subsection 2.4, in the following, we outline some
important directions for future work and highlight the promise of ILAC.

4.1 Fundamental performance analysis and design for ILAC

Achieving ultra-high spectral efficiency is critical for future networks, especially for the IIoT application
scenarios, which require massive wireless connectivity to support reliable communication and accurate
localization services for massive IoT devices. To achieve ultra-high spectral efficiency for ILAC, a common
spectrum can be shared by localization and communication, or it can be divided into two orthogonal
parts. Furthermore, for shared spectrum, the signal waveform can be jointly designed for localization
and communication simultaneously, or two specific waveforms can be separately designed. Therefore,
the theoretical analysis of the fundamental performance of ILAC and how to design the waveforms
for ultra-high spectral efficiency deserve an in-depth investigation. On the other hand, for orthogonal
spectrum usage, since localization and communication both benefit from wide signal bandwidth, a critical
issue is that how to split the spectrum effectively to optimize the trade-off between localization and
communication according to different QoS requirements.

4.2 Advanced signal processing for multi-tier ILAC networks

In multi-tier networks, the mobile terminals in different layers of networks can interact in different fre-
quency bands with different links. In this case, how to maintain the wireless links dynamically and
effectively is a critical issue for localization and communication. The integration of different frequency
bands and dynamic resource management is a potential option to reconfigure and maintain the wireless
connections, and the effective signal processing is an important factor for cross-layer information shar-
ing. For ILAC, since the channel estimation units can be reused for location information extraction,
the localization and communication systems can partly share some hardware, and the signal process-
ing techniques for communication can be also exploited for location-related information measurements
and estimation. Therefore, how to efficiently co-design the hardware architecture and signal processing
techniques deserves further studies for ILAC.

4.3 Heterogenous networking

The future networks are more heterogenous than ever before, which operate on different frequency bands
with different standards. A fundamental question is how to switch the protocols rapidly from one to
another, while still ensuring the localization and communication performance, when the mobile terminals
move quickly and suffer from different radio environments. For the distinct network architectures, each
network layer employs different protocols, so a natural solution is to translate the protocols at gate-
ways to interconnect different networks. However, such a sequence of protocol translations is inefficient,
which renders the integrated protocol design that enables cross-layer, cross-module, and cross-node data
transmission critical. Moreover, the network protocol design, especially in the physical and MAC layers,
needs not only to consider the communication metrics, but also to be re-assessed from the localization
perspective.

4.4 3D REMs and proactive RRM in complex environments

The proactive RRM is beneficial for communication in terms of cell selection, channel prediction, beam
alignment and so on, but it will require high-accurate REMs. Currently, the studies on REMs modeling
focus on the 2D scenarios targeting the TNs in outdoor environments. As the networks extend to 3D
space, 3D REMs modeling in clutter environments like indoor and urban city is critical and challenging,
which requires more accurate 3D localization in multi-path and NLoS environments. Although some
effective multi-path and NLoS mitigation algorithms have been proposed in the literature, they are usually
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quite complex and only feasible for remote localization systems rather than the self-localization systems
where the computation and estimation need to be done by UEs. On the other hand, although some
studies mainly focus on the localization in NLoS scenarios, by treating the signal reflectors as the virtual
ANs, they are limited on the first-order reflection for simplicity. Therefore, in-depth investigations on
localization algorithms for multi-path environments are still needed for more accurate and cost-effective
localization. Furthermore, how to manage the radio resource according to the real-time location of the UE
to dynamically maintain its communication performance deserves further investigations. On the other
hand, although it is well-known that the accurate location information is beneficial for communications,
the related fundamental metrics are needed to reveal the relation between different location accuracy and
communication performance.

4.5 Intelligent ILAC

AI, or more specifically, machine learning, is one of the most promising technologies, to bring intelligence
to wireless networks with complex radio conditions. Due to its capability in pattern recognition from raw
data, machine learning can be effectively used for signal reconstruction, which is beneficial for both data
decoding and location-related information measurements. In addition, since its learning ability in solving
complex nonlinear problems, it can also be used to maintain the network performance dynamically and
construct the user centric intelligent networks, which can autonomously manage resources, functions,
and network control to sustain the high performance according to the real-time location of the mobile
user. For ILAC, machine learning can be used in various perspectives, like waveform design, signal
modulation/coding, resource allocation, to balance the performance trade-off between localization and
communication, and create the 3D REMs to enhance the ILAC performance.
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