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We propose an automatic image matting and fusing system

for portrait synthesis in this study. We firstly use a face de-

tection algorithm to determine if the input contains a face.

Then, we use a semantic segmentation neural network to

generate a trimap and feed the trimap and the portrait into

the neural network to predict the alpha channel value. Fi-

nally, the input portrait’s background is replaced with the

given background via an image synthesis algorithm to obtain

the synthesized portrait.

Trimap generation methods. As an important annota-

tion, the trimap is used as an input for the matting algo-

rithm. In addition to manual annotation, some algorithms

are used for automatic trimap generation, including depth-

assisted methods, binary segmentation-based methods, and

the combination of image features and morphological dila-

tion. In addition, some methods attempt to integrate trimap

generation into the network structure; however, these meth-

ods require an estimated specified initial trimap. Inspired

by these algorithms, we propose to automatically generate a

trimap via a three-class semantic segmentation neural net-

work, without requiring the original trimap.

Alpha channel prediction methods. Existing alpha chan-

nel prediction algorithms can be partitioned into two cat-

egories: sampling-based methods and propagation-based

methods. The basic principle of the sampling-based meth-

ods is to determine the foreground and background colors

for a given pixel by sampling the pixel color. If the category

(foreground or background) of a given pixel is determined,

the alpha channel value of the pixel is calculated based on

the actual color value of the pixel. The core assumption

of the algorithm is that, in the vicinity of the boundary

between the foreground and background, their color distri-

butions should be consistent. Propagation-based methods

can prevent alpha discontinuity problems with respect to

sampling-based methods. Particularly, propagation-based

methods use the constraints between adjacent pixels and

propagate the opacity from the determined area to the un-

known area to resolve the problems. Recently, deep learning

has achieved remarkable success in many computer-vision

tasks. Deep learning algorithms have also emerged for the

prediction of opacity channels. Liu et al. [1] proposed the

usage of coarse annotated data coupled with fine annotated

data to boost end-to-end semantic human matting without

trimaps as an extra input. In this study, we optimize the

two parts separately instead of end-to-end training so that

the sub-image generation model and the alpha channel pre-

diction model can be particularly optimized alternatively in

the training phase.

Fusion methods. Primary fusion studies are based on an

alpha channel that obtains the fused images via a non-linear

combination. This result is dependent on the accuracy of the

alpha channel. Thereafter, gradient-domain studies are de-

veloped for detailed preservations, such as Poisson cloning

and advanced Poisson cloning. These types of studies can

significantly preserve color distributions. In this study, we

propose a gradient domain-based detail-preserving fusion

mechanism to synthesize portraits with a specified back-

ground that facilitates the prevention of sharp edge noise.

• Pipeline. From Figure 1 [1–4], our portrait synthe-

sis involves replacing the input portrait’s background. The

main steps include face detection, trimap generation, alpha

prediction, and image synthesis. To automate these steps,

we initially use a face detection algorithm to determine if the

input contains a face [5]. For the filtered portrait images,

we use a semantic segmentation neural network to generate

a trimap, and thereafter feed the automatically generated

trimap and the portrait into the neural network to predict

the alpha channel value. Herein, combining with the im-

age synthesis algorithm, the input portrait’s background is

replaced with the given background, and the synthesized

portrait is automatically obtained.

• Portrait trimap generation. To synthesize the por-

trait automatically, an important step is to determine the

value of the opacity channel. The trimap partitions the im-

age input into a foreground area (white, opacity value of

1), background area (black, opacity value of 0), and an un-

known area (gray, opacity value is unknown) that enables

the algorithm to focus only on the solution of the unknown

region. However, it is difficult to automatically generate

trimaps. Consequently, we use the semantic segmentation

neural network based on DeepLab-v3+ and integrate with

the three-point icon annotation for training, to generate the
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Image fusion

Method SAD MSE Grad Conn

Shared matting 128.9 0.091 126.5 135.3

Global matting 133.6 0.068 97.6 133.3

Deep image matting 54.6 0.017 36.7 55.3

BSH matting 58.0 0.026 16.0 54.0

Ours 54.4 0.018 35.0 54.9
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Figure 1 (Color online) (a) The pipeline of our method. We initially use a face detection algorithm to determine if the input

contains a face. Thereafter, we use a semantic segmentation neural network to generate a trimap and feed the trimap and the

portrait into the neural network to predict the alpha channel value. Subsequently, the input portrait’s background is replaced with

the given background via an image synthesis algorithm to obtain the synthesized portrait. (b) Performance comparison among

different matting methods: shared matting [2], global matting [3], deep image matting [4], BSH matting [1], and ours.

trimap automatically, and enable the replacement of the

portrait image background to be completed by the neural

network.

Semantic segmentation distinguishes the objects in the

image from the background and determines the target cat-

egory of each pixel, which is a two-category problem. In

contrast to traditional semantic segmentation, some pixel

values at the boundaries of the background and portrait are

considered as a single category, that is, the problem of gen-

erating tripartite maps is converted into a trimap (portrait,

background, and boundary area) generating problem.

Particularly, for portrait image input, the image require

pre-processing, mainly scaling and filling the picture to a

fixed size. After importing semantic segmentation and the

neural network to obtain the input, it also requires propor-

tional scaling and cropping to restore it to its original input

size. The trimap annotation performs the same deforma-

tion operation as the input, calculates the cross-entropy loss

function with the prediction result of the network and re-

turns it to the network for optimization. The loss is given

by

Loss = −

1

n

n
∑

i

T
∑

j

m
∑

k

yk log(Pjk), (1)

where n, T , and m represent the number of images, cate-

gories, and pixels respectively. In this study, the trimap is

generated as a three-category problem. So T is taken as 3,

and yk indicates the category of the pixel k. Pjk indicates

the probability that the pixel k belongs to category j. In

practice, to improve the accuracy of prediction, we initially

pre-train the semantic segmentation neural network on the

VOC [6] (including 21 types of background objects), the hu-

man body segmentation (two classifications), and the trimap

annotation to determine the final model. When training an

opacity channel prediction network model, the parameters

of the semantic segmentation neural network should be fixed

so that the training process can focus on the optimization

of the opacity channel.

• Portrait alpha channel prediction. The alpha

channel prediction is also called image matting. The prob-

lem is used to predict the proportion of each pixel in the

image belonging to the foreground. The matting algorithm

aims to solve the following equation:

Ci = αiFi + (1− αi)Bi, (2)

where Ci indicates the pixel value of the corresponding po-

sition of the fused image, and Fi and Bi are the foreground

and background values of the corresponding pixel, respec-

tively. αi is the alpha value to be solved, which is between

zero and one. In practice, we often only know the pixel val-

ues Ci of the fused image, and the remaining parameters are

unknown. Therefore, it is significantly difficult to solve αi

from the above equation.

In contrast to previous studies [4], we propose a portrait-

matting method. The corresponding gradient image is

initially calculated using the Sobel operator. The RGB,

trimap, and gradient channels are concatenated into a five-

channel network input; then, the input passes through an

encoder to obtain deep features. In this study, the network

structure of VGG16 [7] is used as the encoder, which con-

tained 14 convolutional layers and five max pooling layers.

The encoder samples the original input to 1/32 of the origi-

nal size to determine deep features that contain the bound-

ary information of the objects in the image. Moreover, the

decoder performs upsampling on the deep features to deter-

mine an output of the same size as the original image. Fi-

nally, through a sigmoid activation layer, it determines the

alpha channel prediction. The network decoder is composed

by five unpooling layers and six de-convolution layers.

The following loss function is used to optimize each pixel

position in training to enable the network to output a rea-

sonable alpha prediction value:

Lossi = λ1

√

(α̂i − αi)2 + ε2 + λ2

3
∑

k=1

√

(ĉik − cik)2 + ε2,

(3)

where α̂i is the alpha channel value predicted by the net-

work, αi is the ground truth of the alpha channel value. k is

the RGB channel, ĉik represents the pixel value of the chan-

nel k of the image synthesized by α̂i, and cik represents the

pixel value of the channel k of the synthesized image accord-

ing to αi. ε denotes the regular part of the loss function.

In the experiment, ε = 10−6, λ1, and λ2 are the weights

of the two parts, and λ1 = λ2 = 0.5. The first part of the

loss function shows the difference between the predicted and

ground-truth alpha values, and the second part shows the

difference between the predicted and actual alpha values af-

ter synthesizing the image. An adaptive moment estimation

optimization algorithm is used to ensure that the training

process is stable and convergent.

• Portrait image fusion. After obtaining the alpha

channel of the image, an image fusion operation is performed

for a specific background. To make the edges of the fused

image smoother and significantly natural, we use a non-local



Yi Z K, et al. Sci China Inf Sci February 2022 Vol. 65 124101:3

mean filtering algorithm to perform the denoising operation

after fusion. The specific operation is to perform pixel-wise

denoising on the unknown area in the trimap.

u(p) =
1

Z(p)

∑

q∈N(p,r1)

w(p, q)v(q), (4)

where u(p) is the pixel value after denoising at the position

p. v(q) represents the pixel value at the position q. N(p, r1)

represents the adjacent area of p, an image patch centered

on p with a side length of 2r1+1. Z(p) is the normalization

coefficient defined as

Z(p) =
∑

q∈N(p,r1)

w(p, q), (5)

where w(p, q) is the weight coefficient determined by the dis-

tance of the small area N(p, r2) located at p and the small

area N(q, r2) located at q. The Euclidean distance d(p, q) is

defined as

d(p, q) =
1

2r2 + 1

∑

j∈N(0,r2)

(v(p + j)− v(q + j))2. (6)

From this Euclidean distance, w(p, q) is defined as

w(p, q) = e
−

d(p,q)2

102 . (7)

After the non-local mean filtering operation, the noise in

the boundary of the fused image can be effectively removed,

and the detailed information of the object boundary is sig-

nificantly preserved. This improves the effect of the fused

image.

• Experiments and evaluations. Our method is

trained and evaluated on newly collected portraits as well

as a public dataset [4]. This dataset contains 481 fore-

ground images with fine alpha channel annotation values.

The dataset is split into 431 images for training and 50 for

testing. However, only 202 images for training and 11 for

testing contain faces. Extending from the previous study [4],

we replace 229 training images and 39 testing images with

newly collected portraits. In the training dataset, each fore-

ground is merged with 100 different VOC [6] background

images. In the testing dataset, each foreground is combined

with 50 different COCO [8] background images. The train-

ing is conducted on a GTX-2080Ti GPU. We use the metrics

SAD, MSE, Grad, and Conn proposed in [9] to evaluate the

results. The smaller the values of these indicators, the bet-

ter is the performance. Performance comparisons are shown

in Figure 1.

Training settings. We train the net with VGG16 as the

backbone network, and use 6, 12, 24, and 48 epochs for train-

ing processing, with the batch size of 1, 2, 4 and 8, where

the epoch 12 with batch size 1 gives the best result. We

argue that during training, our network learns a universal

matting extractor, which is then applicable to new images,

specified via a few examples during testing.

Testing settings. In testing stage, the network for infer-

ence is the same with the training network.

As presented in Figure 1, our model achieves the optimal

results in terms of all four metrics compared with most high-

performance methods [1–4]. Note that the MSE is consider-

ably worse than that of the method [4]. It states that the im-

age gradient performs an important role in the training pro-

cess, and our model can obtain a more accurate alpha value.

In addition, BSH [1] uses a significantly large dataset, and

our method achieves comparable performance with only 10%

of the training dataset. We attribute our high performance

to the whole pipeline. We integrate face detection, trimap

generation, alpha channel generation, and image fusion to

form a complete portrait synthesis framework. The trimap

generation and alpha channel generation are implemented

by the neural network framework, and a multi-picture par-

allel operation can be implemented on the GPU. Because

face detection and image fusion cannot achieve multi-picture

parallel, to reduce the duration of entire process and process

multiple input images simultaneously, we implement face de-

tection via a multi-thread mechanism, and use the CUDA

kernel for parallel image fusion. For detailed results and

performance comparisons, please refer to our complemen-

tary video.
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