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Abstract This study focuses on state-feedback and output-feedback neural learning control problems for

discrete-time nonlinear systems in the pure-feedback form. First, an extended result for the exponential

stability for a class of discrete-time linear time-varying (LTV) systems with n-step delays is proposed to

verify the exponential convergence of estimated weights. Subsequently, both state-feedback and output-

feedback adaptive neural network (NN) controllers are constructed by combining the classical n-step and

n-step input-output predictors. After ensuring convergence of the system output to a recurrent reference

signal, the radial basis function subvector of NN is verified to satisfy the persistent exciting condition using

the system state equation and the implicit function theorem. By combining the extended stability corollary

of an LTV system, the estimated weights are verified to exponentially converge to their optimal values. By

constructing “learning rules” and using a “mod” function, the estimated weights with a convergent sequence

are synthetically represented and stored as the experience knowledge, which is reused to construct neural

learning controllers. The proposed neural learning controllers not only accomplish similar control tasks

but also reduce the burden of online computation compared with the conventional adaptive NN controllers.

Finally, simulation results are presented to demonstrate the effectiveness of the presented schemes.
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1 Introduction

Neural networks (NNs) have been widely used for the controller design of uncertain nonlinear systems
owing to their universal approximation ability and the ubiquitous unknown dynamics in practice [1]. For
continuous-time nonlinear systems in a normal form, a large number of adaptive NN control schemes [2]
have been proposed based on the Lyapunov stability theory and system identification. Using backstep-
ping technology [3], these adaptive NN control schemes have been extended to nonlinear systems in the
strict-feedback form [4–7]. A common assumption from these results is that the considered system is
affine. Such an assumption is usually difficult to be practically satisfied owing to the inevitable nonaffine
structure, such as the hypersonic flight vehicles, biochemical processes, and flexible robots. To discard
this assumption, the implicit function theorem has been employed to develop adaptive NN control for
nonaffine nonlinear systems in the normal form [3]. This result has been extended to special pure-feedback
nonlinear systems (PFNSs) by combining backstepping and the mean-value theorem [8, 9], wherein the
control input was required to be linear. The nonaffine form of the control input may result in the circular
control design because the control input and its derivatives are involved in the input variables of NN.
Such a difficulty has been tackled in [10] by the combination of the input-state-stability and the small-
gain theorem, solving the control problem of more general PFNSs. Using the proposed framework, some
interesting adaptive neural control schemes have been developed for PFNSs with different phenomena,
including input nonlinearities [11–13], output/state constraints [14–16], and unmeasurable states [17,18].

*Corresponding author (email: auwangmin@scut.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3138-7&domain=pdf&date_stamp=2022-1-24
https://doi.org/10.1007/s11432-020-3138-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3138-7
https://doi.org/10.1007/s11432-020-3138-7


Wang M, et al. Sci China Inf Sci February 2022 Vol. 65 122206:2

Compared with considerable studies on continuous-time systems, relatively few results for discrete-
time nonlinear systems exist although digital computer technology has been widely used in practical
engineering. The primary challenges include the following: (1) the difference of the Lyapunov function is
nonlinear in discrete-time, making stability analysis become severer than the continuous-time case; (2) a
noncausal problem may be encountered for the controller design of discrete-time lower-triangular systems,
i.e., the future system states will be involved in the current control input. Nevertheless, some dedicated
efforts have been put in for discrete-time nonlinear systems [19–28]. For discrete-time parametric strict-
feedback systems, the robust backstepping adaptive control scheme has been developed to solve the
system output tracking problem [19]. To overcome the noncausal problem of more general discrete-
time nonlinear systems, an n-step predictor has been developed in [20] for discrete-time strict-feedback
systems. Motivated by the concept of the n-step-ahead predictor, the n-step input-output predictor
has been developed in [21] to achieve the tracking control for discrete-time PFNSs by combining the
implicit function theorem. Subsequently, a novel adaptive NN control framework based on variable
substitution has been proposed in [22, 29], which can also avoid the noncausal problem without n-step
transformation of the original systems. With the aid of the three frameworks mentioned above, there are
increasingly interesting results available on the control problem of discrete-time lower-triangular nonlinear
systems subject to various conditions such as input nonlinearities [23, 24], limited communication band-
width [25, 26], and performance optimization [27, 28].

The neural learning problem (i.e., knowledge acquirement, storage, and usage of the estimated weights)
is not a major concern in the aforementioned adaptive NN control schemes. However, learning ability
is a key factor for achieving high-level industrial automation. Moreover, the learning issue should be a
primary concern of NN control, as the development of NN control is motivated by human learning. As we
all know, the neural learning problem is a great challenge because the persistent exciting (PE) condition
of NN weight convergence is too harsh to be verified in closed-loop control systems [30]. To handle such
a challenge, a deterministic learning mechanism has been proposed in [31] for continuous-time nonlinear
systems in the normal form, which verifies the convergence of partial estimated weights. It has been shown
in [31] that for a radial basis function (RBF) NN constructed on regular lattices, the RBF NN satisfies a
partial PE condition if NN inputs are recurrent. Motivated by the deterministic learning mechanism [31],
a neural learning control scheme has been proposed for continuous-time strict-feedback systems [32],
wherein the recurrent property of the NN inputs and the exponential convergence of estimated weights
are verified by the system decomposition strategy and coordinate transformation technology. Next,
a few interesting neural learning control schemes have been developed for continuous-time nonlinear
systems with different structures, including the affine [33], nonaffine [34], output constrained [35], and
the multiagent [36] forms. Furthermore, learning control schemes have been extended to many practical
systems such as robot manipulators [37] and ocean surface ships [38, 39].

In contrast to the fruitful neural learning results for continuous-time systems, only a few results are
available for discrete-time nonlinear systems [40–42] owing to the lack of exponential stability of lin-
ear time-varying (LTV) systems with time delays. Using the existing learning framework, the early
studies [40–42] are suitable only for discrete-time nonlinear systems subject to the normal form and the
unit control gain. To the best of our knowledge, the neural learning control for discrete-time nonaffine
PFNSs is still an open problem although the PFNSs represent more practical systems than the normal
form [40–42]. The primary difficulties stem from the following three parts: (1) The constructed neu-
ral weight adaptive laws usually contain n-step delays for discrete-time PFNSs. The delays lead to the
weight estimate error system as a class of LTV systems with n-step delays, which makes it impossible to
verify the convergence of estimated weights owing to the lack of relevant research results for exponential
stability of discrete-time LTV time-delay systems. (2) For discrete-time PFNSs, all system state variables
are used as NN inputs, which makes it difficult to verify the recurrent property using the existing system
decomposition strategy. (3) Owing to the existence of time delays, NN estimated weights may converge
to a constant sequence rather than a fixed value. The manner to express and store the knowledge of
estimated weights is of vital significance for knowledge reuse to achieve a high-level automatous control.

Based on the above observation, it is by no means a trivial task to tackle such an open problem. Herein,
these challenges are handled one at a time. First, both state-feedback and output-feedback adaptive NN
control schemes are respectively proposed for discrete-time PFNSs with measurable and immeasurable
system states to ensure that the system output converges to a small neighborhood of a given recurrent
signal using the n-step predictor. Next, all the NN input variables are verified to be recurrent, thereby
ensuring satisfaction with respect to the partial PE condition of RBF NN. According to the character-
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istics of n-step delays of the weight updating law, the exponential convergence of the estimated weights
is guaranteed by extending the existing exponential convergence of discrete-time LTV systems. The
converged weights are represented and stored in a constant sequence through some specially constructed
“learning rules”. With the help of a “mod” function, the stored knowledge is reused to construct both
state-feedback and output-feedback neural learning controllers to achieve improved tracking control per-
formance, including better transient performance and less online computation. For clarity, the primary
contributions of this study are summarized as follows:

(1) An extended result is developed to show the exponential stability condition for a class of discrete-
time LTV systems with n-step delays. Such a result provides a powerful tool for convergence of the
estimated weights under n-step delays.

(2) All the NN inputs are proven to be recurrent by combining the system state equation and implicit
function theorem, guaranteeing that the PE condition of RBF NNs is satisfied.

(3) The estimated weights are systematically represented and stored as a constant sequence by the
constructed “learning rules”. The “mod” function is introduced to characterize the experience knowledge
of the ideal control input based on the stored constant sequence. The stored knowledge is reused to
construct neural learning controllers, improving the tracking performance to a great extent.

The rest of the study is organized as follows. Section 2 formulates the learning objective and provides
some preliminaries. In Section 3, adaptive NN controllers are presented for PFNSs, and the convergence
of the estimated weights is verified. The “learning rules” and the NN learning controllers are constructed
in Section 4. Simulation results are presented in Section 5. Finally, a conclusion is included in Section 6.

Notation. Standard notations are employed herein. For a square matrix Γ, λmax(Γ) denotes its
maximum eigenvalue. The subscript (·)ζ stands for the region close to the trajectory φ(Z(k)) and the
subscript (·)ζ̄ stands for the region far away from the trajectory φ(Z(k)), where φ(Z(k)) represents the
trajectory composed by the variables in the vector Z(k).

2 Preliminaries and problem formulation

2.1 System description

Consider the following discrete-time PFNS with unknown nonaffine terms:











xi(k + 1) = fi(x̄i(k), xi+1(k)), i = 1, . . . , n− 1,

xn(k + 1) = fn(x̄n(k), u(k)),

y(k) = x1(k),

(1)

where x̄i(k) = [x1(k), x2(k), . . . , xi(k)]
T (i = 1, 2, . . . , n), u(k), and y(k) are the state vector, the control

input, and the system output, respectively; fi(x̄i(k), xi+1(k)) and fn(x̄n(k), u(k)) are unknown smooth
nonlinear functions.

For the sake of controller design for the system (1), define the following smooth functions:

{

gi(·) = ∂fi(x̄i(k), xi+1(k))/∂xi+1(k), i = 1, . . . , n− 1,

gn(·) = ∂fn (xn(k), u(k)) /∂u(k).
(2)

Assumption 1 ([27]). System nonlinear functions gi(·) (i = 1, . . . , n) satisfy 0 < g
i
< gi(·) < gi, where

g
i
and gi are two positive constants.

Assumption 2 ([41]). The desired system output yd(k) is a recurrent signal.

A recurrent trajectory represents a large set of periodic, quasi-periodic, almost-periodic, and even
chaotic trajectories, which is characterized as: for a given constant ξ > 0, there exists a time interval kξ
such that the trajectory φ(Z(k)) returns to the ξ-neighborhood of any point on the trajectory within a
time not greater than kξ [43].

Herein, our objective is to propose a dynamic learning control scheme for the system (1) to achieve
the knowledge acquirement and storage of estimated weights during the steady-state control process, and
then reuse the learned knowledge to construct the neural learning controller for the improved tracking
control performance.



Wang M, et al. Sci China Inf Sci February 2022 Vol. 65 122206:4

2.2 RBF neural networks

It has been proven in [30] that the RBF NN can approximate any continuous function h(Z(k)) : Rq → R

over a compact set ΩZ ⊂ R
q as

h(Z(k)) = W ∗TS(Z(k)) + ǫ(Z(k)), ∀Z(k) ∈ ΩZ , (3)

where W ∗ ∈ R
m is the ideal weights vector, m is the number of NN nodes, Z(k) ⊂ R

q is the NN input
vector, S(Z(k)) = [s1(Z(k)), s2(Z(k)), . . . , sm(Z(k))]T ∈ R

m is the activation function vector, where
si(Z(k)) is selected as si(Z(k)) = exp[−(Z(k) − βi)

T(Z(k) − βi)/η
2
i ] with βi = [βi1, βi2, . . . , βiq]

T and
ηi being the center and the width of NN, respectively, and ǫ(Z(k)) stands for the approximation error,
satisfying |ǫ(Z(k))|< ǫ∗, where ǫ∗ is an arbitrarily small positive constant.

Furthermore, the RBF NN has the localized approximation ability [31]. In particular, for any recurrent
trajectory φ(Z(k)), the nonlinear function h(Z(k)) can be approximated by some neurons closing to
φ(Z(k)) as

h(Z(k)) = W ∗T
ζ Sζ(Z(k)) + ǫζ(Z(k)), (4)

where Sζ(Z(k)) = [s1ζ(Z(k)), . . . , sjζ(Z(k))]T ∈ R
mζ with mζ < m, W ∗

ζ ∈ R
mζ , and ǫζ(Z(k)) is the

approximation error, with |ǫζ(Z(k))|−|ǫ(Z(k))| being small.
As we know, the PE condition [31,41] is a key factor to achieve the exponential convergence of estimated

weights, which is shown as follows.

Definition 1. A sequence S(Z(k)) is said to be PE if there exist positive constants α, k0, and k1 such
that

k0+k1−1
∑

k=k0

S(Z(k))ST(Z(k)) > αI, ∀k0 > 0. (5)

Lemma 1 ([31]). Assume that the RBF NN input vector Z(k) is recurrent. Then, it can be obtained
that the subvector Sζ(Z(k)) composed by S(Z(k)) closing to the orbits φ(Z(k)) satisfies the PE condition.

2.3 Stability of discrete-time linear time-varying systems

Consider a discrete-time LTV system as

x(k + 1) = A(k)x(k) + d(k), (6)

where x(k) ∈ R
m is the system state, A(k) ∈ R

m×m is the system matrix, and d(k) is a bounded
disturbance. The exponential convergence of system (6) has been given in [41] as follows.

Lemma 2. Consider the discrete-time LTV system (6). Assume A(k) = Im−Γξ(k)ξT(k), Γξ(k)ξT(k) <
2Im, and ‖d(k)‖ is small, wherein Im ∈ R

m×m is an identity matrix, ξ(k) ∈ R
m is a time-varying matrix,

and Γ ∈ R
m×m is a positive definite symmetric constant matrix. If ξ(k) satisfies the PE condition, then

the system state x(k) converges exponentially to a small neighbourhood of zero.

Lemma 2 is the core tool for discrete-time nonlinear systems in the normal form to verify the conver-
gence of estimated weights. However, Lemma 2 is not applicable to the considered pure-feedback form
(1). As such, this study proposes an extension of Lemma 2 as follows.

Corollary 1. Consider the discrete-time dynamic system

x(k + n) = A(k)x(k) + d(k). (7)

Assume A(k) = Im − Γξ(k)ξT(k), Γξ(k)ξT(k) < 2Im, and the value of ‖d(k)‖ is small. If ξ(k) is PE,
then these states x(k1), x(k2), . . . , x(kn) converge exponentially to a small neighborhood around zero,
respectively, where {kj| kj = j, j + n, j + 2n, . . .} stands for time sequence with j = 1, 2, . . . , n.
Proof. Define xj(k) = x(kn+ j), Aj(k) = A(kn+ j), dj(k) = d(kn+ j), where j = 1, . . . , n. Then, we
have

xj(k + 1) = x((k + 1)n+ j) = x(kn+ j + n). (8)

According to (7), it is easy to obtain

xj(k + 1) =A(kn+ j)x(kn+ j) + d(kn+ j) = Aj(k)xj(k) + dj(k). (9)

Using Lemma 2, we can obtain that the state xj(k) converges exponentially to a small neighborhood
around zero. According to the definition of xj(k), we obtain that these states x(k1), x(k2), . . . , x(kn)
converge exponentially to small neighborhoods around zero.
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3 Dynamic learning from adaptive NN control: knowledge acquirement

This section focuses on the convergence of estimated weights during the stable closed-loop control process.
To achieve such a goal, the state-feedback and output-feedback control are investigated for the discrete-
time PFNSs (1) by the system transformation technology, respectively. Based on a combination of the
developed Corollary 1, the estimated weights will be verified to be exponentially convergent for any
recurrent reference yd(k).

3.1 State-feedback control

To avoid the causality contradiction, which may be encountered in the controller design of discrete-time
PFNSs (1), the system transformation technology [21] is employed to transform the original system (1)
into the following n-step-ahead predictor:

y(k + n) = x1(k + n) =fs(x̄n(k), u(k)), (10)

where fs(x̄n(k), u(k)) is a composite nonlinear function of original system (1). Moreover, it is easy
from Assumption 1 to verify that 0 < g < ∂fs(x̄n(k), u(k))/∂u(k) =

∏n

i=1 gi(.) := gs(k) < ḡ, where
g =

∏n

i=1 gi, and ḡ =
∏n

i=1 ḡi.
In what follows, a state-feedback adaptive NN controller is constructed by using the implicit function

theorem. Define the tracking error as es(k) = x1(k)− yd(k). Then, it follows from (10) that

es(k + n) = fs(x̄n(k), u(k))− yd(k + n). (11)

According to the implicit function theorem [10], there exists a unique ideal control input u∗
s(k) such that

fs(x̄n(k), u
∗
s(Zs(k))) − yd(k + n) = 0, Zs(k) = [x̄T

n (k), yd(k + n)]T. (12)

Owing to the unknown system dynamics, the ideal controller u∗
s(Zs(k)) cannot be solved directly. With

the help of RBF NN, there exist ideal weights vector W ∗
s , such that the ideal controller can be approxi-

mated by RBF NN (3) as
u∗
s(k) = W ∗T

s Ss(Zs(k)) + ǫs(k), (13)

where |ǫs(k)| < ǭs is the NN approximation error. Then, the state-feedback adaptive NN controller is
designed as

us(k) = ŴT
s (k)Ss(Zs(k)) (14)

with the weight updating law

Ŵs(k + 1) = Ŵs(k1)− ΓsSs(Zs(k1))es(k + 1), (15)

where Ŵs(k) is the estimate of W ∗
s , Γs = ΓT

s > 0 with λmax(Γs) = rs, and k1 = k − n + 1. Define
W̃s(k) = Ŵs(k)−W ∗

s . Substituting (12)–(14) into (11) yields

es(k + n) =fs(x̄n(k), us(k))− fs(x̄n(k), u
∗
s(k)) = gs(x̄n(k), u

c
s(k))(W̃

T
s (k)Ss(Zs(k))− ǫs(k)), (16)

where uc
s(k) ∈ [min{us(k), u

∗
s(k)},max{us(k), u

∗
s(k)}], according to the mean value theorem. For brevity,

let Ss(k) = Ss(Zs(k)), and gs(k) = gs(x̄n(k), u
c
s(k)).

Theorem 1. Consider the closed-loop system consisting of the plant (1) under Assumptions 1 and
2, the control input (14), the weight updating law (15), and the bounded initial conditions including
x̄n(1), Ŵs(1), . . . , Ŵs(n). For the design parameter Γs appropriately chosen, the weights estimate vectors
Ŵsζ(k

1), Ŵsζ(k
2), . . . , Ŵsζ(k

n) converge exponentially to small neighborhoods of the ideal weights vector
W ∗

sζ , respectively.

Proof. Substituting (16) into (15) yields

W̃s(k + 1) = (I − Γsgs(k1)Ss(k1)S
T
s (k1))W̃s(k1) + ΓsS

T
s (k1)gs(k1)ǫs(k1). (17)

Further, one has

W̃s(k + n) = As(k)W̃s(k) + ds(k), (18)
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where As(k) = I − gsΓs(k)Ss(k)S
T
s (k) and ds(k) = ΓsSs(k)gs(k)ǫs(k). According to Corollary 1, the

exponential convergence of W̃s(k) depends on the small disturbance ds(k) and the PE condition of Ss(k).
Therefore, we need to prove the following two conditions one by one:

(1) The tracking error es(k) converges to a small neighborhood around zero in a finite time;
(2) The subvector Ssζ(k) satisfies the PE condition, and then the weights estimate vectors Ŵsζ(k

1),

Ŵsζ(k
2), . . . , Ŵsζ(k

n) can converge exponentially to small neighborhoods of the optimal value W ∗
sζ , re-

spectively.
Based on the above analysis, the proof of Theorem 1 is divided into two parts.
(1) To verify the convergence of es(k), the Lyapunov function candidate is constructed as

Vs(k) =
1

ḡ
e2s(k) +

n−1
∑

j=0

W̃T
s (k1 + j)Γ−1

s W̃s(k1 + j). (19)

The first difference of Vs(k) is

∆Vs =
1

ḡ
e2s(k + 1)−

1

ḡ
e2s(k) + ST

s (k1)ΓsSs(k1)e
2
s(k + 1)− 2W̃T

s (k1)Ss(k1)es(k + 1). (20)

By combining (16), the Young’s inequality, |ǫs(k)| < ǭs, and ‖Ss(k)‖ 6 ls [30], one has

W̃T
s (k1)Ss(k1)es(k + 1) =

1

gs(k1)
e2s(k + 1) + es(k + 1)ǫs(k1),

ST
s (k1)ΓsSs(k1) 6 rsl

2
s ,

2es(k + 1)ǫs(k1) < e2s(k + 1) + ǭ2s.

(21)

Substituting (21) into (20) leads to

∆Vs 6−
1

ḡ
e2s(k)−

1− 2rs − rsl
2
s ḡ

ḡ
e2s(k + 1) +

ḡ

rs
ǭ2s. (22)

Further, by choosing the design parameter rs <
1

1+l2s ḡ
, Eq. (22) is rewritten as

∆Vs 6−
1

ḡ
e2s(k) +

ḡ

rs
ǭ2s. (23)

From (23), there exist a small constant µs >
√

ḡ2 ǭ2s
rs

and a finite positive integer Ks, for all k > Ks,

such that es(k) < µs. Owing to the small approximation error ǭs, the tracking error es(k) can converge
to a small neighborhood around zero. Furthermore, according to the definition of ds(k) in (18), we can
conclude that ds(k) can be made arbitrarily small with small ǭs and rs.

(2) In this part, we need to verify that Ssζ(k) satisfies the PE condition. It can be shown from
Lemma 1 that the key problem is to verify the recurrent property of all the NN input variables Zs(k) =
[x̄T

n (k), yd(k+ n)]T. From (23), es(k) can be made arbitrarily small after a finite time Ks. Since es(k) =
x1(k)− yd(k) and the reference signal yd(k) is recurrent, it is easy to obtain that the state x1(k) is also
recurrent. From the first subsystem state equation of (1), one has

x1(k + 1) = f1(x1(k), x2(k)). (24)

According to implicit function theorem [10], there exists a unique x2(k) such that f1(x1(k), x2(k)) =
x1(k + 1), i.e., there exists a unique nonlinear mapping F1 that makes x2(k) = F1(x1(k), x1(k + 1))
hold. Since x1(k) is recurrent and x2(k) is a nonlinear function of x1(k), we can infer that x2(k) is also
recurrent. Similarly, we can infer that all the system states xi(k) (i = 1, . . . , n) are recurrent through the
system state equation (1) and the implicit function theorem. Therefore, all the NN input variables Zs(k)
are recurrent for k > Ks. According to Lemma 1, along the recurrent trajectory Zs(k), the subvector
Ssζ(Zs(k)) satisfies the PE condition.

Based on the localized approximation ability of RBF NNs, the dynamical equation (18) is rewritten
along φ(Zs(k)) as

W̃sζ(k + n) = Asζ(k)W̃sζ (k) + dsζ(k), (25)
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where Asζ(k) = Iζ − gs(k)ΓsζSsζ(k)S
T
sζ(k), and dsζ(k) = ΓsζSsζ(k)gs(k)ǫsζ(k). Eq. (25) represents a

class of discrete-time LTV systems shown in Corollary 1.
By choosing the appropriate parameter Γs, we can obtain that gs(k)ΓsζSsζ(k)S

T
sζ(k) < 2Iζ . By com-

bining the PE condition of Ssζ(k) and the small dsζ(k), it can be verified from Corollary 1 that the weights

estimate error vectors W̃sζ(k
1), W̃sζ(k

2), . . . , W̃sζ(k
n) converge exponentially to small neighborhoods of

zero with n as the time step, respectively. This implies that along the recurrent trajectory φ(Zs(k)), the
weights estimate vectors Ŵsζ(k

1), Ŵsζ (k
2), . . . , Ŵsζ(k

n) converge exponentially to small neighborhoods

of the optimal vector W ∗
s , respectively. On the other hand, for Ŵsζ̄(k) far away from the recurrent

trajectory, they almost keep unchanged because of the small Ssζ̄(k).

Remark 1. Lemma 1 and Corollary 1 show that the exponential convergence of estimated weights
relies on the recurrent property of all the NN input variables. Unlike the existing methods on the
continuous-time case [32,33], the n-step-ahead predictor is employed to obtain one weight estimate error
system (25) with n-step delays. Owing to the existence of the delays and the different structure features
of discrete-time nonlinear systems, these existing methods [32, 33] are invalid to solve the exponential
convergence of estimated weights of discrete-time PFNSs (1). To tackle these problems, the following
three dedicated actions are taken herein: (1) Corollary 1 is proposed and strictly proven to guarantee
the exponential convergence of discrete-time LTV system with n-step delays; (2) the structural feature
of discrete-time system (1) and the implicit function theorem are combined to verify that all NN input
variables Zs(k) are recurrent; (3) the weights estimate vector Ŵs(k) is verified to converge to a sequence
{Ŵs(k)|Ŵs(k

1
s), Ŵs(k

2
s ), . . . , Ŵs(k

n
s )} rather than one fixed value.

3.2 Output-feedback control

Generally speaking, the system state variables are often immeasurable in practice. In this case, it is
impossible to implement the state-feedback control scheme mentioned above. To solve such a problem,
the transformation procedure [21] is employed to convert the original system (1) into the following n-
step-ahead input-output predictor:

y(k + n) = x1(k + n) = fo(z̄(k), u(k)), (26)

where z̄(k) = [yT(k), uT(k−1)]T, y(k) = [y(k−n+1), . . . , y(k)]T, u(k−1) = [u(k−n+1), . . . , u(k−1)]T,
and fo(z̄(k), u(k)) is a composite nonlinear function of the original system (1). It has been shown from [21]
that 0 < g < ∂fo(z̄(k), u(k))/∂u(k) := go(k) < ḡ. Similar to the state-feedback process, The tracking
error is defined as eo(k) = x1(k)− yd(k), and its nth difference is described by

eo(k + n) = fo(z̄(k), u(k))− yd(k + n). (27)

According to the implicit function theorem [10], there exists a unique ideal control input u∗
o(k) such that

fo(z̄(k), u
∗
o(Zo(k))) − yd(k + n) = 0, Zo(k) = [z̄T(k), yd(k + n)]T. (28)

Then, the RBF NN (3) is employed to approximate the control input as: u∗
o(k) = W ∗T

o So(Zo(k))+ ǫo(k),
where W ∗

o is the ideal weights vector, and ǫo(k) < ǭo is the NN approximation error. Afterwards, the
output-feedback adaptive neural controller is designed as

uo(k) = ŴT
o (k)So(Zo(k)) (29)

with the weight updating law

Ŵo(k + 1) = Ŵo(k1)− ΓoSo(Zo(k1))eo(k + 1), (30)

where Ŵo(k) is the estimate of W ∗
o , Γo = ΓT

o > 0 with λmax(Γo) = γo, and k1 = k − n + 1. Define
W̃o(k) = Ŵo(k)−W ∗

o . Substituting (29) into (27) yields

eo(k + n) =go(z̄(k), u
c
o(k))(W̃

T
o (k)So(Zo(k))− ǫo(k)), (31)

where uc
o(k) ∈ [min{uo(k), u

∗
o(k)},max{uo(k), u

∗
o(k)}].
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Theorem 2. Consider the closed-loop system consisting of the plant (1) under Assumptions 1 and
2, the control input (29), the weight updating law (30), and the bounded initial conditions including
x̄n(1), Ŵo(1), . . . , Ŵo(n). For the design parameter Γo appropriately chosen, the weights estimate vectors
Ŵoζ(k

1), Ŵoζ(k
2), . . . , Ŵoζ(k

n) converge exponentially to small neighborhoods of the optimal value W ∗
oζ ,

respectively.

Proof. This proof is similar to Theorem 1. Owing to the space limit, this proof is omitted.

4 Neural learning control for discrete-time PFNSs

This section focuses on the knowledge representation and storage of neural estimated weights from the
steady-state control process of discrete-time PFNSs, and the knowledge reuses for the higher control
performance. To achieve such an objective, a learning rule is firstly summarized, and then the knowledge
of the neural estimated weights is represented duly even if there are n-step delays. Based on the stored
knowledge, static learning controllers are constructed for discrete-time PFNSs to achieve better control
performance including the transient performance and the computational burden.

4.1 Neural learning control based on state-feedback case

In Section 3, we have shown that the estimated weights Ŵs(k) can exponentially converge to their optimal
values. But the weights are verified to converge to a constant sequence {Ŵs(k)|Ŵs(k

1), Ŵs(k
2), . . .,

Ŵs(k
n)}, rather than a fixed value, owing to the n-step delays. This sequence presents a great challenge

on the knowledge representation and storage of Ŵs(k). Such a challenge will be solved by constructing
some dedicated “learning rules”.

4.1.1 Knowledge representation and storage

It has been proven in Theorem 1 that the estimated weights Ŵs(k) converge exponentially to small
neighborhoods of their optimal values. According to (15), one has

Ŵs(k + n) = Ŵs(k)− ΓsSs(Zs(k))es(k + 1). (32)

From (32), the estimated weights Ŵs(k + n) at moment k + n is updated by Ŵs(k) at moment k.

Based on this analysis, we define the following “learning rules”.

(1) ks,a stands for the beginning of the learning process, which is chosen to make the ks,a − 1 be a
multiple of n.

(2) Ts represents the total number of learning steps, which is chosen as a multiple of n. Moreover,
ks,b = Ts + ks,a − 1 stands for the end of the learning process.

(3) Ts1 = Ts/n represents the number of updating period in learning process.

(4) {kj| kj = j, j + n, j + 2n, . . .} (j = 1, . . . , n) is used as time sequence for the jth weights vector
updating.

(5) W̄sj (j = 1, . . . , n) represents the jth constant weights vector, which is represented as

W̄sj =
1

Ts1

ks,b+j−n
∑

kj=ks,a+j−1

Ŵs(k
j). (33)

Next, we employ the stored constant weights vector W̄sj (j = 1, 2, . . . , n) in (33) to show the accurate
approximation of unknown system ideal control input u∗

s(Zs(k)). For the localization property of RBF
NNs (4), the unknown system ideal control input u∗

s(Zs(k)) along the recurrent trajectory φ(Zs(k)) can
be accurately approximated by

u∗
s(Zs(k)) = ŴT

s (k)Ss(Zs(k)) + εs1(k) = ŴT
sζ(k)Ssζ(Zs(k)) + εs2(k) = W̄T

slSs(Zs(k)) + εs3(k),

l =

{

k mod n, if k mod n 6= 0,

ni, if k mod n = 0,

(34)
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where εsm(k) (m = 1, 2, 3) is the corresponding approximation error. The local accurate NN approxima-
tion region Ωφ is described by

dist(φ(Zs(k)), Zs(k)) < p ⇒ |u∗
s(Zs(k)) − W̄T

slSs(Zs(k))| < εs, (35)

where p > 0 is a positive constant and εs is the small approximation error.

Remark 2. Different from the existing neural learning control schemes [32,33] for the continuous-time
systems, the weights estimate vector Ŵs(k) converges to n different values at the corresponding moments
kj , (j = 1, 2, . . . , n), respectively, rather than a fixed value. This convergence feature raises a significant
challenge to the knowledge representation and storage of Ŵs(k). To tackle such a problem, we construct
some dedicated “learning rules” to represent and store the constant weights, and then achieve an exact
approximation of the unknown system ideal control input by combining the constant weights with a
“mod” function (34).

Remark 3. The core idea of the “learning rules” is to help us acquire the convergent weights Ŵs(k
1),

Ŵs(k
2), . . . , Ŵs(k

n) and store them as constant weights W̄s1, W̄s2, . . . , W̄sn. Then the constant weights
W̄s1, W̄s2, . . . , W̄sn can be reused at the corresponding time k1, k2, . . . , kn, respectively, with the help of
a “mod” function. Therefore, ks,a − 1 is selected as a multiple of n so that ks,a belongs to a moment of
time sequence k1; ks,b = Ts + ks,a − 1 and Ts are multiples of n so that ks,b belongs to a moment of time
sequence kn. Through the above efforts, the constant weights W̄sj (j = 1, 2, . . . , n) can be obtained and
stored by a simple mean function (33).

4.1.2 Neural learning controller with knowledge reuse

In this subsection, we will reuse W̄T
slSs(Zs(k)) to develop the neural learning controller for some same

or similar tracking tasks. Consider the equivalent transformation form (10) of the original discrete-time
SFNSs (1). Instead of the adaptive NN controller (14) with the weight updating law (15), we employ
W̄T

slSs(Zs(k)) to design the following neural learning controller:

us(k) = W̄T
slSs(Zs(k)), (36)

where W̄sl (l = 1, 2, . . . , n) is given in (33), and l is defined in (34). Substituting (36) into (11), we can
obtain the closed-loop error system

es(k + n) =gs(k)h̃s(k), (37)

where h̃s(k) = us(k)− u∗
s(k), and h̃s(k) < εs.

Theorem 3. Consider the closed-loop system consisting of the plant (1) and the learning controller
(36) with stored constant weights vector given in (33). For the same or similar tracking control tasks as
Theorem 1, we can obtain that the tracking error converges to a small neighborhood of zero, and all the
closed-loop signals remain bounded.

Proof. Consider the following Lyapunov function candidate

V (k) =
1

ḡ2
e2s(k). (38)

Using (37), the difference of V (k) is

∆V (k) < −
1

ḡ2
e2s(k) + ε2s. (39)

From (39), the tracking error satisfies |es(k)| < µ̄s, where µ̄s >
√

ḡ2ε2s. This means that the tracking
error es(k) converges to a small neighborhood around zero owing to the arbitrarily small εs. Noting
x1(k) = yd(k) + e1(k), we have x1(k) is bounded. Based on the first equation of the system (1), x2(k)
is bounded because of the boundedness of x1(k). Using a similar process, we can obtain that xi(k)
(i = 3, . . . , n) is also bounded. From (36), us(k) is bounded since Zs(k) = [x̄T

n (k), yd(k+n)]T is bounded
and W̄sl is the stored constant weights vector. As such, it can be concluded that the tracking error
converges to a small neighborhood of zero and all the signals remain bounded.
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Remark 4. It is worth pointing out that some adaptive NN control schemes [20–22] have been proposed
for the discrete-time low-triangular nonlinear systems. In these schemes, the NN learning ability is not
a major concern. Owing to the large NN approximation error, these schemes [20–22] usually encounter
a poor transient process including the long transient time and the large transient error. Unlike the
existing schemes [20–22], the proposed neural learning controller greatly improves the transient control
performance for the same or similar tracking tasks owing to the high function approximation accuracy.
Moreover, the proposed neural learning control scheme greatly alleviates the computation burden owing
to the avoidance of updating estimated weights online.

4.2 Neural learning control based on output-feedback case

Similar to state-feedback case in the above section, the knowledge representation, storage, and reuse can
be realized through the adaptive NN output feedback control process. The corresponding “learning rules”
are defined as follows:

(1) ko,a stands for the beginning of the learning process, which is chosen to make the ko,a − 1 be a
multiple of n.

(2) To represents the total number of learning steps, which is chosen as a multiple of n. Moreover,
ko,b = To + ko,a − 1 stands for the end of the learning process.

(3) To1 = To/n represents the number of updating period for the weights vector in learning process.

(4) {kj| kj = j, j + n, j + 2n, . . .} (j = 1, . . . , n) is used as time sequence for the jth weights vector
updating.

(5) W̄oj (j = 1, . . . , n) represents the jth constant weights vector, which is expressed as

W̄oj =
1

To1

ko,b+j−n
∑

kj=ko,a+j−1

Ŵo(k
j). (40)

Next, we employ the stored constant weights vector W̄oj (j = 1, 2, . . . , n) to design the following
output-feedback NN learnign controller:

uo(k) = W̄T
olSo(Zo(k)), l =

{

k mod n, if k mod n 6= 0,

n, if k mod n = 0.
(41)

Theorem 4. Consider the closed-loop system consisting of the plant (1) and the learning controller
(41) with the stored constant weights vector given in (40). For the same or similar tracking control tasks
as Theorem 2, we can obtain that the tracking error converges to a small neighborhood of zero, and all
the closed-loop signals remain bounded.

Proof. It is similar to the proof of Theorem 3 and is thus omitted.

5 Simulation studies

In this section, a second-order pure-feedback system is simulated to illustrate the effectiveness of the pro-
posed state-feedback and output-feedback methods. Consider the following second-order pure-feedback
system [27] described by



























x1(k + 1) =
0.2x2

1(k)x2(k)

1 + x2
1(k)

+ 0.5x2(k),

x2(k + 1) =
x1

1 + x2
1(k) + x2

2(k)
+ u(k) + 0.2 sin(u(k)),

y(k) = x1(k).

(42)

The desired reference signal is yd(k) = 0.5 sin(kπ/200) + 0.5 sin(kπ/100).
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5.1 State-feedback case

5.1.1 Simulation results of knowledge acquirement

According to Theorem 1, the control input is chosen as (14) and the weight updating law is chosen as (15).
We choose RBF NN ŴT

s Ss(Zs(k)) using 1815 nodes, with the centers Zs(k) = [x1(k), x2(k), yd(k + 2)]T

evenly spaced in [−1.5, 1.5]× [−2.1, 2.1]× [−1.5, 1.5] and the width η = 0.375. The design parameter is
Γs = 0.2I. The initial NN weights and the initial states are Ŵs(1) = Ŵs(2) = 0 and [x1(1), x2(1)] =
[0.1, 0.1]. Simulation results are displayed in Figures 1 and 2. From Figures 1(a) and (b), the estimated
weights Ŵs(k) converge to Ŵs(k

1) and Ŵs(k
2) with the sequence {k1|k1 = 1, 3, 5, . . . , 2k − 1, . . .} and

{k2|k2 = 2, 4, 6, . . . , 2k, . . .}, respectively. Figure 2(a) further verifies that Ŵs(k) is not exponentially
convergent in the whole sampling moments k = 1, 2, 3, . . .. This phenomenon is consistent with Theorem 1,
which is different from the continuous-time case in nature. Figure 2(b) shows that after sufficient learning,
the NN control input us(k) approaches the implicit desired control input u∗(k) exactly within the steady-
state time interval [98001, 100000].

5.1.2 Simulation results of knowledge reuse

In order to verify the proposed state-feedback neural learning control (NLC) method, we employ the
same system and reference signal yd(k) in (42). According to the “learning rules” in Subsection 4.1.1,
the constant weights vectors are represented and stored as

W̄s1 =
1

1000

99999
∑

k1=98001

Ŵs(k
1), W̄s2 =

1

1000

100000
∑

k2=98002

Ŵs(k
2). (43)
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Table 1 Simulation comparison between RLC [27] and NLC for state-feedback casea)

Method Overshoot MAE[1,2000] Running time (s)

RLC [27] 0.1284 0.0331 15.0756

NLC 0.0082 0.0012 10.3931

a) “MAE[1,2000]” denotes the mean absolute error during [1,2000].

Reusing (43), the neural learning controller is designed by “mod” function as

u(k) =

{

W̄T
s1Ss(Zs(k)), if(k mod 2) = 1,

W̄T
s2Ss(Zs(k)), if(k mod 2) = 0,

(44)

where Ss(Zs(k)) is chosen to be the same as that used in Subsection 5.1.1.
To show the performance of the proposed NLC scheme, we compare the proposed NLC with the

reinforcement learning control (RLC) method in [27]. Simulation results are displayed in Figure 3 and
Table 1. Figure 3(a) shows the curves of y(k) and yd(k) by RLC and NLC, respectively, and Figure 3(b)
displays the evolution of the corresponding tracking error es(k). Compared with the RLC, it is revealed
from Figure 3 and Table 1 that the proposed NLC achieves better tracking control performance with
a smaller overshoot and a smaller mean absolute error. Moreover, to compare the online calculation
consumption of RLC and NLC, the same computer settings are used to run the same 105-steps simulation.
It is easy to see from Table 1 that the time saving is nearly 1/3 using the proposed NLC method. The
simulation results clearly show that the proposed NLC not only achieves the better tracking performance,
but also eases the computation burden.

5.2 Output-feedback case

5.2.1 Simulation results of knowledge acquirement

According to Theorem 2, the output-feedback adaptive neural controller is chosen as (29) and the weight
updating law is chosen as (30). We construct the RBF NN ŴT

o So(Zo(k)) using 5103 nodes, with the cen-
ters Zo(k) = [x1(k), x1(k−1), yd(k+2), uo(k−1)]T evenly spaced on [−1.2, 1.2]× [−1.2, 1.2]× [−1.2, 1.2]×
[−1.5, 1.5] and the width η = 0.3. The design parameter is Γo = 0.22I. The initial NN weights and the
initial states are Wo(1) = Wo(2) = 0 and [x1(1), x2(1)] = [0.1, 0.1]. Figures 4(a) and (b) display the
convergence of the partial estimated weights. Figure 5(a) displays the accurate approximation ability of
NNs in the steady-state time interval [98001, 100000].

5.2.2 Simulation results of knowledge reuse

In this part, the constant weights vectors W̄o1 and W̄o2 are stored based on (40) with the steady-state
time interval [98001, 100000]. So(Zo(k)) is selected in the same way as that in Subsection 5.2.1, and the
output-feedback NLC (41) is employed to complete the same tracking task. The tracking performance is
displayed in Figure 5(b) and Table 2. Compared with the RLC [27], it is obviously seen from Figure 5(b)
and Table 2 that the proposed NLC realizes the better tracking performance. Moreover, it is easy to see
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2).

98001 98500 99000 99500 100000

Steps

1 500 1000 1500 2000

Steps

−1.0

−0.5

0

0.5

1.0

−0.05

−0.10

−0.15

−0.20

0

0.05

0.10

0.15

0.20

u
o
 (k)

u
o
 (k) RLCe

o 
(k)

NLCe
o 
(k)

(a) (b)

e o
(k

)

W
o
 (

k)
S

o
 (

k)
T

^

*

Figure 5 (Color online) (a) System ideal input u∗

o(k) and ŴT
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Table 2 Simulation comparison between RLC [27] and NLC for output-feedback case

Method Overshoot MAE[1,2000] Running time (s)

RLC [27] 0.1558 0.0343 38.4058

NLC 0.0215 0.0013 25.5094

from Table 2 that the time saving is nearly 1/3 owing to the constant weights without the online adaptive
adjustment.

6 Conclusion

Herein, we have investigated neural learning control issues in discrete-time PFNSs with unknown non-
affine terms. First, two effective adaptive NN controllers have been presented through state-feedback
and output-feedback, respectively. By combining the extended stability result of the LTV system, the
estimated weights have been verified to exponentially converge to optimal values. The estimated weights
have been systematically represented and stored as a set of constant values by constructing the program-
matic “learning rules”. Next, the stored weights have been reused to structure neural learning controllers
using the “mod” function. Compared with the conventional adaptive NN control, the proposed schemes
can not only accomplish the same or similar tracking tasks but also greatly improve the transient control
performance and alleviate online computation. Based on the schemes proposed herein, several promising
directions for future investigations exist, including (i) neural learning control for other types of reference
signals; (ii) neural learning control for more general nonlinear systems exhibiting different phenomena,
including prescribed performances [15, 35] and constrained network resources [25, 26]; and (iii) the coop-
erative learning and control of multiagent systems [39, 41, 44, 45].
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