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Dear editor,

Recently, we made some new attempts at predicting coke

quality. Coke quality prediction provides important guid-

ance for coal blending, improving the quality of coke, and

reducing the cost. Prediction usually involves selection of

the coal blending parameters and selection of the modeling

methods. In recent years, traditional coal quality indica-

tors such as coal impurity (ash Ad, sulfur St.d), coal de-

gree (volatile fraction Vdaf ), and bond performance (bond

index G, colloid layer index X, and colloid layer thickness

Y ) have been augmented with coal petrography data, which

have made much progress [1, 2].

The vitrinite reflectivity (VR) is an important index of

the coal microstructure. Pusz et al. [3] showed that the av-

erage maximum VR, average minimum VR, and double VR

are significantly related to the coke reactivity index (CRI)

and the post-reaction strength (CSR). Dash et al. [4] com-

bined the coal and rock indices with traditional indices, and

improved the prediction results by a data-driven intelligent

modeling method.

Combining the VR with traditional coal quality indices

promises a new direction for the prediction and modeling of

coke quality. However, as the distribution data of VR are

very complex, the appropriate use of VR needs further dis-

cussion. Today, many numerical optimization and intelligent

optimization algorithms have become available for scientific

research [5]. The problem of applying these optimization

methods to feature selection should also be resolved.

Against this background, we mainly focus on two prob-

lems: analysis of the coking process, and comprehensive ex-

traction of the VR distribution characteristics using a Gaus-

sian function. The well correlated high-dimensional features

are detected by a selection genetic algorithm (SGA), and the

features that best reflect the coke quality are selected. The

effectiveness of the purposed method is verified on actual

process data.

Gaussian function. The VR of coal refers to the reflec-

tivity R (%), defining the percentage of the reflected light

intensity relative to the incident light intensity on the surface

of the illuminated microscopic components. The reflectiv-

ity differs among different micro-components, and the VR

depends on the degree of metamorphism. The microscopic

components of coal species, with their obvious regularity,

are mainly assigned to the mirror-mass group. As shown

in Figure 1(a), the VR values of coal are distributed in the

0%–3% range. The percentage (height) and position of the

specular peak depend on the coal species. At present, VR

values are determined by a coal-rock analyzer, and plotted

as a histogram to guide the coal blending. The average max-

imum of the VR (Rmax) is adopted as the main index of the

coal microscopic composition.

If all VR values are directly included as modeling param-

eters in the prediction model, the large dimensional space

of the VR distribution data will hamper the operation. In

contrast, if only the representatively high distribution values

are included in the modeling, important information will be

ignored. In fact, the VR curve has certain physical mean-

ings; in particular, the coal blending effect improves as VR

more closely resembles a Gaussian function. Therefore, the

VR distribution can be characterized using the characteris-

tics of a Gaussian function, namely, the peak position, peak

height, and bell-shaped width. These three features can be

calculated as shown below.

The Gaussian functions for a set of VR distribution

datasets are defined as

y = Rh × e−((x−Rp)/Rw)2 , (1)

where Rh, Rp, and Rw represent the peak height, the peak

position, and the half width at half maximum of the VR,

respectively. Taking the logarithm of (1), we get

Y = Ax2 + Bx+ C, (2)

where Y , A, B, and C are respectively given by
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Figure 1 (Color online) (a) VR histogram of coal; (b) Gaussian curve after fitting to (a); (c) iteration process of SGA; (d)

comparison of the prediction results of M40.

According to the least-squares principle, the features of

the VR distribution are calculated as


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





Rh = e(B
2/4A−C),

Rp = −B/2A,

Rw =
√

1/A.

(4)

Another important VR distribution feature is Rmax, de-

noting the average maximum VR as mentioned above. Note

that Rmax and Rp are not generally equal because the data

are asymmetric. The two features can be considered as com-

plementary features that together represent the VR distri-

bution characteristics more completely than either feature

alone. After fitting the data shown in Figure 1(a), we get

the Gaussian curve shown in Figure 1(b).

Model and methodology. After merging the VR features

with the traditional indexes, we obtain 10 characteristics for

predicting the coke quality: Ad, St.d, Vdaf , G, X, Y , Rh,

Rp, Rw, and Rmax. However, some of these parameters are

highly correlated. The highly correlated input features will

increase the complexity of the data-driven intelligent model

and reduce its performance. To reduce the negative effects

of redundant features, this study proposes a feature selection

method based on SGA.

The numerical optimization is performed by traditional

GA, which is based on biological evolution theory. The bi-

nary string of a GA represents the corresponding decimal

numeric encoding. Obviously, a decimal number cannot

represent whether a feature is chosen or not, so the GA

is not directly applicable to feature selection. We therefore

improve the traditional GA by (1) determining whether to

choose or discard a feature by checking for 1 or 0 in the cor-

responding position of the binary string, and (2) defining the

same-parent homologous gene as the dominant gene. Dur-

ing crossover operations, the dominant genes are retained,

and the non-dominant genes are produced by mutation. De-

signed in this way, the SGA can be combined with machine

learning algorithms for feature selection. Here, the machine

learning algorithm is a support vector machine (SVM [6]),

and the feature selection mode is decided by the best in-

dividual. To realize the most accurate model, we evaluate

the fitness function of the population by a precision index

(mean squared error, MSE).

Simulations and results. The proposed method is verified

on 108 groups of actual process samples. We select crushing

strength (M40) as the coke quality index. After extracting

the VR features, we select 10% of the samples as the test

set and use the remaining 90% samples as the training set.

As 108 groups of data are relatively small for modeling, the

reliability of the results is validated by 10-fold cross verifi-

cation.

For comparison, we also establish a radial basis function

neural network model. The features to be compared with

the selective GA (SGA-G-SVM) are selected by the limit

gradient lifting algorithm Xgboost (Xgboost-G-SVM). Tra-

ditional SVM parameters (T-SVM) and fusion SVM param-

eters (G-SVM) are also selected for further comparison.

To improve the estimation, the model performance is

evaluated by both the MSE and the determination coeffi-

cient R2. The MSE and R2 are respectively calculated as

MSE =
1
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2, (5)
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where N is the scale of test set, yi is the actual value, and

ŷi is the model-predicted value.

As shown in Figure 1(c), the MSE reduces as the SGA

iterations proceed. The best feature selection method is

chosen for the modeling. Appendix A shows the MSE of

every generation and the selected features. In Figure 1(d),

the MSE of SGA-G-SVM is 2.68, 3.92 lower than that of G-

SVM, and 1.90 lower than that of Xgboost-G-SVM. Mean-

while, the R2 of SGA-G-SVM is 0.94, 0.14 higher than that

of G-SVM, and 0.07 higher than that of Xgboost-G-SVM.

Overall, the SGA-G-SVM outperforms the other methods.

This result can be attributed to extracting the features

of the Gaussian function besides the feature selection of

SGA. However, the computational cost of SGA-G-SVM is
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increased by the large number of SGA iterations. In prac-

tical applications, our model (which consumes only 0.001

s per calculation) can meet the requirements of industrial

processes. Appendix B describes the datasets used in the

modeling and shows the results of each method.

Conclusion. To improve the precision of coke quality,

we analyzed the coal quality parameters. The characteristic

VR parameters are difficult to extract from the distributed

VR data, so the data were fitted by a Gaussian function.

We then designed an SGA to select the most effective fea-

tures, and to eliminate the strong correlation interferences

between pairs of features. Finally, we verified the new data-

driven coke quality prediction model in a reliable experiment

on real production data. The results confirmed the effective-

ness of our approach.
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