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Appendix A  Proof of flux-controlled memristor model

As we can know from the dynamics and output function of a cell ¢(¢, 7) in eq. (1) and (2), the current through the state memristor can be got:

Um :Dij(t)
M(t) ~ M(t)

m(a; (1) = @D

where M (t) and v,,, represent the memristance and voltage of the state memristor, respectively. According to the typical HP T'3O2-based memristor model [1],
the memristance is given by:

W (t)

M(t) = Rorr + (Ron — RoFrF) (A2)

where Ropp and Ro v denote the maximum and minimum memristance values, respectively. W(t) denotes the width of the doping layer (7'¢O2— ), and D
denotes the thickness of 77O film [1].
According to the linear drift model, we have:

daw(t)  poRon .
- D i(t) (A3)

4, represents the average mobility of oxygen vacancies, and:

W(t) = @d}(t) + W(0) (A%)

In ref [2], we have:
Rorr — M(0) Ron — M(0)
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the following equation can be derived:

M(t) = M(0) + ko(t) (A6)

where ¢(t) and M (0) denote the flux and initial memristance of the memristor. And then the charge-controlled model can be given :

Rorr, (t) < c
M(t) = § M(0) + k¢(t), c1 < ¢(t) <c2 (A7)
Ronw, d(t) = c2

where, c1 = (R5pp — M2(0))/2k,c2 = (R5x — M?(0))/2k. And according to the relationship between charge and magnetic flux, the magnetic
flux-control model of memristor in (A8) can be obtained.

RorF, p(t) <
M(t) = ¢ /2kp(t) + M2(0), c1 < p(t) <c2 (A8)
Ronw, P(t) 2 c2
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Figure B1 Adaptive template generation based on PSO algorithm

Appendix B The process of adaptive template generation

In this section, the hardware-friendly adaptive template design based on optimization algorithm and quantization will be described in detail.

mPSO is a heuristic algorithm with a fast convergence speed and insensitivity to the population number. This method can find the optimal solution by random
initialization and step-by-step iterative approximation, where the approximation level can be evaluated by a fitness function. In general, the variation trend of the
fitness is a convergent curve.

As described in state function of mCNN, the inputs benefit is decided by the control template (B), feedback template (A) and bias (). At the condition of
r = 1, these templates can be expressed by:

Aj—1,j—1 Qi—1,5 G5—1,5+1 bi—l,j—l bi—l,j Aj—1,5+1
A=\ aij-1  ai;  aijtr |B=] bijo1 biy bigpr [ I=T B
Aifl,j—1 Gitl,j Gitl,j+1 bit1,5—1 bit1,5 bit1,5+1

Generally, the templates A and B are symmetric, so the parameters to be determined can be reduced by nearly half, that is, about 11. These templates can be
rewritten as

Zo Z3 Za Z7 Zs Zy
A= |Zs Z1 Zs| ,B=|Z10 Zs Zs|,l =211 (B2)
Z4 Z5 ZQ Zg ZlO Z7
which can be abbreviated as:
A=[Z1,22,Z3,24,Zs5, Zs, Z7, Zs, Z9, Z10, Z11] (B3)

Next, these parameters can be generated and optimized by mPSO algorithm. Let z denotes the position matrix, indicating the current position of the particle
swarm, and v represents the velocity matrix, indicating the convergence speed of the particle swarm. At first, z and v are randomly initialized within certain
constraints, respectively:

[2(3,7)] £8,0<i<m;0<j<mn (B4)

lv(i, )] € 1,0<i<m;0<j<n (BS)

where the constant m represents the total number of the particle swarms, n=11 denotes the search dimension or the number of independent variables, parameters %
and j represent the row and column in the matrix, respectively. It is important to note that the restriction of v should be moderate correspondly.
Supposing the input size of an image is X [, then the fitness function based on characteristics of mCNN can be written as:

S ) — 96 9],
so1 b ly (s )|

cost = (

(B6)

where y(4, j) denotes the standard result of the pixel at (¢, j) of an image. (%, j) denotes the processing result under the current iteration using the optimized
templates. This fitness function is a concave function with only one optimal solution, which can guarantee the calculation to be positive and the mPSO algorithm
can converge to the global optimum.

The framework of the adaptive template generated by PSO algorithm is shown in Fig. B1. First, the template parameters are splinted as independent variables
z. Then, the speed v and position z are initialized and participated in the iteration. During the iteration processes, the fitness is calculated fleetly to update the
optimal position z. As shown in the right-hand side of Fig. B1. In the end, when the fitness tends to converge, the optimal position will be found, and the adaptive
template will be generated after proper reconstruction.

Appendix C Experimental results and analysis

In this section, two kinds of applications on image processing has been analyzed to demonstrate the performance of the proposed scheme. The experimental
platform is MATLAB2016a. Before performing the application experiment, color images need to be converted to grayscale images and contrast enhancement is
also needed especially for image segmentation.

CNNs have shown excellent performance in edge extraction [3,4]. However, traditional edge extraction templates lack adaptability and flexibility, hence they
are not ideal for dealing with complex images. In addition, although some non-linear and/or adaptive templates like the adaptive bionic templates [5] can provide
better performance, they all stay in software level because of the complicated hardware implementation.

To demonstrate the effectiveness and superior performance of QA-mCNN, a series of simulations and comparisons with four traditional edge extraction operators
and three kinds of CNNs will be presented. In the edge extraction QA-mCNN, the template’s layer S is set to be 1 and the bit-width of template quantization b — a
is 3.
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Figure C1 Edge extraction of adaptive mCNN. (a) Original image, (b) Result of PSO mCNN (c) Result of QA-mCNN

Fig. C1 illustrates the edge extraction results of the image Lena (Fig. C1(a)) using the mCNN with adaptive templates based on PSO algorithm (PSO mCNN)
(Fig. C1(b)) and QA-mCNN (Fig. Cl(c)). It can be seen that the PSO mCNN can extract the edges more completely and restores the details of hair, eyes and
background, which shows the superior performance of the generated adaptive templates. QA-mCNN also achieves satisfactory results. Compared with the edge
extraction results shown in Fig. C1, Fig. C2 shows the results from other methods. It can be seen that Robert operator, Prewitt operator and Sobel operator can
hardly extract the edges completely. Although Canny operator can extract many more edges, a lot of distortions are caused. In addition, the adaptive bionic mCNN
[5] and the standard CNN have shown superior performance, especially in the details as in Fig. C2(f) and (a).

(d (e) ®

Figure C2 Comparison results of edge extraction from (a) Standard CNN (with fixed templates), (b) Sobel Operator, (c) Robert Operator, (d) Prewitt Operator,
(e) Canny Operator, and (f) the adaptive bionic mCNN [5].

In a summary, the edges extracted by PSO mCNN, QA-mCNN, the adaptive bionic mCNN and the standard CNN have higher accuracy and completeness.
QA-mCNN also captures advantages in hardware and computational complexity at the cost of little quantization loss.

Moreover, to quantitatively and objectively analyse the effect of edge extraction, a performance evaluation schema: FOM (Figure of Merit) [6] that has been
widely used in image analysis is utilized. FOM, a widely used performance evaluation schema in image analysis, is utilized as defined by:
1 % 1
max(Ny, Nr) < 1 + ad?

FOM = (&2))

where N denotes the total number of pixels in the golden standard image, N7 denotes the total pixels of the edge image that are detected by QA-mCNN. «v is a
constant also called the compensation coefficient and used to compensate for the offset edge of image (the value is 1/9). d; represents the shortest distance between
the actually detected edge pixel and the standard pixel in the same position. The constraint is FOM € [0, 1].

Table C1 summarizes the comparative data obtained from the above-mentioned edge extraction methods. It can be seen that compared with the adaptive bionic
mCNN [5] and the standard mCNN, the proposed QA-mCNN and PSO mCNN have better FOM values on edge extraction. Furthermore, QA-mCNN also possesses
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Table C1 FOM of edge extraction

Method Sobel Robert Prewitt Canny 5] PSO mCNN Standard CNN QA-mCNN
FOM 0.2543 0.2335 0.2517 0.4393 0.9568 0.9792 0.9234 0.9697

advantages of hardware-friendly property and adaptivity. On the contrary, FOM values of other methods (Sobel, Robert, Prewitt, Canny) are too low to extract the
image edges effectively.

In recent years, image segmentation has played an important role in various fields, such as object detection in industrial field, face recognition in daily life, and
tumor segmentation in medical field. Therefore, image segmentation is taken as another important example to illustrate the performance of QA-mCNN by a series
of simulations and comparisons among three kinds of CNNs. Fig. C3 presents an original image randomly selected from DDSM in (a) and it’s gold standard in (b).

(@) (b)

Figure C3 Example of image segmentation. (a) Original image and (b) Gold standard image

First, the bit-width (b — a) and layer (S) of the image segmentation QA-mCNN are setto b — a = 3, S = 3, respectively. Then execute the segmentation
of the image in Fig.C3 based on the designed adaptive templates and multilayer QA-mCNN. The simulation results are shown in Fig. C4. It can be seen that when
S = 3 (Fig. C4(d)) the tumor image has been segmented with high accuracy and integrity. And compared with QA-mCNN, the image segmented by PSO mCNN
(Fig. C4(a)) has lower accuracy, because PSO mCNN just has 1-layer of linear template, although it is not quantized.

Additionally, to intuitively illustrate the advantages of QA-mCNN, some comparisons with the standard CNN and the quantized CNN proposed in Ref. [7] are
made as shown in Fig. C5. It can be seen that the standard CNN (Fig. C5(a)) with fixed templates cannot segment the tumor image, while by using the quantized
CNN, when S = 3 (Fig. C5(d)), the target image can be segmented much better, but the segmentation accuracy is much lower than QA-mCNN, as shown in Fig.
C4(d).

According to the comparison between the Fig. C4 and Fig. CS5, it can be found that QA-mCNN has higher image segmentation accuracy. At the same time,
QA-mCNN also has the advantages of low computation complexity, adaptivity and easy hardware implementation.

To be more objectively, the commonly used evaluation indices such as Dice ratio [8], Ground Truth (GT), Over Segmentation (OS), Under Segmentation (US)
and Pixel Accuracy (PA) [9] have been employed. Based on the corresponding calculations, Table C2 summarizes the comparative data between our schemes and
other methods. It can be seen that QA-mCNN exhibits satisfactory performance, where the Dice ratio and GT keep in a stable range. When S=3, QA-mCNN can
stabilize US at a low level and effectively reduce OS, solving the NP-hard problems between over-segmentation and under-segmentation. In addition, the pixel
accuracy is continuously improved with the number of template’s layers increasing.

Based on the simulation and analysis, QA-mCNN has exhibited high accuracy and low computational complexity. The main reasons include several aspects
as follows. The quantization processes is designed based on multilevel memristor technology, which reduces the accuracy loss. INQ can further compensate the
loss caused by quantization. The templates of each layer are optimized by the previous templates, eliminating some randomness. Besides, since QA-mCNN is
constructed based on memristor crossbar array, it also possesses unique hardware implementation advantage.

(a) (b) (©) ()

Figure C4 Image segmentation results of the proposed methods. (a) PSO mCNN, (b) QA-mCNN b-a=3 S=1, (¢) QA-mCNN b-a=3 S=2, (d) QA-mCNN b-a=3
S=3.
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Figure C5 Image segmentation results of other methods. (a) Standard CNN, (b) Quantized CNN proposed in [8] b-a=3 S=1, (c) Quantized CNN proposed in [8]
b-a=3 S=2, (d) Quantized CNN proposed in [8] b-a=3 S=3.

Table C2 Indicators of segmentation results

Indicators Dice GT oS uUs PA
Standard CNN 0.93684 0.91633 0.09718 0.00458 0.97604
PSO mCNN 0.93198 0.87348 0.11608 0.00478 0.9659
18] b-a=3, S=1 0.92917 0.94077 0.085891 0.039736 0.96527
[8] b-a=3, S=2 0.93844 0.96859 0.096348 0.023298 0.86197
18] b-a=3, S=3 0.92725 0.88354 0.11012 0.005319 0.89384
QA —mCNN b-a=3, S=1 0.94391 0.88354 0.081177 0.014732 0.89546
QA —-—mCNN b-a=3, S=2 0.96244 0.92998 0.078305 0.00000 0.96005
QA —mCNN b-a=3, S=3 0.94623 0.92606 0.064418 0.00000 0.99564

Table D1 Variation analysis of edge extraction

Method QA-mCNN QA-mCNN with 5% template variation QA-mCNN with 15% template variation
FOM 0.9535 0.9447 0.9224

Appendix D Variations analysis of template’s weights

The variation of template’s weight represented by memristors may result from the fabrication variation of memristor devices, weight programming inaccuracy,
circuit noise, and so on. As far as we know, to a certain extent, the quantization process in INQ can improve the fault tolerance of the mCNN. SO, in order to
facilitate analysis, the variation of memristor weights is assumed to follow the law of Gaussian distribution with mean of zero. It is supported by experimental data
that when o = 0.1, the difference between the desired and the actual weight is up to 15%. Similarly, when o = 0.025, the difference is about 5%.

Fig. D1 shows the influence of single layer QA-mCNN variation on edge extraction of Lena. Figs. D1 (a) and (b) represent the input image and the outputs
processed by QA-mCNN without template variations, respectively. When considering the templates with 5% and 15% variations on the single layer of the
QA-mCNN, the corresponding outputs can be obtained as shown in Fig. D1(c) and (d), separately.

Quantitative indicator FOM of QA-mCNN under these conditions is measured as shown in Table D1. It can be seen that even with bigger template variations
(15%), the QA-mCNN can still extract the image’s edges successfully (Fig. D1(d)) and have high FOM value.

The variation analysis of QA-mCNN with multilayer templates is more complicated. For instance, in the image segmentation, the variation is considered
not only in layer-by-layer-same but also in layer-by-layer-different memristor templates. Therefore, four kinds of schema have been considered according to the
different variation (variation with 5% and 15%) and variation distribution (layer-by-layer same and layer-by-layer different) in this paper, and the experimental

’

Figure D1 Comparison of the outputs of edge detection by QA-mCNN without or with weight variations. (a) Input image. (b) Output of edge detection without
weight variations. (c) Output of edge detection with 5% template variations and (d) Output of edge detection with 15% template variations.
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Table D2 Variation analysis of image segmentation

Indicators Dice GT oS us PA
QA-mCNN 0.95187 0.92432 0.07773 0.0069911 0.99215
5% layer-by layer-same template variations 0.95099 0.9254 0.077211 0.0077915 0.99296
5% layer-by-layer-different template variations. 0.9553 0.91538 0.084645 0.0077915 0.99093
15% layer-by-layer-same template variations 0.9503 091172 0.077211 0.0089897 0.99215
15% layer-by-layer-different template variations 0.95525 0.91193 0.07773 0.0085241 0.9914

results in image segmentation are shown in Fig. D2. It can be seen that small variation (5%) in templates does not significantly affect the outputs of image
segmentation, as shown in fig. D2(c) and fig. D2(d). Even with bigger variation (15%) of layer-by-layer same/different in templates, QA-mCNN still segments
the tumor position successfully, as shown in fig. D2(e) and fig. D2(f).

(@) (e) ()

Figure D2 Comparison of the outputs of image segmentation via a 3-layer QA-mCNN without or with weight variations. (a) Input image. (b) Output of image
segmentation without weight variations. The outputs of image segmentation with (c) 5% layer-by layer-same template variations. (d) 5% layer-by-layer-different
template variations. (e) 15% layer-by-layer-same template variations, and (f) 15% layer-by-layer-different template variations, respectively.

The objective analysis based on quantitative indexes is summarized in Table D2, which shows the consistency with the results of Fig.D2. In particular, even
using the QA-mCNN with 15% layer-by-layer-different template variations, the Dice, GT and PA of the segmented image still remain a stable range and have a
high value, OS and US stay at a low level and keep in a stable range too.

So, QA-mCNN has effective fault tolerance in image processing, even if the variation can affect the accuracy of the templates. In summary, variations of the
memristor templates may be unavoidable, the quantization process in INQ can, however, overcome this kind of change to some extent, which can improve the fault
tolerance and robustness of QA-mCNN.
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