
SCIENCE CHINA

Information Sciences

January 2022, Vol. 65 119101:1–119101:3

https://doi.org/10.1007/s11432-019-2742-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. LETTER .

Cube attacks on round-reduced MORUS and Gimli

Siwei CHEN, Zejun XIANG*, Xiangyong ZENG & Shasha ZHANG

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics,

Hubei University, Wuhan 430062, China

Received 2 August 2019/Revised 10 November 2019/Accepted 23 December 2019/Published online 7 September 2021

Citation Chen S W, Xiang Z J, Zeng X Y, et al. Cube attacks on round-reduced MORUS and Gimli. Sci China

Inf Sci, 2022, 65(1): 119101, https://doi.org/10.1007/s11432-019-2742-6

Dear editor,

Cube attack is a chosen plaintext/initial value (IV) key-

recovery attack, which was proposed by Dinur and Shamir

at EUROCRYPT 2009 [1]. As an important cryptanalysis

technique, it is widely used in symmetric ciphers. The main

ideal of cube attack is to look for cubes to acquire several

linear polynomials (superpolys) with respect to secret vari-

ables. The secret variables can be recovered by solving these

linear equations. However, thus far, no general method has

been established to search for cubes.

Contribution. In this study, we propose a new method to

automatically search for candidate cubes that can derive lin-

ear superpolys with a high probability. First, we utilize the

same strategy as that of conditional cube attack [2] to divide

an r-round cipher into two stages: the first r1 rounds and

the last r2 rounds with r1 + r2 = r. Then, we analyze the

algebraic normal form (ANF) of the first r1-round output

and attempt to make it linear by adding some conditions to

IV, and we evaluate the algebraic degree of the last r2-round

output using the division property [3–5]. Moreover, we in-

troduce Algorithm 1 to retrieve the high-degree monomials

of the r2-round output and Algorithm 2 to search candidate

cubes. Note that the variables in each of the high-degree

terms correspond to a set of positions of the r2-round input

that can be treated equivalently as r1-round output. Thus,

if we select cube variables from the ANFs of r1-round out-

put, the the resulting superpolys have a high probability to

be linear.

Our method to search cubes. For a given r-round ci-

pher, we divide it into two stages: Er = Er2 ◦ Er1 , i.e.,

r1 + r2 = r. We denote s
0 and s

r1 as the input and output

of Er1 and s
r1+r2 as the output of Er. Moreover, s

0 is

the initial state that comes with secret and public variables.

In this case, the r-round encryption can be represented as

s
0

Er1−−−→ s
r1

Er2−−−→ s
r1+r2 . Therefore, if we add some con-

ditions to the first stage to make Er1 linear, the degree of

Er will decrease and be equivalent to the degree of Er2 , and

the cube attacks can cover more rounds.

Stage 1. We set all public variables (except one) in-

volved in each nonlinear term of sr1 to constant values for

all nonlinear terms to be removed. Note that the public

variables set to constant values at this stage can no longer

be selected as cube variables. This requires that the number

of rounds r1 is chosen such that the degree of ANF of sr1

is low. Otherwise, too many public variables may be set to

constant values, and the remaining free public variables may

be inadequate to devise a cube attack.

Stage 2. Each coordinate of sr1+r2 is a polynomial over

s
r1 , and we use a bit-based division property to estimate

the degree of Er2 . Then, we use Algorithm 1 for a fixed bit

of sr1+r2 to retrieve all high-degree terms that may be in-

volved in its ANF. Note that the algebraic degree of Er2 has

to be of practical size because cube attack needs to experi-

mentally test the linearity of the superpolys, and the cube

size is roughly equal to the degree.

Algorithm 1 Return the monomials of degree d of the ith bit

position

Input: The position bit i, degree d and an MILP modelM1)

Output: A set N of all the monomials of degree d.

1: N = ∅;

2: M.con←
∑m−1

j=0 a0
j = d;

3: whileM is feasible do

4: N = ∅;
5: x = (x0, . . . , xm−1) = (0, . . . , 0);

6: M.optimize();

7: for each j ∈ {0, . . . ,m− 1} do

8: var =M.getVarByName(a0
j);

9: if var.getAttr(‘x’)= 1 then

10: N = N
⋃
{j};

11: xj = 1;

12: end if

13: end for

14: Add N into N ;

15: M.con←
∑m−1

j=0 (−1)xj+1 · a0
j 6 d− 1;

16: M.update();

17: end while

18: return N .

Let us focus on the ith bit of sr1+r2 . Assume that the

*Corresponding author (email: xiangzejun@hubu.edu.cn)

1) This model is developed based on the model of searching integral distinguishers in [5]. In M, the output division vector is
fixed to a unit vector, and the initial division vector is unknown. However, the weight of the initial division vector will be fixed in
Algorithm 1.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2742-6&domain=pdf&date_stamp=2021-9-7
https://doi.org/10.1007/s11432-019-2742-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2742-6
https://doi.org/10.1007/s11432-019-2742-6


Chen S W, et al. Sci China Inf Sci January 2022 Vol. 65 119101:2

Table 1 Results on MORUS and Gimli

Cipher Attack type Method Steps or rounds Time Source

MORUS-640-128 Key-recovery Cube.A Div.pa) 3/16 2117 Ref. [6]

Key-recovery Cube.A Div.p 4/16 2119 Ref. [6]

Key-recovery Cube attack 4.4/16 227.91 Our result

Distinguishing Linear cryptanalysis 16/16 276 Ref. [7]

Gimli Key-recovery Cube attack 7/24 227.06 Our result

a) Cube attacks based on division property [8].

degree of sr1+r2
i

is d and let the set N be the variable indices

of a degree d term of sr1+r2
i

returned by Algorithm 1. Then,

the ANF of sr1+r2
i

contains Πj∈Ns
r1
j
. Once done with the

linearization process in the first state, each s
r1
j

(j ∈ N) be-

comes a linear polynomial over public variables, and we can

obtain a linear superpoly with a high probability if we select

one public variable from each s
r1
j

(j ∈ N) as cube variable.

Furthermore, the cube variables are required to be either in-

dependent or multiplied with a linear combination of secret

variables. Then, we can apply Algorithm 2 to select cube

variables for an (r1 + r2)-round cipher.

Algorithm 2 Return candidate cubes

Input: The r1-round state s
r1 = (s

r1
0 , . . . , s

r1
m−1) and the set

N returned by Algorithm 1.

Output: A set C of candidate cubes.

1: C = ∅;
2: for each set N ∈ N do

3: C
′ = ∅;

4: for each i ∈ N do

5: Add an IPV vIi of s
r1
i into C

′;

6: end for

7: C
′′ ← C

′;

8: for each i ∈ N do

9: Replace IPV vIi by KPV vKi
of s

r1
i

in C
′′;

10: Add the cube set C
′′ into set C;

11: C
′′ ← C

′;

12: end for

13: end for

14: return C.

Definition 1. A public variable is called an independent

public variable (IPV) if it appears in the ANF of s
r1
j

and

not multiplied with any other variable (public or secret). A

public variable is called a keyed public variable (KPV) if it

appears in the ANF of s
r1
j

and is multiplied with a linear

combination of secret variables.

In the following, we present a toy example to demonstrate

the whole procedure briefly.

Example 1. Consider a 3-round cube attack on a 16-bit

toy cipher E, where the initial state contains an 8-bit secret

key x and an 8-bit IV v. Meanwhile, let s
i = (si0, . . . , s

i
15)

be the output of ith round encryption. We divide the 3-

round encryption into E = E2 ◦ E1, i.e., r1 = 1 and r2 = 2.

We focus on s30 and assume that its algebraic degree is 3

(regarding s
1). Algorithm 1 returns a set of monomials

N = {{0, 1, 2}} of Stage 2. This implies that s10s
1
1s

1
2 is

the only possible monomial of degree 3 that appears in the

ANF of s30. Suppose that the ANFs of s10, s11, and s12 are

given below:











s10 = v0 + v1x0 + v6v7 + x0x1,

s11 = v2 + v3x3,

s12 = v4 + v5x5x6.

The first step is to linearize s10, s11, and s12 in Stage 1. It

is clear that the algebraic degree of s10 is equivalent to 2,

and we have to set one or both v6 and v7 to constant values.

Thus, there are three methods to linearize s10 that will result

in different cubes.

Case 1. Set one or both of v6 and v7 to 0, and the set

of IPV is {v0, v2, v4}. Then, the IPV v0 in s10 is replaced

with the KPV v1 of s10, and this will result in a candidate

cube {v1, v2, v4}. Since the ANF of s30 possibly contains

s10s
1
1s

1
2, v1v2v4x0 will then appear in the ANF of s30 with a

high probability. In other words, this cube will have a su-

perpolys of x0 with a high probability. Similarly, we can get

another candidate cube {v0, v3, v4} by substituting v2 with

the KPV v3 of s11. As for s12, no KPV exists, and v5 cannot

be selected as a cube variable because it is multiplied with a

nonlinear term x5x6 that may lead to a nonlinear superpoly.

Thus, in this case, we can find two candidate cubes using

Algorithm 2: {v1, v2, v4} and {v0, v3, v4}.
Case 2. Set v7 to 1, and v6 is a new IPV of s10 apart from

v0 in this case. Thus, there are two sets of IPV: {v0, v2, v4}
and {v6, v2, v4}. For each set of IPV, similar procedure

with Case 1 is performed to select candidate cubes. We

can identify three candidate cubes: {v1, v2, v4}, {v0, v3, v4},
and {v6, v3, v4}.

Case 3. Set v6 to 1, and v7 is a new IPV of s10
apart from v0. Then, we determine three candidate cubes:

{v1, v2, v4}, {v0, v3, v4}, and {v7, v3, v4}.
Thus, we have found four candidate cubes using Algo-

rithm 2: {v1, v2, v4}, {v0, v3, v4}, {v6, v3, v4}, and {v7, v3,
v4}. However, we have to confirm that the other 13 bits,

i.e., s13, s
1
4, . . . , s

1
15 can also be linearized for each candidate

cube. If the candidate cube cannot linearize the other bits

then this cube will be rejected. Once these 13 bits are done

with the linearization procedures, all candidates that survive

are sent to the linearity test procedure.

Applications to MORUS2) and Gimli3). We apply our

attack model to round-reduced MORUS and Gimli, where

there exists no associated data and the nonce can be reused.

For MORUS, we achieved a 4.4-steps cube attack with time

complexity of 227.91, whereas the cube attack in [6] following

four steps has a time complexity of 2119. For Gimli, we also

achieved a 7-rounds practical key-recovery attack with time

complexity of 227.06. The results are summarized in the

Table 1. All the experiments were conducted on the follow-

ing platform: Intel(R) Core(TM) i7-7700k CPU@3.6 GHz,

2) https://competitions.cr.yp.to/round3/morusv2.pdf.

3) https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gimli-spec-round
2. pdf.



Chen S W, et al. Sci China Inf Sci January 2022 Vol. 65 119101:3

8.00 GB RAM, Windows 10, 64-bit operating system. The

source codes are available at the website4) .

Note that all versions of full MORUS have been theoret-

ically attacked in [7, 9] using linear cryptanalysis. But we

would like to emphasize that the main advantage of our cube

attacks is that it is practical.

Conclusion. This study introduces a new method to effi-

ciently search for cubes in the preprocessing phase of cube

attack based on division property. We observed that the

high-degree monomials present in the second stage can help

the attackers identify cube variables. If the cube variables

are selected from the corresponding positions indicated by

those high-degree monomials, there is a high probability to

result in linear superpolys. For this method to be proven

effective, we applied it to two authenticated encryptions,

MORUS and Gimli, and we reached the longest rounds un-

der practical attack scenario for both ciphers.

Acknowledgements This work was supported by National
Natural Science Foundation of China (Grant No. 61802119).

References

1 Dinur I, Shamir A. Cube attacks on tweakable black box

polynomials. In: Proceedings of International Conference

on the Theory and Applications of Cryptographic Tech-

niques, Cologne, 2009. 278–299

2 Huang S Y, Wang X Y, Xu G W, et al. Conditional cube

attack on reduced-round keccak sponge function. In: Pro-

ceedings of International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Paris, 2017. 259–

288

3 Todo Y, Morii M. Bit-based division property and appli-

cation to simon family. In: Proceedings of Fast Software

Encryption, Bochum, 2016. 357–377

4 Sun B, Hai X, Zhang W Y, et al. New observation on di-

vision property. Sci China Inf Sci, 2017, 60: 098102

5 Xiang Z J, Zhang W T, Bao Z Z, et al. Applying MILP

method to searching integral distinguishers based on divi-

sion property for 6 lightweight block ciphers. In: Proceed-

ings of International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Hanoi,

2016. 648–678

6 Li Y B, Wang M Q. Cryptanalysis of MORUS. Des Codes

Cryptogr, 2019, 87: 1035–1058

7 Shi D P, Sun S W, Sasaki Y, et al. Correlation of quadratic

boolean functions: cryptanalysis of all versions of full

MORUS. In: Proceedings of International Cryptology Con-

ference, Santa Barbara, 2019. 180–209

8 Todo Y, Isobe T, Hao Y L, et al. Cube attacks on non-

blackbox polynomials based on division property. In: Pro-

ceedings of International Cryptology Conference, Santa

Barbara, 2017. 250–279

9 Ashur T, Eichlseder M, Lauridsen M M, et al. Cryptanaly-

sis of MORUS. In: Proceedings of International Conference

on the Theory and Application of Cryptology and Informa-

tion Security, Brisbane, 2018. 35–64

4) https://github.com/chensivvei/CubeAttack.git.

https://doi.org/10.1007/s11432-015-0376-x
https://doi.org/10.1007/s10623-018-0501-6
https://github.com/chensivvei/CubeAttack.git

