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Recently, remarkable progress of deep reinforcement learn-

ing (DRL) with regard to robot skill learning has been wit-

nessed [1]. However, manipulation skill learning on multi-

step complicated tasks with DRL still poses great challenges

owing to its higher exploration of state-action space and un-

informative sparse rewards. To alleviate these problems,

some studies explored reward shaping [2] to guide the learn-

ing process toward good solutions, which inevitably requires

significant expert knowledge and manual efforts. Other

study overcomes exploration with demonstrations [3] which

generally is costly and may result in suboptimal perfor-

mance. Curriculum learning [4], which starts learning small

domains with easier aspects of tasks and then gradually in-

creases the difficulty level, is also applied to learn relatively

easy manipulation skills [5]. Another method called hind-

sight experience replay (HER) [6] in hindsight imaged that

every state that the agent finally reached was actually a

goal, which showed appealing performance in some manip-

ulation tasks with only sparse rewards available. However,

it is still quite challenging for HER to directly train policies

for multi-step manipulation tasks (e.g., picking and placing

several objects).

To address the challenges in manipulation skill learn-

ing on multi-step complex tasks, we propose an efficient

curriculum learning method called task auxiliary and task

difficulty-HER (TATD-HER), which is endowed with a high-

low level curriculum learning structure and combines the ex-

plicit and implicit curriculum learning mechanisms together

for policy training. The experimental results demonstrate

that our proposed learning paradigm is capable of achieving

satisfactory performance in manipulation skill learning on

multi-step complicated tasks.

Methodology. The idea behind TATD-HER is to gener-

ate auxiliary mechanisms to effectively guide policy search.

The main novelty of TATD-HER is that it uses both explicit

and implicit curriculum learning together for complex ma-

nipulation skill training. As TATD and HER jointly form

an efficient high- and low-level curriculum learning frame-

work, the TATD-HER method provides smoother gradients

for policy learning on complicated tasks.

We first consider a standard reinforcement learning (RL)

algorithm under the HER learning framework. At time step

t, the robot agent takes an action at sampled from policy

πθ(st||g) and receives reward r(st||g, at), where || denotes

concatenation, and then moves from state st to the next

state st+1 based on the transition dynamics p(st+1|st, at).

At the end of each episode, a trajectory sequence τ :

〈s0||g, a0, s1||g, a1, · · · , sH ||g〉 is obtained. When interact-

ing with the environment, in most cases, the robot agent

fails to reach the goal. For the HER agent, a failed tra-

jectory τ can be transformed to a successful one τher :

〈s0||gh0 , a0, s1||g
h
1 , a1, . . . , sH ||gh

H
〉 with the hindsight tech-

nique, where ghi is the reached position after the ith state,

i = 0, 1, . . . , H.

The illustration of the proposed TATD-HER method is

shown in Figure 1(a). The method is endowed with a high-

low level curriculum learning structure. Task auxiliary and

task difficulty (TATD) is at the high level, explicitly form-

ing curriculum learning via generating auxiliary tasks in a

meaningful order {A1, A2, . . . , AN} which gradually illus-

trates more concepts and more complex ones according to

the type of complex task T . For the auxiliary task Ak, we

set the difficulty level Dki such that it gradually increases

from low level Dk0 to the normal level Dkn in the training

procedure,

Dki =







Dkn−Dk0

Ik
i+Dk0, i 6 Ik,

Dkn, i > Ik,
(1)

where i is the iteration step for training the auxiliary task

Ak, and Ik is its maximum iteration steps. For the complex

task T , the difficulty level Di is similar to (1). HER is at

the low level, which implicitly forms the curriculum learning

technique by using the hindsight technique to train the same
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Figure 1 (Color online) (a) Illustration of the high-low level TATD-HER method with explicit and implicit curriculum learn-

ing mechanisms. (b) Frames are captured from the final trained policy employed in the simulated environment. The robot arm

picks and places two cubes to their target positions denoted by different color ball points. The first and second rows show two

different manipulation circumstances. (c) Frames are captured from the final trained policy employed on the real-world UR5 robot

corresponding to the simulated environment. (d) Performance comparison with other methods.

policy on different difficulty levels of the auxiliary tasks Ak

and the complex task T with the deep deterministic policy

gradient (DDPG) [7].

The neural network parameter φ of Q-function Qφ in

DDPG is updated with

φ=φ− α∇φ

∑

B

(Qφ(s
k ||gkh, ak)− y(rk, s′k||g′kh))

2
, (2)

where B is the stored transformed transition (sk, gkh,

ak , rk, s′k, g′kh) from the auxiliary task Ak. sk, gkh, ak,

rk, s′k, and g′kh denote the state, reached position, action,

received reward, next state, and next reached position, re-

spectively.

y(rk , s′k||g′kh)

= rk + γQφtarg(s
′k ||g′, πθtarg(s

′k ||g′)), (3)

where Qφtarg and πθtarg are the target Q-function and tar-

get policy, respectively. The neural network parameter θ of

policy π is updated with

θ = θ + β∇θ

∑

B

Qφ(s
k ||gkh, πθ(s

′k||g′kh)). (4)

The detailed algorithm is shown in Algorithm 1.

Algorithm 1 TATD-HER curriculum learning method

Input: Complicated task T .

Output: Policy πθ.

1: Generate auxiliary tasks in a meaningful order according to

T : {A1, A2, . . . , AN} ← T ;

2: Initialize policy πθ with random weights;

3: for k = 1 : N do

4: for i = 0 : ksteps do

5: Set difficulty level Dki for Ak with (1);

6: Update policy parameter θ with (4);

7: end for

8: Policy πθ converges on auxiliary task Ak;

9: end for

10: for i = 0 : Tsteps do

11: Set difficulty level Di for T with (1);

12: Update policy parameter θ with (4);

13: end for

14: Policy πθ converges on task T .

Experiments and results. We instantiate and evaluate our

method on a simulated robot with parallel grippers to pick

two cubes and to place them at two different target positions

(one target position on the desk, and the other in the air),

in MuJoCo environment interfaced with Open-AI Gym, as

is shown in Figure 1(b). To achieve the designed multi-step

manipulation task T , the robot agent has to learn a sequence

of skills: picking the first cube from a random position; plac-

ing the first cube on its target position on the desk; picking

the second cube from the random position; moving the grip-

per to the target position of the second cube.

We set trajectory length H = 150, and learning rates

α = 0.0001 and β = 0.0003. The settings of policy network,

Q-function network, and other parameters are referred to in

HER [6]. The policy takes a concatenated vector including

the gripper position, two cube’s positions, and two target

positions as input, and outputs 4-dimensional action vector

to move the robot gripper in 3D space and close or open the

gripper fingers.

To train policy on the designated manipulation task T ,

two auxiliary tasks, A1 and A2, are generated. For the aux-

iliary task A1, the robot agent is trained to pick the first

cube (red cube) and place it on its target position, ignoring

the second cube (green cube). The sparse reward function

for auxiliary task A1 is set to

rt =

{

0, if ||x1t − g1|| < δ,

− 1, otherwise,
(5)

where x1t is first cube position at time step t, g1 is the target

position of the first cube, and δ is the threshold. For aux-

iliary task A2, the robot agent is trained to place the first

cube and the second cube on their target positions, which

are both set on the desk. The sparse reward function for A2

is

rt =

{

0, if ||x1t − g1|| <δ and ||x2t − g2|| < δ,

− 1, otherwise.
(6)

The sparse reward for task T is identical to (6). For skills

trained on each auxiliary task Ak, the difficulty levels Dki

are set to δ. Dk0 and Dkn are set to 5 cm and 0.5 cm,

respectively.
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We compare our proposed TATD-HER method against

the following methods: Reward shaping [2], Overcoming [3]

(requiring demonstrations), HER [6], DDPG [7], PPO [8]

(the state-of-the-art policy gradient DRL method), TATD-

HER without TATD mechanism, and TATD-HER without

HER mechanism. All policies share the same neural net-

work. Figure 1(d) summarizes the success rates of the final

trained policies. TATD-HER shows the best performance

among the above-mentioned methods and needs no demon-

stration data. The reason is that TATD-HER combines both

explicit and implicit curriculum learning for policy training,

which efficiently guides the policy optimization toward good

solutions. The ablation experiments suggest that TATD and

HER are both crucial components of our method, as only

policies trained with both explicit and implicit curriculum

learning techniques can succeed in learning multi-step com-

plex manipulation skills. The frames of the final trained

policies with TATD-HER in the simulated environment are

shown in Figure 1(b). As the policy action controls the robot

gripper rather than the joints, we succeed in employing the

final trained policies in a real-world UR5 robot without ad-

ditional training, which is shown in Figure 1(c).

Conclusion. We proposed a TATD-HER curriculum

learning method to learn manipulation skills on multi-step

complex tasks. The method addresses the complicated task

with both explicit and implicit curriculum learning mecha-

nisms. The experimental results demonstrate the effective-

ness of our proposed TATD-HER method and show that

the combination of explicit and implicit curriculum learn-

ing techniques is crucial for learning complex manipulation

skills. Future work involves applying our method to more

complex tasks.
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