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1 Introduction

[Robot manipulation skill learning J

Remarkable progress of deep reinforcement learning (DRL) in robot skill
learning has recently been witnessed 11,

[1]JLiuN, Lu T, Cai Y, et al. A Review of Robot Manipulation Skills Learning Methods. Acta Automatica Sinica, 2019, 45(3): 458-470.
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1 Introduction

[Robot manipulation skill learning }

Manipulation skill learning for Multi-step complex task is still challenging

Higher exploration of state-action space

Ressons

\ Uninformative sparse rewards for policy

learning
Reward Shaping [ Overcoming [@
Curriculum Learning Bl HER 14l

[1] Popov I, Heess N, Lillicrap T, et al. Data-efficient deep reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.

[2] Nair A, McGrew B, Andrychowicz M, et al. Overcoming exploration in reinforcement learning with demonstrations. IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018: 6292-6299.

[3] Fournier P, Sigaud O, Chetouani M, et al. Accuracybased Curriculum Learning in Deep Reinforcement Learning. arXiv preprint arXiv:1806.09614, 2018.
[4] Andrychowicz M, Wolski F, Ray A, et al. Hindsight experience replay. In Advances in Neural Information Processing Systems, 2017, 5048-5058.
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1 Introduction

[Robot manipulation skill learning }

To address the challenges in manipulation skill learning
on multi-step complex tasks we propose an efficient
curriculum learning method called Task Auxiliary and
Task Difficulty-HER (TATD-HER)
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[ TATD-HER j

Illustration
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[llustration of the high-low level TATD-HER Method




[ TATD-HER J

In a meaningful order
{A13A27”'7AN}6T J

more concepts and more complex ones

A - A More and more difficult

To auxiliary taskA, difficulty level D,

Dyyn—Dyxo ’i, i < I

Dy; = e (1)
Dyt > I
D,, low difficulty level D,, normal difficult level
| iteration step D,, maximum iteration steps for A,
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[ TATD-HER J
T . < 30”97@0731”970’17'”73H||g >

. HER $

TheT - < 30“93;@0731”9?70/1,"‘;SHHQI}EI >

Train policy with DDPG (Deep Deterministic Policy Gradient ) [1]

Update Q-function

6=0—aVsd) (Qu(s*llg™", a*) — y(r*,s™||g*"))’
B

(2)
B: (s,g",a" r s, g'"") stored transformed transiton
s“ state, g" reached position, a“ action

r* received reward, s’ next state, g’" next reached position

[1] Lillicrap T, Hunt J, Pritzel A, et al. Continuous control with deep reinforcement learning. International Conference on Learning Representations,
2016.
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[ TATD-HER J

Update Q-function

y(rka S,kllglkh) = ('rk + '}’chtarg(slk”g!: WGtarg(Slng,))

(3)

Q. target Q-function 7z, . target policy

0 =0+0Vs) Quls*llg"™" mo(s™[lg"™")) (a)

£ learning rate
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[ TATD-HER J Algorithm 1 TATD-HER Curriculum Learning Method

Input: Complicated task T

Detailed algorithm Output: Policy 7y

1: Generate auxiliary tasks in a meaningful order
according to T: {A;, As,--- AN} < T.
Initialize policy my with random weights.
for k=1:N do
for : = 0: kyteps do
Set difficulty level Dy; for Ay with Eq. (1)
update policy parameter 6 with Eq. (4)
end for
Policy mg converges on auxiliary task Ay.
end for
for 1 =0 : T4eps do
Set difficulty level D; for T" with Eq. (1)
update policy parameter § with Eq. (4)
. end for
. Policy my converges on task 7.
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3 Experiment and Result

W - A sequence of skills

Picking and placing two cubes to different target positions
Target positions denoted by the different color ball points
One target position on the desk, and the other one in the air
Interfaced with Open-Al Gym 1]

[1] Brockman G, Cheung V, Pettersson L, et al. Openai gym, 2016.



3 Experiment and Result

[ Experiments J

Auxiliary tasks

Auxiliary Task A,: picking the first cube (red cube) and place it on its
target position, ignoring the second cupe (green cube).

Reward function  p, = { 0, if ||zt —g1]] < 6

—1, otherwise

Auxiliary Task A,: picking two cubes and placing them on their target
positions on the desk

0, if ||z1s — ¢1|| <9 and ||z — g2|| <

Reward function Ty = .
—1, otherwise

X, %,, positions of the first cube and the second cube, ¢ threshold

0,, 0, target positions of the first cube and second cube
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3 Experiment and Result

[ Results ]

Learning curves
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Learning curves of TATD-HER method

Our method succeed in learning policy on complex T
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3 Experiment and Result

[ Results ]

Frames from the final trained policy
Employed in the simulated environment

As the policy action controls the robot gripper rather than the joints, we succeed in

employing the final tralned poI|C|es in reaI-worId UR5 rob(_)t Wlthout addltlonal training

Frames from the final trained pollcy employed on the real-world UR5 robot
17



3 Experiment and Result

[ Experiments J

Baselines m
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Our proposed method shows the best performance and needs no demonstration data.
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