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Abstract Collaborative representation-based detection (CRD) has been developed in hyperspectral

anomaly detection tasks and testified to be very effective; however, heterogeneous pixels in the background

may affect the accuracy of linear representation and make its performance suboptimal. To address this is-

sue, a background purification framework based on linear representation is proposed, in which an automatic

outlier removal strategy based on initial coefficients is designed to purify the background. In the proposed

method, the classic least squares technique is firstly adopted to obtain preliminary linear representation coef-

ficients, which are positively correlated with its contribution to a central testing pixel. Then, using statistical

analysis of the representation coefficients, purified background pixels are obtained. Furthermore, a saliency

weight is applied to fully utilize the spatial information of inner window pixels. Extensive experiments with

three real hyperspectral datasets show that the proposed method outperforms state-of-the-art CRD and other

traditional detectors.
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1 Introduction

Different from traditional multispectral or panchromatic images, hyperspectral images (HSI) contain rich
spectral information with a large number of bands and high spectral resolution [1–3]. These distinctive
features provide unique advantages for target detection. And it has shown great potential applications
in remote sensing ground observation, food safety, medical diagnosis, etc. In reality, prior knowledge of
target spectrum is difficult to obtain [4]. Anomaly detection does not require any a priori information of
targets spectrum and can effectively mark the features of objects that differ from the background using
only statistical identification methods. Therefore, it is widely used and has proven to be useful in a
variety of applications.

In the well-known Reed-Xiaoli (RX) [5] method, the similarity between testing pixel and background
pixels is calculated by typical Mahalanobis distance, and it is directly based on the assumption that
hyperspectral background confirms to Gaussian normal distribution. When considering the entire image
as a Gaussian background model, it is called global RX (GRX) [5]. If the RX detector estimates the
background model using local statistics, it is called local RX (LRX) [6]. However, the distribution of back-
ground is extremely complicated and cannot be described using only a multivariate normal distribution.
Therefore, some improved RX-based methods have been investigated. The weighted RX (WRX) and lin-
ear filter RX (LFRX) [7] aim at increasing the probability of anomalous pixels by improving estimation
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of the background statistics. In addition, some nonlinear kernel-based methods have also achieved better
anomaly detection performances; For example, the kernel RX [8] detection method effectively solves the
spectral inseparability problem of linear space by using nonlinear kernel functions to map original space
to high-dimensional feature space.

In recent years, linear representation, including sparse representation and linear representation, has
been successfully applied to hyperspectral anomaly detection. In sparse representation, these methods
aim to represent the entire image as concisely as possible with fewer atoms, such as sparse representation
detector (SRD) [9], low-rank and sparse representation (LRASR) [10] and multiple local windows and the
low-rank representation sum-to-one model (MLW LRRSTO) [11]. In linear representation-based meth-
ods, collaborative representation detector (CRD) [12] has achieved satisfactory detection performance,
which is directly based on the concept that a central pixel can be approximated by its spatial neighbor-
ing background pixels, but anomalies cannot. However, detection accuracy of these methods is heavily
dependent on the quality of the dictionary construction. They only consider spectral information and do
not fully utilize spatial information, making it difficult to achieve satisfactory results.

Recently, Li et al. [13] proposed a transferred deep convolutional neural network detector (CNND)
to make full use of neighboring differences between pixel pairs. Tao et al. [14] presented a fractional
Fourier entropy-based RX (FrFE-RX) detector, where fractional Fourier transform was employed as
preprocessing to obtain features in an intermediate domain between the original reflectance spectrum and
its Fourier transform. Furthermore, some background purification methods have recently received a lot of
attention. Vafadar et al. [15] developed a collaborative representation-based with outlier removal anomaly
detector (CRDBORAD), which obtained relatively pure background pixels by removing some suspected
anomaly pixels. Subsequently, Su et al. [16] put forward CRD combined with principal component analysis
(PCAroCRD). Considering the role of background estimation and suppression in anomaly detection,
Zhang et al. [17] further designed a background purification-based framework. Zhao et al. [18] developed
another nonparametric background refinement method based on the local density (BRMLD) to refine
background information. To make full use of statistical information of local background, Tan et al. [19]
also proposed a local summation unsupervised nearest regularized subspace with an outlier removal
anomaly detector (LSUNRSORAD) to improve detection performance.

However, among these background purification-based methods, both background density calculation
and local multi-window summation calculation are time-consuming. Therefore, considering positive cor-
relation between coefficients and contribution of background pixels to a testing pixel in these linear
representation methods, an effective solution for purifying background pixels using the representation
coefficient is proposed. To obtain initial representation coefficients to purify background pixels, the least
squares method is used. In addition, considering that targets first seen in the human visual system
are often salient [20], anomalies should also be salient. Therefore, saliency weight of each pixel in an
inner window is calculated to differentitate between anomalies and background. These considerations
have inspired the development of a collaborative representation detector with background purification
and saliency weight (CRDBPSW). To begin, the least squares method is used to calculate preliminary
representation coefficients. Then, the mathematical statistics method is utilized to purify background
pixels. Finally, a state-of-the-art CRD is used to obtain the final detection map. Meanwhile, saliency
weight is imposed to improve the robustness of the proposed CRDBPSW.

The contributions of our proposed CRDBPSW method can be summarized as follows. (1) Different
from other background purification methods, the least squares technique is used for the first time to refine
the local background, where the contribution of the background pixels to the test pixel is determined
according to the value of linear representation coefficients. (2) The saliency weight is introduced into the
collaborative representation and the saliency weight value of the testing pixel is estimated for the first time
by the local background pixels within the inner window, and is weighted into the linear representation
process.

2 Proposed anomaly detection framework

During background modeling in traditional methods [12], heterogeneous pixels in the background may
affect the accuracy of linear representation. Thus, it is necessary to purify background pixels. Therefore,
an automatic outlier removal strategy based on initial coefficients to purify background pixels is designed.
Considering that representation coefficients represent the contribution of neighboring pixels to the testing
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Figure 1 (Color online) Schematic of the proposed background purification framework.

pixel in linear representation methods, the classic least squares method is used to refine the background
pixels. Figure 1 displays a flowchart of the proposed background purification framework, which consists of
the following steps. To begin, background pixels in the dual window are purified using the least squares
method. After that, the saliency weight of pixels in an inner window is computed. Finally, CRD is
employed to linearly represent testing pixels by purified background. Simultaneously, the saliency weight
is multiplied to represent the results for better separation.

2.1 Least squares-based background purification

For a given hyperspectral imagery dataset X ∈ R
b×rc, b be number of spectral bands and r, c be the

row and column, respectively. Based on the concept that a testing pixel can be linearly represented by
its neighboring pixels, the testing pixel y with the size of b× 1 can be approximated as

ỹ = a0 + a1x1 + a2x2 + · · ·+ asxs = Xs ·α, (1)

where ỹ is an approximation vector of y, Xs = [1b×1,x1, x2, . . . ,xs] are the surrounding pixels between
the outer and inner windows. 1b×1 is a column vector, whose all elements are 1. α = [a0, a1, a2, . . . , as]

T is
the coefficient vector. s is the number of background pixels within dual window and can be
calculated by

s = ωout × ωout − ωin × ωin, (2)

where ωout and ωin are outer and inner window sizes, respectively. In order to minimize the linear
prediction error ε = ‖y − ỹ‖, the least squares solution [21] is used, and vector α can be estimated as

α̃ = (XT
s Xs)

−1XT
s y. (3)

After obtaining initial coefficients, these values in vector α̃ need to be sorted in descending order.
Then, according to statistical analysis, m coefficients that contribute the most to the testing pixel are
selected. In vector α, representation coefficient a0 is a constant and does not represent any pixel, so it
can be removed directly. Coefficient vector at this time becomes [a1, a2, . . . , as]. After the coefficients are
sorted from the largest to the smallest, it is represented,

[amax1, amax2, . . . , amaxs], (4)

where amax1 > amax2 > · · · > amaxs, amaxi ∈ [a1, a2, . . . , as]. As shown in Figure 2, it is assumed that
background imagery obeys a normal distribution and, when confidence interval is 95%, the value of α-
quantile is 0.05, that is, α/2 is equal to 0.025. The distribution table can then be used to calculate
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Figure 2 (Color online) Determination of maximum and minimum thresholds according to the confidence interval.

the maximum and minimum thresholds. This guarantees that the sample mean is within two standard
deviations of the overall mean. Therefore, two formulas are obtained [15, 19] as follows:

τmax = µ+ 2× σ, (5)

τmin = µ− 2× σ, (6)

where µ and σ are mean and standard deviation of these background pixels Xs, and τmax and τmin

represent maximum and minimum of these background pixels’ intensities, respectively. It should be noted
that, unlike a single band image, its intensity value is the digital value. However, because hyperspectral
images contain a wealth of bands, the sum of the digital values of all bands is used to calculate the
image’s intensity value. The number of pixels between τmax and τmin, denoted as m, is counted. Then,
background pixels corresponding to m maximum coefficients are selected as the purified background,

Xm = [xmax1,xmax2, . . . ,xmaxm], (7)

where m < s and Xm represent the purified background pixels.

2.2 Collaborative representation detection with saliency weight

After obtaining purified background pixels, CRD is adopted to detect anomalous pixels. Different
from the typical least squares method, in collaborative representation [12], objective function is to find
weight vector ϕ under constraint that ‖ϕ‖22 by minimizing ‖y −Xrϕ‖22. Therefore, the new objective
function is

argminϕ‖y −Xrϕ‖22 + λ‖ϕ‖22, (8)

where Xr represents the purified background, such as Xm, ϕ = [b1, b2, . . . , br]
T is a weight vector, and

λ is Lagrange multiplier. For those background pixels that are quite different from the testing pixel,
coefficients should be small, and the penalty for having a large coefficient must be heavy. Therefore, a
distance-weighted Tikhonov regularization is considered to adjust the weight vector

Γy =









‖y − x1‖2 . . . 0
...

. . .
...

0 . . . ‖y − xr‖2









. (9)

The objective function after adding the Tikhonov regularization can be converted to

argminϕ‖y −Xrϕ‖22 + λ‖Γyϕ‖22. (10)

Using the Lagrange multiplier method, a final solution can be obtained,

ϕ̃ = (XT
r Xr + λΓT

y Γy)
−1XT

r y. (11)
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Generally, the closer the spatial distance between two pixels is, the higher the spectral similarity
is. However, to the best of our knowledge, pixels contained in an inner window are rarely used in many
methods based on dual-window, and the influence of adjacent pixels on the testing pixel is not considered.
Targets seen for the first time are generally regarded as significant in the human visual system. Similarly,
anomalous targets should be significant in comparison to the background. Therefore, to address this issue,
saliency weight is used to distinguish between anomalous targets and background. When the spectral
information of a testing pixel is clearly different from that of its neighboring pixels, the pixel is said to
be regional saliency. In this work, spectral angular distance between local pixels in inner window and
testing pixel is used to define a saliency weight [20, 22],

dsaliency(xi,y) =
dspectral(xi,y)

1+c ˙dposition(xi,y)
, (12)

where xi is surrounding pixels contained in an inner window, c is a constant, which has little effect on
the final result. Here its value is set to 1. dspectral(·) and dposition(·) are spectral angular distance and
Euclidean distance between position coordinates,

dspectral(xi,y) = arccos

( ∑
N

i=1
xiy√∑

N

i=1
xi

∑
N

i=1
y

)

, (13)

where N = ωin×ωin−1 is the number of background pixels in an inner window. The position coordinates
of y and xi are denoted as (i, j) and (k, l), respectively. Then, dposition can be expressed by

dposition(xi,y) =
√

(i − k)2 + (j − l)2. (14)

Finally, we take the average of all weight as the saliency weight of the testing pixel,

dsaliency eva =
∑

N

i=1
dsaliency

N
. (15)

Through a sliding window, the saliency weight of a testing pixel in each window is calculated, which
constitutes a saliency map. A final probability map of anomaly detection can be obtained,

D(x) = ‖y −Xrϕ̃‖2·dsaliency eva. (16)

The overall description of the proposed CRDBPSW is briefly described in Algorithm 1.

Algorithm 1 Proposed CRDBPSW for hyperspectral anomaly detection

Input: Three-dimensional hyperspectral imagery, window size (ωout, ωin) and parameter λ;

Output: Anomaly detection map D(x);

1: Reshaping three-dimensional hyperspectral cube to two-dimensional data;

2: For all pixels do

3: Calculating the preliminary coefficient vector α̃ of each test pixel by (3);

4: Calculating the threshold by (5) and (6) and getting the purification background Xm by (7);

5: Let Xr = Xm, and then calculate the weight vector ϕ̃ by a closed-form of (11);

6: Calculating the saliency weight of test pixel by (15);

7: Calculating the final detection result by (16);

8: End for

2.3 Analysis on proposed CRDBPSW

In the proposed CRDBPSW, background purification processing is attempted to reduce the influence of
heterogeneous pixels in the background during linear representation, thereby achieving better approxi-
mation. To illustrate the benefits, Figure 3 shows residual values of CRD and the proposed CRDBPSW
using background pixels in the San Diego dataset (will be introduced in Subsection 3.1). CRD means
that all pixels within the inner and outer windows are used for linear representation, whereas CRDBPSW
means that only pixels that have been preserved after background purification are used. It is clear that
the black curve representing CRDBPSW is generally lower than the blue curve representing CRD, in-
dicating that CRDBPSW’s approximatio is more accurate than CRD’s. It further confirms that the
proposed CRDBPSW can significantly remove heterogeneous pixels in the background.
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Figure 3 (Color online) Residual values of CRD and the proposed CRDBPSW using background pixels in the San Diego dataset.
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Figure 4 (Color online) Comparison of spectral signatures using one chosen background pixel.

Figure 4 illustrates the comparison of spectral signatures using one chosen background pixel, where
red, blue, and black curves represent the original spectral signature, approximation using CRD, and the
one using CRDBPSW, respectively. The trend of the black and blue curves is consistent with the trend
of the red curve, indicating that the original background spectral information of the chosen testing pixel
can be effectively represented by the linear representation using background pixels. The slight difference
between the blue curve and black one can be observed when the abscissa of the spectral curve is in the
range of 1–80, 130–140, and 165–189, and the trend of the black curve is closer to the red one, which
reflects that the proposed CRDBPSW can restore spectral signatures in HSI.

3 Experiments and discussion

3.1 Datasets description

The first image was obtained by an airborne visible/infrared imaging spectrometer (AVIRIS) sensor flying
in the Gulfport area. The flight time is July 7, 2010. The image is made up of 100 × 100 pixels with
a spatial resolution of 3.4 m. After removing the corresponding bands, it has 191 spectral bands; the
anomalies are caused by airplanes. The scene and the ground-truth map are shown in Figure 5. The
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(a) (b)

Figure 5 (Color online) Illustration of the Gulfport dataset. (a) Pseudo color (RGB: 80, 60, 50); (b) the ground-truth map.

(a) (b)

Figure 6 (Color online) Illustration of the SpecTIR dataset. (a) Pseudo color (RGB: 53, 34, 14); (b) the ground-truth map.

reference map of the sample image is manually labeled with the help of the environment for visualizing
images (ENVI) software. The dataset has been made available on the first author’s homepage [4].

The second image was obtained by the SpecTIR hyperspectral airborne Rochester experiment [14,23]
with a spatial resolution of 1 m. This image is of size 180 × 180 × 120, in which the noisy bands have
been removed. Anomalies consist of man-made colorful square fabrics. The image and the ground-truth
of anomalies are illustrated in Figure 6.

The third image is a part of the San Diego airport in the USA, which was acquired by the AVIRIS
sensor with a spatial resolution of 3.5 m. After removing the corresponding noisy bands, this image is
of size 100 × 100 × 189, which is the top-left part of the whole scene. Anomalies consist of airplanes
containing fifty-eight pixels [24]. The sub-image and the ground-truth map are illustrated in Figure 7.

3.2 Parameter analysis

The initial choices of different parameters are important for the proposed CRDBPSW, which involve three
parameters: λ, ωout and ωin. For CRD, its performance is insensitive to parameter λ and window size.
Same as CRD, the detection performance of the proposed CRDBPSW is also insensitive to regularization
parameter λ and window size. Therefore, by fixing λ as 10−6 as suggested in [4,12], and varying ωin from
3 to 15 and ωout from 5 to 19, the detection performance of CRDBPSW under different parameters is
collected.

Similarly, for LRX, by using the same way to change ωin from 3 to 15 and ωout from 5 to 19, detection
performance under different window sizes is collected. It should be emphasized that in the following
comparative experiments, detection results of LRX, robust principal component analysis (RPCA), and
CRD are all optimal. As shown in Figures 8–10, detection performances of different datasets are provided.
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(a) (b)

Figure 7 (Color online) Illustration of the San Diego dataset. (a) Pseudo color (RGB: 22, 13, 4); (b) the ground-truth map.
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Figure 8 (Color online) AUC values of different windows sizes in the Gulfport dataset.
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Figure 9 (Color online) AUC values of different windows sizes in the SpecTIR dataset.

It can be seen in Figure 8 that for LRX and CRD, performance curves change greatly with various window
sizes, especially when the size of inner and outer windows differs greatly and detector performance is poor.

For CRDBPSW, detection performance is relatively stable, which shows that the proposed method
reflects better robustness. In Figure 9, a similar conclusion can be drawn that the stability and average
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Figure 10 (Color online) AUC values of different windows sizes in the San Diego dataset.
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Figure 11 (Color online) Detection performance using the Gulfport dataset. (a) Statistical separability analysis; (b) ROC curves.

performance of the proposed CRDBPSW using the SpecTIR dataset is superior to LRX and CRD.
Similarly, it can be seen using the San Diego dataset as shown in Figure 10 that the proposed CRDBPSW
can still maintain good stability when window size varies, and average detection performance is also better
than LRX and CRD.

3.3 Detection performance

The anomaly detection performance of the proposed method is compared with some other detectors.
Four commonly used anomaly detectors, such as the GRX, LRX, RPCA, and CRD, are used in the
experiments. For qualitative and quantitative comparison, statistical separability analysis [19], receiver
operating characteristic (ROC), and area under the curve (AUC) [25] metric are utilized as main criteria
for evaluation.

For the Gulfport dataset, separability between anomalous targets and background, and output value
range of different detection methods are displayed in Figure 11(a). The red box denotes the range
of anomalous targets, while the blue box denotes the range of background. The separation between
anomalous targets and background is represented by the interval between the red and blue boxes. The
height of the box represents the degree to which these methods suppress anomaly and background.
In general, the lower the blue box height, the stronger the background suppression, which aids in the
separation of background and anomaly. As shown in Figure 11(a), the interval between the red and blue
boxes of the proposed CRDBPSW method is larger than GRX, LRX, RPCA, and CRD methods, which
indicates that the proposed CRDBPSW method can separate anomalous targets from the background
more effectively. The blue box height of the LRX method is the lowest, which indicates that the LRX
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Figure 12 (Color online) Detection performance using the SpecTIR dataset. (a) Statistical separability analysis; (b) ROC curves.
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Figure 13 (Color online) Detection performance using the San Diego dataset. (a) Statistical separability analysis; (b) ROC

curves.

method has the best background suppression compared with other methods. However, the separation of
LRX from anomalous targets and background is poor.

For the SpecTIR dataset, as shown in Figure 12(a), the blue boxes representing LRX, CRD, and
CRDBPSW are lower than those boxes representing GRX and RPCA, which indicates that LRX, CRD,
and CRDBPSWmethods have better background suppression compared with other methods. The interval
between red and blue boxes representing CRDBPSW and CRD is larger than the interval between red
and blue boxes representing LRX, indicating that CRDBPSW and CRD methods can more effectively
separate background and anomalous targets than LRX. Furthermore, the the proposed CRDBPSW has
slightly better background suppression than CRD. Similarly, the same conclusion can be drawn from the
San Diego dataset as shown in Figure 13(a), where it is more intuitively that the proposed CRDBPSW
can effectively suppress background and separate anomalous targets when compared with other methods.

To compare the detection performance of various methods more intuitively, ROC curves are provided.
As shown in Figure 11(b), in the Gulfport dataset, it is easy to find that compared with other detection
methods, the black ROC curve representing the proposed CRDBPSW is obviously on the top left, which
reflects that the performance of CRDBPSW is better than other methods. For the SpecTIR dataset, as
shown in Figure 12(b), compared with other detection methods, the curve of CRDBPSW is obviously
on the top left, which confirms that the effectiveness of the proposed CRDBPSW. Similarly, for the San
Diego dataset, the same conclusion can be drawn that the ROC curve of the proposed CRDBPSW is
closest to the upper left corner in Figure 13(b), which also means that the detection performance of the
proposed method is better than other methods.

For quantitative comparison, AUC values are used as the main criteria to evaluate the detection
performance, as listed in Table 1. The detection results of CRDBPSW are better than other methods for
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Table 1 AUC values of different anomaly detectors using three experimental datasets

Method GRX LRX RPCA CRD CRDBPSW

Gulfport 0.95260 0.96940 0.95348 0.95992 0.97913

SpecTIR 0.99138 0.99846 0.99827 0.99830 0.99909

San Diego 0.88854 0.84557 0.91896 0.99635 0.99873

Table 2 Execution time of different anomaly detectors using three experimental datasets (unit: s)

Method GRX LRX RPCA CRD CRDBPSW

Gulfport 0.28 36.22 2.71 4.33 15.49

SpecTIR 0.22 39.86 3.86 15.13 37.73

San Diego 0.10 47.93 2.32 14.51 29.42

these three experimental datasets, especially for the Gulfport dataset; compared with the CRD method,
the improvement of CRDBPSW is approximately 2%. Table 2 provides the computational cost of various
detection methods. Although the proposed CRDBPSW takes less time to execute than LRX when
compared to other traditional detection methods, the calculation cost is still high, particularly for the
SpecTIR dataset. The reason for this is that additional background purification and saliency weight
calculations have been implemented.

4 Conclusion

In this paper, a background purification framework for hyperspectral anomaly detection was proposed.
The classic least squares method was first used in the proposed CRDBPSW framework to purify back-
ground in HSI. Simultaneously, saliency analysis was designed to further improve detection performance
by calculating saliency weight between adjacent pixels and the testing pixel to make full use of spatial
information between adjacent pixels in an inner window. Experiments with three real hyperspectral
datasets confirmed that the proposed method was stable to different window size changes and that its
detection performance always outperformed some traditional anomaly detection methods.
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