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Abstract Reliable and efficient image transmission is crucial for deep-space exploration. However, the

extremely long distance and complex deep-space environment introduce severe design and implementation

challenges. In this work, we propose a novel high-efficiency system, CS-LTP-Spinal, to address the chal-

lenges encountered in deep-space image transmission. CS-LTP-Spinal is designed to work over the Licklider

transmission protocol (LTP) of the delay-tolerant network (DTN). By incorporating compressed sensing (CS)

and the Spinal codes as the application and physical layer techniques, CS-LTP-Spinal can satisfy the con-

straints originating from resource asymmetry between the space vehicles and the ground station. To match

the time-varying deep-space channels, two coarse-grained rate-adaptive transmission strategies are designed

that employ different CS decompression mechanisms based on erasure-tolerant and error-tolerant decompres-

sion, respectively, to exploit the robustness of CS reconstruction to erasures and errors. Then, the rates

of CS compression and Spinal coding are optimized over the application, transport, and physical layers. A

semi-physical deep-space communication platform is built, and extensive simulations on the Mars-to-Earth

scenario are conducted. The results demonstrate that the designed CS-LTP-Spinal system with cross-layer

optimized rate-adaptive transmission strategies has significant performance advantages over its counterparts

by achieving near-ideal image transmission efficiency.
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1 Introduction

Deep-space communication systems are responsible for data exchange between ground stations and remote
space vehicles [1]. One of the core tasks of deep-space exploration is to successfully transmit various types
of data such as images of a remote planet’s surface, from space back to the ground station [2]. However, the
extremely long distance and the complex electromagnetic environment have created significant challenges
in the design of deep-space image transmission systems. The images to be transmitted are immense, which
requires high efficiency in the transmission links. Moreover, the remote images are expected to provide
the most intuitive information for analysis of unknown deep-space environments; therefore, reliable image
transmission back to Earth is critically important. However, the design and implementation of high-
efficiency image compression algorithms and high-gain channel coding techniques face several challenges.

• High signal attenuation with significant time variance. The deep-space channel suffers
severely from high signal attenuation. In addition, several factors such as the rain and atmospheric loss,
result in an extremely low and highly dynamic signal-to-noise-ratio (SNR) [3].

• Long propagation delay and intermittent disruptions. The propagation delay is extremely
long and time varying. Even planet rotation can cause intermittent channels. This means that high-
frequency feedback would be very inefficient for deep-space image transmission.
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• Asymmetric resources. The computation, storage, and energy resources of the remote space
vehicles are limited, while those of the ground station are abundant [2]. Therefore, for image compres-
sion, the encoding complexity should be as low as possible, whereas the decoding complexity should be
relatively high. For channel coding, both encoding and decoding complexity should be low because in
cases of multi-hop transmission, the relay node needs to conduct both decoding and encoding.

To address these challenges, abundant research has been conducted on the design of deep-space image
transmission systems. The delay-tolerant network (DTN) [4], which was designed for scenarios with long
delay and frequent disruptions, has shown great potential in recent years to be the protocol stack for
deep-space communication. For the transport layer of DTN, the newly-developed Licklider transmission
protocol (LTP) [5] was designed specifically to operate over long-haul hops. A substantial amount of
studies have also been conducted on image compression and channel coding algorithms individually to
enhance the efficiency and reliability of deep-space image transmission [6,7]. However, the following issues
remain and require further improvement.

In previous studies, image compression and channel coding are mainly implemented separately while
neglecting the high implementation complexity. In addition, the dynamic nature of deep-space channels
has not been fully explored thus far. The designed transmission strategies are mainly fixed rate, including
the Chang’e-3 Lunar Rover [8] and the Jet Propulsion Laboratories (JPL) for the Mars Exploration
Rover (MER) mission [9], which has led to underutilization of deep-space channels. In fact, rate-adaptive
strategies based on appropriate use of feedbacks can obtain much higher transmission efficiency. Although
for deep-space channels, high-frequency feedbacks should not be expected, low-frequency feedbacks that
can indicate large time-scale channel dynamics such as the rain loss can be reasonably used. Further,
joint allocation of the rates of image compression and channel coding can achieve optimal transmission
performance under certain channel conditions [6].

To address the aforementioned issues, we propose a novel deep-space image transmission system de-
signed to work over LTP incorporated with compression and coding algorithms that satisfy the constraints
of asymmetrical resources. In addition, rate-adaptive strategies with cross-layer optimization are pro-
posed to improve the transmission efficiency. For source compression, we adopt compressed sensing
(CS) [10], which is known for its scalable compression and low encoding complexity, to realize compres-
sion with high efficiency yet low complexity. For channel coding, we adopt the Spinal codes [11], which
can achieve near-capacity performance with a message length as short as 32 bits to realize affordable
computation. For rate control, two coarse-grained rate-adaptive strategies are proposed to match the
time-varying channel. They employ different CS decompression mechanisms, CS-erasure-tolerant and
CS-error-tolerant, which originate from the robustness of CS reconstruction to erasures and errors, re-
spectively. Furthermore, the rates of compression and channel coding are jointly optimized by cross-layer
optimization. The proposed deep-space image transmission system is known as CS-LTP-Spinal. To verify
the effectiveness of this system, we build a semi-physical simulation platform and run extensive simu-
lations on the Mars-to-Earth transmission scenario. The results show that CS-LTP-Spinal can achieve
near-ideal transmission efficiency.

The main contributions of this work are summarized below.

• A novel high-efficiency image transmission system known as CS-LTP-Spinal is proposed for deep-
space exploration. Two coarse-grained rate-adaptive transmission strategies are designed for this system
to dynamically match the time-varying deep-space channels.

• Cross-layer optimization methods for joint source-channel rate allocation of the two rate-adaptive
transmission strategies are further proposed, by which the transmission efficiency of CS-LTP-Spinal is
optimally explored.

• A semi-physical deep-space communication simulation platform is for implementing and testing the
CS-LTP-Spinal system.

The remainder of this paper is organized as follows. Section 2 reviews the state-of-the-art studies
in this field. In Section 3, we present the framework of CS-LTP-Spinal, the core techniques of which
are briefly described. In Section 4, detailed rate-adaptive strategies are described, and the cross-layer
optimization methods are given in Section 5. In Section 6, a case study of CS-LTP-Spinal on the Mars-
to-Earth scenario is presented. The semi-physical platform and results are given in Section 7, and the
conclusion is given in Section 8.



Wu S H, et al. Sci China Inf Sci January 2022 Vol. 65 112303:3

2 Related work

In previous deep-space missions such as the MER mission [9], widely used compression algorithms include
the Joint Photographic Experts Group (JPEG) [12], JPEG2000 [13], and ICER [9]. These algorithms are
mainly transform domain-based non-linear algorithms, which puts severe pressure on deep-space vehicles.
The law of CS [10], which creates a linear projection of the source signals, indicates that if an image is
sparse, it can be reconstructed with high probability from a much lower number of measurements than
that based on the Nyquist sampling theory. Intuitively, owing to limitations in the computation, storage,
and energy resources of the remote vehicles, CS appears to be a promising solution for such challenges.

For channel coding, conventionally codes include Reed-Solomon codes [14], convolution codes [15], and
others. In recent years, advanced codes such as low-density parity check and Turbo codes have been widely
adopted in space exploration [16]. However, near-capacity performance is achieved when moderate-to-
long code words and iterative decoding mechanisms are used, resulting in prohibitively high complexity.
Spinal codes, a novel type of rateless codes proposed by Perry et al. [11,17], have simple encoding structure
and can nearly achieve the capacities of both the additive white Gaussian noise (AWGN) channel and
the binary symmetric channel (BSC) with a message length as short as 32 bits. Moreover, the code rate
can be modified adaptively by adjusting the number of passes.

To fully explore the transmission ability of the time-varying deep-space channel, the transmission
strategy design should not aim only at the worst channel case [18]. Instead, it is expected that the
transmission rate can self-adapt to the channel. In [19], the authors studied the performance of two
classes of adaptive transmission schemes in a cellular downlink. One class was based on rateless codes
with a power constant, and the other used fixed-rate codes with power adaptation. Ref. [20] considered
the transmission control problem in a wireless senor system with a single-pixel image camera, and they
formulated a more practical stochastic optimization problem for rate control and power control. However,
they did not consider the impacts of channel feedback and the specific channel coding scheme. In [21],
the authors proposed a combined optimal bit-rate-allocation algorithm to improve the efficiency in space
exploration missions. The rate of each image was optimized under the overall bit rate constraint to
minimize the overall distortion of a batch of images. However, these strategies rely on high-frequency
low-layer feedbacks, which makes it unsuitable for deep-space communication.

An additional method for improving the transmission efficiency is cross-layer design. Its application
to wireless transmission has been studied thoroughly [22, 23] with results showing strong potential for
efficiency improvement. In [24], the authors presented a cross-layer design for data transmission consisting
of rate control, routing, scheduling, and power control. They focused on the joint optimization over
physical, MAC, network, and transport layers. Although few studies have been conducted on deep-space
communication, the effectiveness of joint source-channel coding (JSCC) for deep-space image transmission
has been preliminarily verified. Ref. [25] proposed a JSCC rate-allocation framework combining rate
allocation and unequal error protection (UEP) to improve the image transmission performance. They
designed an algorithm to select the optimal source and channel coding rate pair from pre-configured
code rate sets. In [18], the authors presented a still image coding scheme using JSCC that introduces
redundancy before source coding with real Bose-Chaudhuri-Hocquenghem (BCH) codes. Compared with
a tandem scheme for a given channel situation, the JSCC scheme shows increased robustness as the
channel conditions worsen. Ref. [6] proposed a new coding scheme for image transmission over noisy
channels. They introduced a source-channel encoder after quantization to avoid the use of an explicit
entropy coding stage, which is typically used in classical schemes.

In this study, it is the first to consider all design criteria of deep-space exploration to propose a high-
efficiency deep-space image transmission system. The proposed CS-LTP-Spinal system is designed to
work over the LTP of DTN, with CS and Spinal codes that can satisfy the constraints of asymmetrical
node resources incorporated in the application and physical layers. Moreover, we use low-frequency high-
layer feedbacks to coarsely infer the channel states for the transmitter, and we achieve coarse-grained
adaptive rate controls to better explore the transmission ability of the time-varying deep-space channel.
In our previous work [26], the framework of CS-LTP-Spinal was preliminarily designed. Further solid
work is performed in the current study by exploiting the robustness of CS decompression to both erasures
and errors.
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Figure 1 (Color online) Framework of the proposed CS-LTP-Spinal deep-space image transmission system.

3 Framework of the proposed CS-LTP-Spinal system

In this section, we present the framework of the proposed CS-LTP-Spinal system, and we briefly describe
the basics of the three core technologies adopted.

3.1 CS-LTP-Spinal framework

As illustrated in Figure 1, three types of nodes—source, relay, and destination—are involved in the
deep-space image transmission system. First, the remote space vehicle performs CS compression by
a simple linear operation. Owing to the information-spreading nature of the linear operation, the CS
decompression can achieve any required quality as long as sufficient amounts of compressed data are
received. After the processing by the compression and erasure coding modules, the compressed data are
submitted to the transport layer. Then, the output protocol data unit (PDU) stream is encoded in the
physical layer by Spinal codes before being submitted to the relay. The relay decodes the Spinal blocks
and checks whether the received data can meet the requirements of reconstruction. If so, the decoded
packets will be re-encapsulated and sent to the ground. If not, the relay will send feedback to the source
to request additional Spinal symbols. Finally, the ground station completes the decoding, decapsulation,
and decompression. By rate-adaptive transmission control, the transmission rate is dynamically adjusted
according to the low-frequency feedbacks from the receiver; by the cross-layer design, the CS, Spinal
codes, and LTP are jointly optimized to obtain the optimal source-channel rate allocation.

3.2 CS image compression in the application layer

Let F denote the two-dimensional deep-space image to be compressed. f ∈ R
N denotes the vector form

F . Suppose f is K-sparse in a certain domain Ψ; that is, the transform coefficients of f , denoted by
α (α = Ψf), are mostly zero or close to zero. Φ is an M × N (M ≪ N) matrix responsible for the
compression operation, by which the CS compression results, denoted by g ∈ R

M are

g = Φf. (1)
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The decompression is formulated as the following constrained l1 minimization problem provided that
Θ satisfies the restricted isometry property (RIP) [27]:

α̂ =argmin
α

‖α‖1 s.t. g = Φf = ΦΨ−1α = Θα, (2)

where ‖ · ‖1 denotes the pseudo-norm, and Θ = ΦΨ−1 is the composite compression matrix. The decom-

pressed image can be expressed as f̂ = Ψ−1α̂. When Φ and Ψ are non-coherent, Θ satisfies RIP with high
probability. Practically, the received compressed data is noise contaminated, which can be represented
as g = Φf +n, where n is the noise. To decompress from the noisy compressed data, the l1 minimization
problem in (2) can be modified to

α̂ =argmin
α

‖α‖1 s.t. ‖g −Θα‖2 6 ε, (3)

where ε is set according to the noise level. In this study, Eq. (2) is a linear programming problem, and
Eq. (3) is a second-order cone programming problem. Here, the block matching three-dimensional filter-
ing denoiser-based approximate message passing (BM3D-AMP) is used as the reconstruction algorithm
because it can provide state-of-the-art decompression performance, while operating tens of times faster
than competitive methods [28, 29]. The most important property of CS decompression is its robustness
to erasures and errors, which means that the decompression quality is guaranteed even if erasures occur.
This property is based on the information-spreading operations of CS linear compression such that all of
the compressed results are equally important, and more generated measurements result in better quality
in the recovered image. The robust-to-error property is directly indicated by (3). To exploit the robust-
ness of CS to erasures and errors, we propose CS-erasure- and CS-error-tolerant transmission strategies
for rate-adaptive transmission control, the details of which are discussed in Section 4.

3.3 The LTP in the transport layer

After being processed by the CS compression and erasure coding, the compressed image data are processed
by the lower layers of the DTN protocol stack. The bit stream is first divided into several bundles by
BP protocol. Then, the bundles are aggregated, grouped, and transmitted to the transport layer, where
LTP is used to add header and control information to realize reliable data transmission. When an LTP
node contains data to send to its peer, it can open a session unilaterally and begin sending segments
to the receiver. The transmitter is required to choose a unique session ID and to identify the receiver
LTP application by its client service ID in all data segments. Retransmission-based reliability is offered
in LTP by performing automated repeat request (ARQ) of lost data using the selective-acknowledgment
model [5].

3.4 Spinal codes in the physical layer

The output of the upper layers will be encoded by Spinal codes in the physical layer, which is illustrated
in Figure 2. First, the n-bit message A is grouped into n/k segments āi, i ∈ 1, 2, . . . , n/k, each of which
consists of k bits. Second, the encoder builds a spine of v-bit states by sequentially hashing together
groups of k bits from A:

si = h(si−1, āi), s0 = 0v, (4)

where h is the Hash function, and s0 is the initial spine vector. Finally, each random number generator
(RNG) maps si into pseudo-random c-bit numbers that are converted into encoded symbols using a
constellation mapping function. RNG is a deterministic function from a v-bit seed and an index to a
c-bit number given by [17] as

RNG : {0, 1}
v
× N→{0, 1}

c
, (5)

and the encoder sends x̄ =
{

x1,j , x2,j , . . . , xn/k,j

}

by j passes. As discussed in [17], the maximum
likelihood decoding is the optimal decoder of Spinal codes, and the leaf node with the lowest decoding
cost is considered as the decoding output. For the message A and its corresponding estimation Â, the
decoding result is

Â = argmin
A′∈(0,1)n

‖ȳ − x̄(A′)‖ = argmin
A′∈(0,1)n

n/k
∑

i=1

L
∑

j=1

‖ȳi,j − x̄i,j(ā
′)‖, (6)
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Figure 2 (Color online) Encoding process of Spinal codes.

where ȳ denotes the received signal vector and the estimated message Â is the one whose encoded vector
x̄(Â) is closest to ȳ. In this work, we use the sliding feedback decoding algorithm, which can reduce
the decoding complexity while maintaining the performance of the Spinal codes. This model has been
described in state-of-the-art work as a decoding algorithm of Spinal codes [30].

4 Rate-adaptive transmission strategy design

In this section, we characterize the time-varying deep-space channel and present the details of the two
proposed rate-adaptive transmission strategies for CS-LTP-Spinal.

4.1 Time-varying deep-space channel

The deep-space channel is characterized by an extremely low and dynamically varying SNR, and the Ka-
band is commonly used to satisfy the high bandwidth demand. Generally, the Ka-band deep-space channel
can be modeled as an multi-state Markov chain, in which a time-slotted model is assumed [31]. The slot
duration is set to be equal to the round trip time (RTT) of the transmission. Within each time slot, we
assume that there are C possible channel states, with the tth state denoted by Gt = j (j ∈ {1, 2, . . . , C}).
The state transition probability matrix is P̃ , where pcj (c, j ∈ {1, 2, . . . , C}) denotes the transition
probability from state c to state j when the transmission process changes from the current time slot to
the next. For a certain value of C, the values of pcj (c, j ∈ {1, 2, . . . , C}) can be determined according
to actual tracing results. For example, in [32], the authors divided the deep-space channel into good and
bad states (i.e., C = 2). This model is referred to as the Gilbert-Elliott (GE) model.

We employed throughput to measure the transmission efficiency of the proposed system. To maximize
the throughput, the transmitter should determine the number of Spinal symbols that should be trans-
mitted for the current block before stopping to transmit for the next block. Aggressive transmission can
cause decoding failure in the current block, resulting retransmission requests or a decrease in the final
decompression quality, whereas conservative transmission can waste transmission resources.

In this study, cumulative distribution functions (CDF) of successful decoding of Spinal codes under
different channel states are obtained with data generated from offline simulations. Let CDF(nSpinal|Gt

= j) denote the successful Spinal decoding CDF under channel state j. The notation CDF(·) is de-
fined as CDF(x) = Pr(X 6 x). When all of the blocks in a packet pass the cyclic redundancy check
(CRC), the LTP packet is successfully received, and the probability is CDF(nSpinal|Gt = j)nCB , where
nCB is the number of blocks in each LTP packet. Hence, the packet loss rate can be expressed as
1− CDF(nSpinal|Gt = j)nCB .

In the coarse-grained rate-adaptive transmission strategy design, the CDF information is sent to the
transmitter by the low frequency for transmission policy adjustment. Further details of the CDF modeling
are presented in Section 6.
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Figure 3 (Color online) (a) CS-erasure-tolerant-based rate-adaptive image transmission process and the corresponding cross-layer

optimization; (b) step 2 of the CS-error-tolerant transmission process.

4.2 CS-erasure-tolerant-based rate-adaptive transmission strategy

In this subsection, we present the details of our proposed CS-erasure-tolerant transmission strategy, which
exploits the CS decompression robustness to erasures. In this strategy, the receiver discards the erroneous
LTP packets and keeps only the correct packets for upper layer processing. Figure 3(a) illustrates the
details of the proposed strategy.

(1) At time T0, the transmitter estimates the current channel state from the historical CDF and
chooses an appropriate compression ratio µ for F1. After CS compression, the compressed data are sent
to lower layers. The compressed data are first divided into several bundles by BP protocol and are
then encapsulated into several LTP packets to be forwarded to the next layer. When the packets reach
the physical layer, they are divided into several coding blocks, each of which is attached with a CRC
sequence and encoded by Spinal codes, with the number of symbols per coded spinal block as nSpinal.
After transmitting the image F1, the following images F2, F3, . . . are successively sent instead of waiting
for the acknowledgment (ACK).

(2) Upon receiving the spinal symbols, the receiver conducts decoding sequentially, conducting a CRC
on each block and discarding the packets that have not passed the CRC. Simultaneously, the decoding
CDFs are studied, and the indices of erroneous blocks are stored. After decoding and PDU unpacking,
the receiver evaluates whether the packet error rate (PER) is within a certain range. If so, these data
will be submitted to the bundle layer for next hop transmission or decompression.

(3) If the current PER cannot satisfy the decompression constraint, a negative acknowledgment (NAK)
will be fed back to the transmitter by LTP, where the erroneous indices and the CDF are carried along.

(4) At T1, if the source receives the NAK with the indices of erroneous blocks, it will send additional
symbols. The CDF at the transmitter is then updated and will be used to adjust the following transmission
strategy from “Aggressive” to “Conservative” by sending more spinal symbols or by decreasing the
compression ratio. If the transmitter receives no NAK within one RTT (i.e., T1 − T0), the current
channel condition is better than estimated, and the following transmission strategy can be adjusted from
“Conservative” to “Aggressive”.

(5) On receiving the additional symbols, the receiver uses both the additional and previously received
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symbols to achieve successful decoding.

4.3 CS-error-tolerant-based rate-adaptive transmission strategy

The merits of CS-erasure-tolerant strategy are that data for decompression are all error-free, but this
strategy has high requirements on the quality of channels. In the case of extremely dynamic deep-space
channels, most of the packets would be discarded according to this strategy. And the application layer
cannot obtain a sufficient number of compression values to guarantee the reconstruction quality.

To relieve the pressure on the decoding module and improve the efficiency, we further propose the
CS-error-tolerant strategy by exploiting the robustness of the CS decompression to errors. This strategy
enables the erroneous packets to reconstruct the image with the correct ones. In this process, steps 1
and 3–5 are the same as those used in the CS-erasure-tolerant strategy discussed in Subsection 4.2. The
differences in step 2 are illustrated in Figure 3(b). In this step, the receiver conducts decoding sequentially
and conducts a CRC on each decoded block. Then, it stores all of the data packets regardless of the
erroneous state. The CRC results are then used to study successful CDF decoding online and to evaluate
whether the PER satisfies the decompression constraint.

5 Problem formulation: cross-layer optimization

In this section, we present the cross-layer optimization problem formulation for the two rate-adaptive
transmission strategies. The objective is to maximize the transmission throughput by adjusting the rates
of CS compression and Spinal coding jointly with an image reconstruction quality constraint.

5.1 Cross-layer optimization for the CS-erasure-tolerant transmission strategy

As shown in the transmission process illustrated in Figure 3, the image F1 is first compressed with a
ratio µ:

µ = (M ·Q)/(N · P ), (7)

whereN is the number of pixels in the image,M is the number of compression values, P is the quantization
precision of each pixel, and Q is the quantization precision of each compression value.

Then, the output bit stream is encapsulated by the LTP protocol and the number of LTP packets is

NPkt = µ ·N · P/(lPkt − lHdr), (8)

where lPkt is the length of each LTP packet, and lHdr is the length of the packet header.
Then, each LTP packet is divided into nCB Spinal blocks. nCB can be calculated as

nCB = (lPkt − lHdr)/lCB, (9)

where lCB is the size of each Spinal block. The number of Spinal blocks required to send F1 is denoted
by NCB as

NCB = NPkt · nCB. (10)

In Subsection 4.1, we defined the transition probability matrix by P̃ , where pcj (c, j ∈ {1, 2, . . . , C})
denotes the probability of transiting from state c to j. We can determine the value of Gt−1 = c by the
initial channel state information or the feedback CDF so that the transition probability vector from t− 1
to the next moment is pt = [pc1, pc2, . . . , pcC ]

′. Before the transmitter begins the next session, the PER
of the LTP packets to be transmitted can be estimated as

PER = 1− [CDF(nSpinal|Gt = 1)nCB , CDF(nSpinal|Gt = 2)nCB , . . . , CDF(nSpinal|Gt = C)nCB ] · pt, (11)

where nSpinal is the number of symbols in each coded Spinal block, i.e., the parameter corresponding to
the channel coding rate. After channel decoding, the receiver will discard the LTP packets that cannot
pass the CRC, and the following reconstruction quality constraint should be applied:

PER 6 PERerasure-tolerant(µ), (12)
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Figure 4 (Color online) Gilbert-Elliott model.

where µ is the current compression ratio, and PERerasure-tolerant(µ) is the corresponding maximum
allowable PER for CS-erasure-tolerant-based image decompression. PERerasure-tolerant(µ) can be
calculated as

PERerasure-tolerant(µ) = (µ− µmin)/µ, (13)

where µmin denotes the minimum compression ratio that can satisfy the required reconstruction quality
when all of the compressed values are error-free.

The number of Spinal symbols required for transmitting each image is

NSpinal = NCB · nSpinal. (14)

Our objective is to minimize NSpinal, which is equivalent to maximizing the number of images transmit-
ted per unit time, i.e., the throughput of the CS-LTP-Spinal system. By substituting the above equations
into the optimization problem in (17), the optimal µ and nSpinal can be expressed as

(µ̂, n̂Spinal) = arg min
(µ,nSpinal)

{NSpinal} s.t. Eq.(12). (15)

5.2 Cross-layer optimization for the CS-error-tolerant transmission strategy

Different from the strategy described in Subsection 4.2, the CS-error-tolerant strategy allows all of the
decoded blocks, including the erroneous blocks, to be passed to the application layer for CS decompression.
We take advantage of the robustness of CS-decompression-to-errors to further improve the transmission
efficiency. The objective of the CS-error-tolerant strategy also maximizes the transmission throughput,
which can be equivalently treated as minimizing NSpinal. The related variables can still be calculated
using (7)–(11), where the PER constraint is now given by

PER 6 PERerror-tolerant(µ), (16)

where PERerror-tolerant(µ) is the maximum affordable PER corresponding to a compression ratio of µ.
The relationship of PERerror-tolerant(µ) with respect to µ can be obtained by Monte-Carlo simulation,
which will be discussed further in Subsection 6.2. The Spinal symbols required to transmit each image
are expressed by (14). The optimal values of µ and nSpinal of the CS-error-tolerant strategy can be
obtained by solving the following problem:

(µ̂, n̂Spinal) = arg min
(µ,nSpinal)

{NSpinal} s.t Eq. (16). (17)

6 Case study: Mars-to-Earth transmission scenario

In this section, we present a case study of the CS-LTP-Spinal system applied to the Mars-to-Earth
communication scenario.

6.1 Parameter settings

As previously mentioned, we used the GE model [32] to simulate the channel of the Mars-to-Earth
scenario. The state transition process of the GE model is illustrated in Figure 4. When the channel is
in the good state, the bit error rate (BER) is eGood, and the probability of holding good is PGG. When
errors burst, the state transmits to the bad state with PGB, and the BER is eBad. The probability of
holding this state is PBB, and the transition probability between the two states is PBG.

In [31], the atmospheric noise temperatures were collected at the Deep-Space Network Madrid site for
5356 days. The authors determined 20 K to be a fair threshold for dividing the channel into good and
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(a) (c)(b) (d)

Figure 5 Test images: (a) Moon surface, (b) Mars rock, (c) straight edge, (d) gullies of crater.
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for the successful decoding CDF under different channel states.

bad states, and they gave the following recommended BER values as follows: eGood can be set as 10−8,
10−7, 10−6, 10−5 and eBad can be set as 10−4 and 10−3. The transition probability matrix is given by

P̃ =

[

PGG PGB

PBG PBB

]

, (18)

where PGG = 0.9773, PGB = 0.0227, PBB = 0.8333, PBG = 0.1667.
Furthermore, we consider four test images sized 512 × 512, as shown in Figure 5 as “Moon surface”,

“Mars rock”, “straight edge”, and “gullies of crater”. We adopted the BM3D-AMP decompression
algorithm because it can provide state-of-the-art reconstruction performance while maintaining lower
complexity, and Q was set to 5 bits. The minimum required CS decompression peak SNR (PSNR) was
30 dB. Moreover, for LTP protocol, lPkt was set to 1500 bytes, lHdr was set at 16 bytes, and lCB was 32
bytes [3]. The parameters related to the Spinal codes were n = 256, k = 4.

6.2 Theoretical solutions to the cross-layer optimization problem

In addition to the parameter settings given in Subsection 6.1, two issues need to be specified to solve the
two cross-layer optimization problems, i.e., (15) and (17).

• The maximum allowable PER that can satisfy the decompression requirements for a given com-
pression ratio, i.e., the relationships of PERerasure-tolerant(µ) in (12) and PERerror-tolerant(µ) in (16) with
respect to µ. For the CS-erasure-tolerant strategy, the relationship of PERerasure-tolerant(µ) with respect to
µ is explicit, as shown by (13). For the CS-error-tolerant strategy, the relationship of PERerror-tolerant(µ)
with respect to µ is not explicit and can be characterized by curve fitting in the Monte-Carlo simulation
results. Figure 6 depicts the maximum allowable PER versus µ for the two transmission strategies.

• The successful decoding CDFs for Spinal decoding under different channel states, i.e., the
CDF(nSpinal|Gt = j) in (11). Statistical results show that it can be well approximated with Gaus-
sian distribution. A large number of Monte-Carlo simulations are performed for Spinal decoding under
both good and bad states, with distribution fittings conducted over the decoding results. Figure 7 shows
the Gaussian distribution fitting results, where the mean is denoted by m, and the variance is denoted
by σ2.
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Table 1 Cross-layer optimization result

CS-erasure-tolerant strategy CS-error-tolerant strategy

Parameter Good state Bad state Parameter Good state Bad state

µ̂ 0.34 0.38 µ̂ 0.61 0.68

n̂Spinal 768 1536 n̂Spinal 352 768

According to the parameter settings and the results in Figures 6 and 7, the two optimization problems
shown in (15) and (17) can be solved. The solutions are given in Table 1.

6.3 Theoretical average throughput

According to (18), the stationary distribution probability of the good and bad states is
{

PGOOD × 0.9773 + PBAD × 0.1667 = PGOOD,

PGOOD + PBAD = 1,
(19)

where the solutions are PGOOD = 1667/1894 and PBAD = 227/1894. Thus, the theoretical average
throughput of the proposed system can be expressed as

V = PGOOD · VGOOD + PBAD · VBAD. (20)

Taking the CS-erasure-tolerant case as an example, the RTT is set to 30 min, and the bandwidth is set
to 1 Mbps. Based on general formulation, we can calculate the number of images that can be transmitted
in one RTT as NG = 840 and NB = 375, respectively. When the current channel state is good, the
compression ratio µ is 0.34, and the number of Spinal symbols in one coded block nSpinal G is 768. When
the channel state is good, the probability of successful decoding PGOOD GOOD is 0.845, and the value is
larger than 1−PERerasure-tolerant(µ). Therefore, there is no need for feedback. However, when the channel
state changes from the good to the bad state, the probability of successful decoding PGOOD BAD is 0.002,
which is less than 1−PERerasure-tolerant(µ); therefore, it is necessary to request additional symbols in this
case. According to the solutions of the cross-layer optimization for the bad state, we set the number of
additional Spinal symbols nadd G to 768, and the average time to process the feedback is

tfb G = PGB · (1− PGOOD BAD) · nadd G/nSpinal G · RTT. (21)

The theoretical average throughput for the good state can be calculated by

VGOOD = Fsize ·NG/(tfb G +RTT). (22)

When the current channel state is bad, µ is 0.38, nSpinal B is 1536. When the channel changes from
the bad to good state, the probability of successful decoding PBAD GOOD is 1, which is larger than
1 − PERerasure-tolerant(µ). Therefore, there is no need for feedback. However, when the channel changes
from the good to bad state, the probability of successful decoding PBAD BAD is 0.394, which is less than
1−PERerasure-tolerant(µ). Hence, it is necessary to request additional data, and the number of additional
Spinal symbols nadd B is 352. The average time to process the feedback is

tfb B = PBB · (1− PBAD BAD) · nadd B/nSpinal B · RTT. (23)

Thus, the theoretical average throughput for the bad state can be calculated by

VBAD = Fsize ·NB/(tfb B +RTT). (24)

With the above results and channel state transition probability matrix, the expected value of theoretical
average throughput can be expressed as

Verasure-tolerant= PGOOD · VGOOD + PBAD · VBAD= 0.848 Mbps. (25)

For the CS-error-tolerant strategy, we get NG = 867 and NB = 420, respectively. Other parameters
can also be calculated by (21)–(24), with the optimization results shown in Table 1. The theoretical
average throughput can be expressed by

Verror-tolerant = PGOOD · VGOOD + PBAD · VBAD= 0.884 Mbps. (26)
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Figure 9 (Color online) Module diagram of the semi-physical platform.

7 Simulation setup and results

In this section, we first introduce the semi-physical simulation platform for CS-LTP-Spinal. Then, the
performance of the proposed CS-LTP-Spinal system and its several counterparts are tested and compared.

7.1 Semi-physical simulation platform setup

To verify and evaluate the performance of the proposed CS-LTP-Spinal system, we established a semi-
physical platform for the Mars-to-Earth scenario. Figure 8 shows a block diagram of the semi-physical
platform. Our tests required three machines: the data sender, the data receiver, and the error emulator.
The data sender machine models the space vehicle such as a spacecraft sending image data on the
downlink; the data receiver models the ground station such as an antenna site receiving the data beamed
to it; and the error emulator machine models the deep-space channel by emulating a configured error rate
on the channel. Bandwidth and delay are emulated directly on the end-nodes. We studied the one-hop
scenario and used three computers with the Linux system to set up the platform. They were connected
by a HUB transponder, and the images were exchanged through a local area network with a bandwidth
of 100 Mbps.

As illustrated in Figure 9, we design four modules at the node of the transmitter and receiver under
DTN, including the CS module, LTP module, Spinal coding module, and rate control module. In the
module of image compression/decompression, we use the Bernoulli matrix as the compression matrix and
the BM3D-AMP algorithm as the CS image reconstruction algorithm. The purpose of LTP module is to
realize reliable transmission control. After the encapsulation of LTP, the bit stream is encoded by Spinal
codes in the channel coding module, and the Spinal symbols are then passed to the error emulation node
through the socket communication. The function of the rate control module is to dynamically match
the transmission rate to the time-varying deep-space channels. Although the errors are emulated in the
middle node, delay and bandwidth are emulated in the end-nodes themselves via the Linux traffic control
module. At the error emulation node, we emulate 1 Mbps end-to-end bandwidth and set the RTT to
30 min. Random errors are introduced to the received data by the error generation program according
to the parameter settings given in Subsection 6.1.
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Figure 11 (Color online) Performance comparison of the two

proposed transmission strategies (w = 10 RTTs).

7.2 Results and discussion

In this subsection, we present the performance of CS-LTP-Spinal and compare it with some related
transmission strategies.

7.2.1 Performance analysis of the proposed CS-LTP-Spinal system and transmission strategies

First, the performance of the proposed CS-LTP-Spinal with two rate-adaptive transmission strategies is
simulated and compared with four other conventional transmission strategies as follows.

(1) The oracle transmission strategy. Oracle indicates that the transmitter knows the channel state.
Thus, it can precisely choose the appropriate parameters, and the receiver can successfully decode the
Spinal blocks.

(2) The proposed CS-erasure-tolerant strategy. This strategy discards the packets that cannot pass the
CRC. Upon receiving the NAK from the receiver, the transmitter additionally sends a certain number of
Spinal symbols to the receiver and adjusts the subsequent strategy by historical CDF and channel state
prediction.

(3) The proposed CS-error-tolerant strategy. This strategy allows all the packets, including the erro-
neous ones, to be used for image decompression; the other steps are the same as those in (2).

(4) The retransmission strategy with channel state prediction, abbreviated as RT-with-CP strategy.
In this strategy, the transmitter can select the appropriate µ and nSpinal for the next moment based on
the historical CDF and repeats the current data upon receiving NAK instead of sending additional Spinal
symbols.

(5) The retransmission strategy without channel state prediction, abbreviated as RT-without-CP strat-
egy. This strategy is commonly used and is different from (2) and (3) in two aspects. The erroneous
blocks will be retransmitted when receiving the NAK, and the transmitter cannot predict the channel
state.

(6) The additional-transmission strategy without channel state prediction, abbreviated as AT-without-
CP strategy. This strategy has no channel prediction mechanism, and the transmitter will send additional
Spinal symbols when receiving the NAK feedback instead of retransmitting.

Figure 10 shows the performance results of the two proposed strategies when the window width (w) is
set to 1 RTT. The channel state is always varying, and the transition of channel state causes changes in
throughput. Figure 11 shows the performance when w = 10 RTTs. The simulation curves perfectly match
the theoretical curves, whereas the observation time is relatively long, and it validates the correctness
of the semi-physical platform. Figure 11 also shows that the throughput of the proposed strategies is
very close to the oracle strategy. This shows that we can realize near-ideal transmission through the
rate-adaptive design and cross-layer optimization. Therefore, the results validate the effectiveness of the
proposed strategies.

Table 2 shows the PSNR of the test images in the case of employing the two proposed rate-adaptive
transmission strategies using the optimal parameters given in Table 1. The achieved reconstruction
performance is always greater than 30 dB regardless of whether the state is good or bad. Moreover,
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Table 2 Reconstructed results of test image based on the proposed transmission strategies

PSNR metric (dB)

Transmission strategy Moon surface Mars rock Straight edge Complex gullies

Good Bad Good Bad Good Bad Good Bad

CS-erasure-tolerant 33.5 32.2 31.5 32.1 33.3 32.9 31.6 32.2

CS-error-tolerant 36.1 35.5 31.9 32.7 34.1 32.8 31.5 32.2

Figure 12 shows a throughput comparison of our proposed strategies and other existing strategies on
the simulation platform. The two proposed rate-adaptive transmission strategies with low-frequency
feedbacks have an advantage over the other transmission strategies. When compared with RT-without-
CP strategy used by JPL for the MER mission, the throughput increases 16% and 20.5% by CS-erasure-
tolerant and CS-error-tolerant strategies, respectively. This implies that the proposed rate-adaptive
transmission strategies and cross-layer design can obtain a significant gain in transmission efficiency with
respect to the conventional strategies.

7.2.2 Comparison of CS-LTP-Spinal and state-of-the-art system

We then compare the proposed CS-LTP-Spinal system with a related state-of-the-art deep-space image
transmission system introduced in [25]. For the purpose of this comparison, we briefly present the baseline
system in [25]. The baseline system is based on a joint source-channel rate-allocation approach in which
a rate-allocation algorithm based on sliding comparison of PER is incorporated with a UEP scheme.
The system adopts the SPIHT compression and Polar codes to implement the source and channel coding
module, respectively, owing to their superiority over the counterparts. In the proposed rate-allocation
algorithm, the optimal source and channel coding rate pair are selected from pre-configured code rate
sets by sliding search. Furthermore, different channel coding rates are applied on sub-packets of source
coding output packets to achieve UEP.

• Comparison of system efficiency for a fixed target PSNR. First, we consider a scenario in
which the target PSNR is fixed. For a given set of test images in Figure 5, we compare the two systems
in terms of system transmission rate RT versus the channel state reflected by Eb/N0 for the same target
PSNR. The relationship of the system transmission rate RT, source compression ratio, and channel coding
rate is RT = Rs/Rc, and the system efficiency is reflected by RT. The simulations are conducted over
the AWGN channel with Eb/N0 ranging from 1 dB to 4 dB, which is a typical SNR range for space
communication scenarios [33]. For the example considered in this study, the target PSNR is 30 dB for
all strategies, and the pre-configured source and channel code rate sets of the baseline system are given
as follows:

Rs = {0.1, 0.25, 0.3, 0.35, 0.4, 0.5, 2/3, 8/11, 8/10, 8/9, 1.0},

Rc = {1/50, 1/10, 1/8, 2/11, 1/4, 1/3, 4/11, 4/10, 4/9, 4/7, 3/5, 3/4, 4/5, 9/10}.

For a given channel state, the baseline system chooses the optimal source and channel coding rate pair
subject to the condition that the reconstruction PSNR must be higher than 30 dB. Figure 13(a) compares
the resulting RT vs. Eb/N0 performance of the proposed two rate-adaptive transmission strategies in CS-
LTP-Spinal with the JSCC strategy in the baseline system. The system transmission rates corresponding
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Figure 14 Reconstructed results of the Moon surface based on CS-error-tolerant strategy. (a) Eb/N0=1.5 dB, PSNR=27.8 dB;

(b) Eb/N0=2 dB, PSNR=28.2 dB; (c) Eb/N0=2.3 dB, PSNR=29.1 dB; (d) Eb/N0=2.5 dB, PSNR=30 dB.

to the optimal solutions decrease with an increase in Eb/N0 for all transmission strategies. That is, for
a target PSNR, the proportion of redundancy required by channel protection decreases with an increase
in Eb/N0. Further, the CS-error-tolerant strategy performs slightly better than the CS-erasure-tolerant
strategy in RT. These results confirm the theoretical analysis given in Subsections 6.2 and 6.3. Further,
Figure 13(a) shows that our proposed strategies can provide a superior rate performance over that of
the baseline system, particularly in the low Eb/N0 region. This is attributed to the use of advanced
CS compression and Spinal coding, which can effectively meet the requirements of deep-space image
transmission, and the two proposed coarse-grained rate-adaptive strategies, which can flexibly adjust the
code rate to match the time-varying deep-space channel.

• Robustness against mismatch between actual and the nominal channel conditions. We
then consider a situation in which the actual channel state does not match the nominal channel state. For
example, we focus on a particular channel Eb/N0 = 2.5 dB. We provide a zoomed version of Figure 13(a)
around this value in Figure 13(b). We assume that the transmitter selects the optimal source-channel
code rate pair (baseline system and proposed CS-LTP-Spinal) for the nominal Eb/N0 = 2.5 dB, where the
actual value is lower than 2.5 dB. In this case, the system transmission rate of the baseline system shows
a significant decrease (indicated by the slope), whereas RT of our proposed CS-LTP-Spinal system based
on rate-adaptive transmission strategies gradually degrades. This indicates that the baseline system is
highly sensitive to the change in channel state, with even a small change causing a significant loss of
system efficiency. This is because the optimal code rate pair of the baseline system is selected from the
discrete pre-configured code rate sets, which cannot change according to the dynamic deep-space channel.
However, in our proposed CS-LTP-Spinal system, the rate-adaptive transmission strategies can dynami-
cally adjust the source and channel code rate to match the time-varying deep-space channel. Therefore,
the CS-LTP-Spinal system quipped with two transmission strategies has better built-in robustness to
handle mismatched channel conditions. Furthermore, the PSNR in visual perception of the Moon surface
image around 2.5 dB, based on the CS-error-tolerant transmission strategy, is shown in Figure 14, in
which (a)–(d) indicate various mismatched Eb/N0 values. The perceptive quality of the reconstructed
image gradually degrades, and the perceived image quality is deemed acceptable over a wide range of
channels Eb/N0 even if the channel Eb/N0 is as far as 1 dB lower than its nominal value of 2.5 dB.
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8 Conclusion

In this study, we clarify a method for improving the transmission efficiency in a deep-space image trans-
mission system through rate-adaptive transmission and cross-layer design. We first propose a novel
high-efficiency image transmission system, CS-LTP-Spinal, for the deep-space scenario. In the CS-LTP-
Spinal system, the CS and the Spinal codes jointly work with LTP under the DTN. On the basis of
the proposed system, we design two coarse-grained rate-adaptive strategies to fit the dynamic channels,
and we adopt a cross-layer design for joint source-channel rate allocation. Moreover, a semi-physical
deep-space communication simulation platform is built to implement and test the system. Extensive
simulations are conducted for performance evaluation. The results reveal that the CS-LTP-Spinal system
can achieve near-ideal performance and significantly outperforms counterpart strategies.
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