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Abstract We tackle the online 3D bin packing problem (3D-BPP), a challenging yet practically useful

variant of the classical bin packing problem. In this problem, the items are delivered to the agent without

informing the full sequence information. The agent must directly pack these items into the target bin

stably without changing their arrival order, and no further adjustment is permitted. Online 3D-BPP can

be naturally formulated as a Markov decision process (MDP). We adopt deep reinforcement learning, in

particular, the on-policy actor-critic framework, to solve this MDP with constrained action space. To learn

a practically feasible packing policy, we propose three critical designs. First, we propose an online analysis

of packing stability based on a novel stacking tree. It attains a high analysis accuracy while reducing the

computational complexity from O(N2) to O(N logN), making it especially suited for reinforcement learning

training. Second, we propose a decoupled packing policy learning for different dimensions of placement which

enables high-resolution spatial discretization and hence high packing precision. Third, we introduce a reward

function that dictates the robot to place items in a far-to-near order and therefore simplifies the collision

avoidance in movement planning of the robotic arm. Furthermore, we provide a comprehensive discussion on

several key implemental issues. The extensive evaluation demonstrates that our learned policy outperforms

the state-of-the-art methods significantly and is practically usable for real-world applications.
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1 Introduction

The bin packing problem (BPP) is one of the most famous problems in combinatorial optimization. It
aims to pack a collection of items with various weights into the minimum number of bins. The total
weight of items in each bin is below the bin’s capacity c [1]. BPP is a classic NP-hard problem. We
are interested in its 3D variant, i.e., 3D-BPP [2] which introduces much more solving complexity. Given
item i with 3D “weight” about length li, width wi, and height hi, 3D-BPP coordinates planning item’s
assignment in three dimensions simultaneously. Each 3D dimension has its capacity including L > li,
W > wi, and H > hi. It is assumed that li, wi, hi, L,W,H ∈ Z+. 3D-BPP also pursues to pack the set
of items I with the fewest bins.

3D-BPP finds widely practical applications in modern packaging, logistics, and manufacturing. It is
especially a core technique in developing palletizing robots for intelligent logistics (Figure 1). A palletizing
robot is designed to pack boxes into rectangular bins of standard dimension. Maximizing the storage use
of bins improves production efficiency like inventorying, wrapping, transportation, and warehousing. Due
to its computational complexity, 3D-BPP is relatively less explored than 1D-BPP. Especially when the
problem scale increases, the exact algorithms (either using integer linear programming or branch-and-
bound) cannot give a solution to the problem within a limited time. Solving the medium-scale 3D-BPP
still has to resort to heuristic algorithms [3, 4].
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Figure 1 (Color online) Online 3D-BPP has widely practical applications in logistics, manufacture, warehousing, etc. (a) The

agent can only observe the next item to be packed (shaded in red), BPP-1; (b) more items (shaded in green) can be observed with

additional sensors, BPP-k.

In many application scenarios, an even more difficult problem setting, online 3D-BPP, is highly de-
manded. In online 3D-BPP, the information of the full item sequence is not provided to the agent/robot
(similar to Tetris). As shown in Figure 1, a robot packs continuously coming parcels online. The RGB-D
sensors placed around the robot can only provide a partial vision of the item sequence due to the limited
camera view field. Since the conveyor is forwarding sequentially during the packing, only a small period
can be given for the robot to unload and place the parcel. Such constraints make online 3D-BPP not a
pure combinatorial optimization problem since the optimal solution cannot be obtained by brute-force
enumeration.

We approach online 3D-BPP by formulating it as a sequential decision making problem and solving it
with deep reinforcement learning (DRL), similar to [5]. Albeit being quite effective, several limitations
of [5], such as heuristic analysis of packing stability, limited resolution of spatial discretization, and
collision agnostic of packing scheme, hinder the practical applicability of learned policy. To this end,
we propose the following substantial enhancements to learn practically more feasible policies for online
3D-BPP.

First, we impose a physically plausible yet highly efficient stability analysis to facilitate the learning
of stable packing policies. In particular, we propose an online analysis of packing stability with a novel
stacking tree. Stacking tree analysis attains a 99.9% accuracy of stability analysis with an O(N logN)
complexity (N is item count). It results in several magnitudes of acceleration of stability analysis over
traditional static equilibrium analysis methods which are O(N2), making it especially suited for rein-
forcement learning (RL) training. Meanwhile, the accurate analysis also leads to a significant boost of
space utilization (by about 10%) over [5] based on hand-designed, conservative feasibility evaluation.

Second, to deal with large action space caused by high-resolution bin discretization for accurate packing,
we propose a novel decoupled packing policy learning scheme. It learns three packing policies for the
length and the width dimensions, and the horizontal orientation of the item to be packed, respectively.
The three policies are learned with conditionally probabilistic dependency between each other. This
enables our method to work with up to 100 × 100 discretization resolution which is intractable for the
method in [5].

Third, to learn a more practically usable policy, we introduce a reward function which encourages the
robot to place items in a far-to-near order. This greatly eases the collision avoidance between the robot
and the packed items and simplifies the movement planning of the robotic arm.

Our method is formulated as a constrained Markov decision process (CMDP) [6] and adopts the on-
policy actor-critic framework [7,8]. Different from [5], we compute the feasibility mask for the placement
actions based on the stacking tree analysis. The feasibility mask is then provided to the actor networks
and then used to modulate the action probabilities output by the actor. We also discuss several practical
issues in the real robot implementation of our algorithm. Finally, we conduct extensive evaluations to
validate the efficacy of the new designs.

2 Related work

BPP is a long-term concern in combinatorial optimization, and the earliest literature can be traced back
to the 1960s [9]. The most typical bin packing problem is 1D-BPP which seeks for an assignment of a col-
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lection of items with various scalar weights to multiple bins and minimizes the used bin number. Knowing
to be strongly NP-hard, most existing studies focus on designing good heuristic and approximation al-
gorithms and their worst-case performance analysis [10]. Bin packing problem exists many variants, 2D-
and 3D-BPP are natural generalizations of them. For high-dimension BPP, an item has a high-dimension
size of the width, height, and/or depth, which differentiates the verification of the packing feasibility.
The complexity and the difficulty significantly increase for high-dimension BPP instances. According to
the timing statistic reported in [2], exactly solving 3D-BPP of a size matching an actual parcel packing
pipeline remains infeasible. There have been several strategies in designing fast approximate algorithms,
e.g., guided local search [11], greedy search [12], and tabu search [13,14]. In contrast, genetic algorithms
lead to better solutions as a global, randomized search [15, 16].

Similar strategies have also been adapted to online BPP studies like [5, 17–19]. Different from the
offline setting, the size information of coming items is unknown for the agent to optimize the packing
and the packing order cannot be adjusted as well. It makes online BPP a much more challenging
problem. Some studies [17,18] have employed the hand-coded heuristics based on the human experience.
Meanwhile, studies like [5] have adopted DRL to learn how to pack things effectively through trials and
error optimization.

Stability estimation is essential in the bin packing problem. However, most previous studies that
focus on the 3D-BPP ignore it in their solution due to the high computational load. Estimating the
stability of stack objects for physics engines is widely studied in past decades. Ref. [20] introduced
novel complementarity formulation, solver, and error correction algorithms for the collision detection
framework which can enable the stability estimation running in real-time for large scale objects. In
contrast, Ref. [21] presented a real-time physics engine to improve structured stacking behavior with
small-scale objects. Ref. [22] presented a constraint-based method to stabilize a stack of piles. Ref. [23]
introduced a hypothesis for physical simulation simplification that freezing transformations of objects
in a random pile does not affect the visual plausibility of a simulation. However, none of them can be
efficient enough for stability estimation in a DRL training framework.

DRL has demonstrated tremendous success in learning complex behavior skills and solving challenging
control tasks with high-dimensional raw sensory state-space [7, 24, 25]. The success can be attributed
to the utilization of high-capacity deep neural networks for powerful feature representation learning and
function approximation. Since the seminal work of deep Q-network (DQN) [25], a large body of literatures
emerged. The existing research is largely divided into two lines: value function learning [25, 26] and
policy search [27, 28]. Actor-critic methods, designed to combine the two approaches, have grown in
popularity. Asynchronous advantage actor-critic (A3C) [7] is a representative actor-critic method. It
combines advantage updates with the actor-critic formulation and adopts asynchronously updated policy
and value function networks trained in parallel with multiple agents. In A2C [29], on the other hand, the
networks of multiple agents are updated synchronously.

We base our actor-critic architecture on ACKTR [8] which applies trust-region optimization to both the
actor and the critic. We propose a series of adaptions for solving online 3D-BPP. To realize constrained
reinforcement learning, we propose a simple approach by projecting the trajectories sampled from the
actor to the constrained state-action space. To enable our agent to fit the high-resolution demand for real
packing, we decompose the actor into three actor-heads to predict the corresponding actions in sequence.
We also feed the last predicted action to the next actor-head as a conditional probabilistic dependency
for a more stable training process.

Reinforcement learning (RL) for combinatorial optimization has booming development in recent years.
Bello et al. [30] combined RL pretraining and active search and demonstrated that RL-based optimization
outperforms the supervised learning framework when tackling NP-hard combinatorial problems. Kool
et al. [31] encoded TSP graphs with Transformer [32] and trained this model with RL method. Zhang
et al. [33] enabled an end-to-end RL agent to master priority dispatching rules for solving job-shop
scheduling problems. Wang et al. [34] applied RL to automatically generating a move plan for indoor
scene arrangement. Refs. [35] and [36] are both devoted to solving offline 3D-BPP where the main goal
is to find an optimal sequence of items.
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Figure 2 (Color online) The environment state of the agent. (a) The grey boxes indicate the items already packed, which also

represents the bin configuration. The green box is the next item to be packed and it can only be placed at the grid cell where

feasibility mask M is 1. (b) The network architecture with decomposed actor-heads. Note that the training of three actor-heads

is coupled with conditional probabilistic dependencies. Actor-heads perform their prediction tasks in sequence.

3 Method

We adopt a similar problem configuration for online 3D-BPP as [5]. Each item n ∈ I is a cube whose
size is [li, wi, hi]. As soon as an item arrives the packing area, the agent needs to place it in the bin
immediately while only being aware of the information of the next few coming items Io ⊂ I. Our method
is implemented based on the architecture of constrained DRL and we will start our problem statement
and formulation under the context of DRL.

3.1 Problem statement and formulation

The DRL formulation of our method can be expressed as (S,A, P,R), which is an MDP constructed
with a set of environment states S, the action set A, reward function R : S × A → R, and transition
probability function P : S ×A× S → [0, 1]. P (s′|s, a) gives the probability of transiting from s to s′ for
given action a. Our method is model-free since we do not learn P (s′|s, a) explicitly. The policy π : S → A
is a map from states to probability distributions over actions, with π(a|s) denoting the probability of
selecting action a under state s. For DRL, we seek for a policy π to maximize the accumulated discounted
reward, J(π) = Eτ∼π[

∑∞
t=0 γ

tR(st, at)]. Here, γ ∈ [0, 1] is the discount factor, and τ = (s0, a0, s1, . . .) is
a trajectory sampled based on the policy π.

Environment state. A complete 3D-BPP state representation should include the following three
parts: the current configuration of the bin, the coming items to be placed, and the feasibility mask. To
parameterize the bin configuration, we discretize its bottom area as an L ×W regular grid along the
length (X) and the width (Y ) directions, respectively. We record at each grid cell the current height of
stacked items, leading to a 2D integer height map Hn ∈ Z

L×W (see Figure 2). The dimensionality of
item n is given as dn = [ln, wn, hn]

T ∈ Z
3. The feasibility mask Mn,o is a binary matrix of size L ×W

indicating the placement feasibility of n with orientation o at each grid cell. Putting together, the current
environment state can be written as sn = {Hn,dn,dn+1, . . . ,dn+k−1,Mn,o}. We first consider the case
where k = |Io| = 1 (Figure 1(a)), and name this special instance as BPP-1. In other words, BPP-1 only
considers the immediately coming item n, i.e., Io = {n}. We then generalize it to BPP-k with k > 1
(Figure 1(b)) afterwards.

Action and state update. We consider only horizontal, axis-align orientations of an item, which
means that each item n has two possible orientations on(dn) = {[ln, wn, hn]

T, [wn, ln, hn]
T}. During

the packing, the agent places orientated n’s front-left-bottom (FLB) corner (Figure 2(a)) at a certain
grid cell or the loading position (LP) in the bin. For instance, if the agent chooses to put n at the
LP of (xn, yn) with the orientation adjustment on, this action is represented as an = (xn, yn, on). The
range of A would increase dramatically with a large resolution of xn, yn. In other words, it would be
difficult to optimize action while high place accuracy is needed. To solve this problem, we propose
an action space decomposition method in Subsection 3.3. After an is executed, Hn is updated by
adding hn to the maximum height over all the cells covered by n: H

′
n(x, y, o) = hmax(x, y, o) + hn for

x ∈ [xn, xn + (1 − on)ln + onwn], y ∈ [yn, yn + (1 − on)wn + onln], with hmax(x, y) being the maximum
height among those cells.

Feasibility constraint. A practical online BPP solution should also premeditate the stability of
a placement besides securing enough valid space for future items. Placing an item in a risky LP will
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Figure 3 (Color online) (a) The centroid of n is supported by a packed item directly and therefore n is stable. (b) The vertical

projection c′
n

of centroid cn is inside the convex hull which is constructed by contact points of Isupport. (c) c′
n

falls outside of the

supported convex hull and n is unstable in this situation.

end the packing episode early and even cause economic damage in practice. We propose a stacking
tree based stability estimation method in Subsection 3.2 to form feasibility masks (see Figure 2) as
optimization constraints to avoid insecure behaviors. Our problem becomes a CMDP [6] in this scenario.
Typically, one augments the MDP with an auxiliary cost function C : S × A → R mapping state-action
tuples to costs, and requires that the expectation of the accumulated cost should be bounded by cm:
JC(π) = Eτ∼π[

∑∞
t=0 γ

t
CC(st, at)] 6 cm. Several methods have been proposed to solve CMDP based on

e.g., algorithmic heuristics [37], primal-dual methods [38], or constrained policy optimization [39]. While
these methods are proven effective, it is unclear how they could fit for 3D-BPP instances, where the
constraint is rendered as a discrete mask. In this article, we propose to exploit the mask M to guide the
DRL training to enforce the feasibility constraint without introducing excessive training complexity.

3.2 Stability estimation

Stack stability estimation is critical in the bin packing problem, especially in 3D. A good stability estima-
tion for LPs of n would not only secure the safety of the placement but also decrease the searching range
of the action space. To calculate Mn,o, the most straightforward solution is to simulate the force analysis
among packed items Ipacked ⊂ I while n is placed with orientation o. However, this simulation would
become extremely complicated while the |Ipacked| increasing since force analysis with densely structured
stacking is an NP-hard problem [20]. To ensure the stack stability estimation for LPs is real-time, we
propose a centroid-based approach which improves the efficiency by more than 100 times.

Supported centroid. In industrial bin packing applications, item n to be packed usually has uniform
mass distribution. An item n is stable if its centroid is supported in this scenario. Specifically, an LP of
n is considered stable if it satisfies any of the following conditions: (1) The centroid cn of n is directly
supported by a packed item with this LP; (2) n is supported by a group of items Isupport ⊂ Ipacked and
cn is inside the convex hull which is constructed by contact points of Isupport, as illustrated in Figure 3.
The centroid-based discrimination is easy to implement with the Boolean operation and can be highly
parallelized.

Adaptive stacking tree. However, we not only need to estimate the stability of the current LP but
also calculate the stability changes of Ipacked which is introduced by the new contact. The mass of n
changes the centroids of items which support it, and these changes may alter their stability. In other
words, a top-down traverse of stability update is necessary. However, the amount of work done in this
fashion is O(N2) since a whole traverse is needed for each placed item. We propose an adaptive stacking
tree structure to update the mass distribution flow of Ipacked efficiently in O(N logN). The key idea here
is that the mass of n at LP would only distribute to the items Iactive ⊂ Ipacked which support it, directly
or indirectly. The stability of Ipacked −Iactive would not change, and the stability update should only be
done with Iactive but not the whole packed bin.
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Figure 5 (Color online) The gravity of the item n is distributed to the supporting objects according to the principle of leverage.

In Figure 4, the mass distribution flow of Ipacked can be formed as a graph G, the nodes represent the
items in the bin and the edges indicate the amount of mass distribution between two adjacent items. As
we discussed above, only a subgraph Gn of G needs to be updated while n is placed at LP, where Gn

only contains items in Iactive. Obviously, Gn is a tree which we define as the adaptive stacking tree. Gn

can be constructed from n with a top-down fashion, and only edges of Gn need to be updated while n
is placed. The mass distribution update is processed from the root n to the bottom in Gn based on the
calculated mass distribution, while the edges in G − Gn should stay unchanging. This process can be
easily implemented during packing in an incremental fashion based on a linked list data structure, which
is both memory and time efficient.

Stability update. Updating mass distribution in Gn is critical for stability estimation. However,
it would be highly time-consuming if we operate a force simulation here. We formulate a simple but
effective approach based on the principle of leverage, which can achieve 99.9% accuracy with 100 times
efficiency. While n is placed at LP, three types of mass distribution would be discussed next. If n is only
supported by a single item n0, the whole mass mn of n and items above it would transport to n0. The
new centroid of the group of {n, n0} would change to

c{n,n0} =
cn ·mn + cn0 ·mn0

mn +mn0

. (1)

Note that we only calculate centroid in the XY plane since the value along the Z axis would not
influence the stability. If n is supported by two items n0 and n1 safely, we assume the mass distribution
of mn would obey the principle of leverage. As shown in Figure 5, n0 needs to undertake F0 to make the
whole system stable.

F0 = g · ‖(cn − p1)×mn‖/‖p0 − p1‖, (2)

M{n, n0} = F0/g +mn0 , (3)

where p0 and p1 are two contact points of n0 and n1. We can also calculate F1 similarly. Then the
centroid of group {n, n0} and {n, n1} can be updated with (1) as well as the mass flows M{n, n0} and
M{n, n1} which are distributed to n0 and n1. If n is safely supported by more than two items {nk},
the mass distribution of mn would be calculated with (2) for each two items in {nk}. Then we will have
C2

k + 1 constraints for mass distribution, and a least-squares optimization would be adopted to find the
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Figure 6 (Color online) (a) The red box packed in the middle of the bin first introduces potential collisions for the following

packing. (b) If the robot always enters the packing area at the same entrance line, packing on the green area may introduce fewer

potential collisions.

optimal Fi for each item in {nk}. The centroid of group {n, ni} can be updated as well. Then each group
{n, ni} would trigger the next iteration of update as well as n, and this process would stop if the update
reaches the bin bottom or instability is detected.

3.3 Network architecture and training method

We adopt ACKTR [8], which is a state-of-the-art on-policy framework. It iteratively updates an actor
and a critic using Kronecker-factored approximate curvature (K-FAC) [40] with trust region. The actor
is trained to learn a policy network that outputs the probability of choosing each action (i.e., placing n at
each LP). The critic trains a state-value network predicting the state value V (sn) to indicate how much
reward will be earned from sn. It is adopted to train our actor network. Ref. [5] has demonstrated that
ACKTR has a surprising superiority over other DRL algorithms like SAC [41].

The BPP state consists of three components: the height map Hn, the coming items to be placed Dn,
and the feasibility mask Mn,o. We use a convolutional neural network (CNN) to encode the raw BPP
state. For calculation convenience, we “stretch” dn into a three-channel tensor Dn ∈ Z

L×W×3 so that
each channel of dn spans an L×W matrix with all of its elements being ln, wn, or hn, respectively (also
see Figure 2(a)). Consequently, state sn = (Hn,Dn,Mn,o) becomes an L×W × 6 array (Figure 2(b)).

Reward shaping. We want the agent to learn practical skills which meet the demands of both safety
and efficiency without being influenced by various robot types. The efficiency need is satisfied by the
reward term which is about the volumetric occupancy introduced by the current item: 10× ln ·wn ·hn/(L ·
W ·H) for item n. Ref. [5] reported that the step-wise reward is superior to a termination one (e.g., the
final space utilization).

We found that if the agent is only trained with rn, the actor network would intend to place items
uniformly on the XY plane of the bin. However, the robot arm is usually equipped aside rather than
above the bin in practice, packing items near the robot arm first would potentially introduce collisions
as shown in Figure 6. To avoid it, Ref. [42] proposed that the packing should start from the farther
corner as possible. Nonetheless, the performance would drop significantly if we force the actor to follow
this principle strictly. To balance the two factors, we introduce a side reward to give our agent a soft
constraint.

We assume that the robot arm would always enter the packing area at the same entrance line (EL)
(Figure 6). If there is no obstacle on the straight line from EL to a feasible LP, the packing item at
this LP can hardly introduce collisions and this type of LP is a safe LP. In other words, the more LPs
satisfying this principle there are, the more likely collision-free our next packing is. Let Vsafe (Figure 6)
denote the sum of upon volume of all safe LPs. Our side reward is formulated as r′n = Vsafe/(L ·W ·H)
to ensure the maximum amount of safe LPs. The final reward of the system is then revised as rn =
α× ln ·wn ·hn/(L ·W ·H)+βVsafe/(L ·W ·H), where α = 10 and β = 0.1 since the packing performance
is still the primary. The packing episode ends when the current item is not placeable and the rn is zero.

Action space decomposition. The resolution choice of Dn would significantly influence the range
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of action space A. However, we need a high resolution of Dn to ensure the packing accuracy in prac-
tical applications which would dramatically enlarge A. To solve this problem, we propose a multi-task
training method. The action prediction task is decomposed into three subtasks, predicting xn, yn and
on, respectively, (Figure 2). The decomposition would reduce the action space from O(n3) to O(3n).
Different from previous work [43] which learns state-action value functions separately for each task, we
train different actors for each task and use unified critic function V (sn) for the three individual actors
to predict Px, Py, Po. Noting that the training of three actors is coupled as well, the advantage is that
xn, yn, and on can be predicted in a correlated fashion which is reasonable in our problem configuration.
The policy gradient for actor network parameters training to predict Px, Py, Po is formulated as

∇θactor = (rn + γV (sn+1)− V (sn))∇ logPactor(an|sn), (4)

where θactor, actor ∈ {x, y, o} is the tunable parameters for different actors, γ ∈ [0, 1] is the discount
factor, and we set γ as 1 so that V (sn) can directly present how much reward the agent can obtain from
sn.

Loss function. The whole network is trained via a composite loss. The actor loss Lactor is inferred
from (4) and the critic loss is constructed based on our reward function rn, which are the loss functions
used for training the actor and the critic, respectively. Next, we use the feasibility mask Mn given by
stability estimation to modulate outputs of three actors in order, i.e., the probability distribution of the
actions. In theory, if the LP at (x, y) is infeasible for n with orientation adjustment o, the corresponding
probability P (aon = o|sn), P (axn = x|sn), P (ayn = y|sn) should be set to 0, respectively. However, we find
that setting P to a small positive quantity like ǫ = 10−20 works better in practice — it provides a strong
penalty to an invalid action but a smoother transformation benefiting to the network training. Our loss
function is defined as

L = α · Lactor + β · Lcritic + ω ·Einf − ψ ·Eentropy, (5)






































Lactor = (rn + γV (sn+1)− V (sn)) logPactor(an|sn),

Einf =
∑

Mn,o(x,y)=0

Pactor(an|sn),

Eentropy =
∑

Mn,o(x,y)=1

−Pactor(an|sn) · log
(

Pactor(an|sn)
)

,

Lcritic = (rn + γV (sn+1)− V (sn))
2,

(6)

where actor ∈ {x, y, o}. To further discourage infeasible actions, we explicitly minimize the summed
probability at all infeasible LPs with Einf. Meanwhile, the action entropy loss Eentropy is adopted to push
the agent to explore more LPs. In this way, we stipulate the agent to explore only feasible actions. We
recommend the following parameters which lead to consistently good performance throughout our tests:
α = 1, β = 0.5, and ω = ψ = 0.01.

3.4 BPP-k with k = |Io| > 1

In a more general case, the agent receives the information of k > 1 lookahead items (i.e., from n to
n + k − 1). With additional information embedded into the environment state, the agent is expected
to learn the policy π(an|Hn,dn, . . . ,dn+k−1) and have better performance. Ref. [5] claimed that simply
encoding the lookahead information into the network input cannot help. We adopt the search-based
solution to enable the agent to leverage lookahead information explicitly.

Virtual placement order. Ref. [5] claimed that the current item n’s placement should be conditioned
on the next k−1 one. They enumerate different permutations of the sequence (dn, . . . ,dn+k−1) and drive
the actor network to give related plans. To evaluate each sequence, they sum up the accumulated reward
and the critic value of the end state after the k-th item is placed. The most promising an can be found
in the sequence with the highest evaluation score. Note that only n’s placement is determined in one
permutation search and the actual placement of the k items still follows the order of arrival. To make
the search scalable when k is large, Ref. [5] adapted the Monte Carlo tree search (MCTS) [44] to this
problem and scaled down the computational complexity from O(k!) to O(km) where m is the number of
permutations sampled.

Adaptions for MCTS. We have made some adjustments to [5]’s MCTS method so that it can
be employed in practical scenarios. Firstly, we multiply each virtual item’s mass with an extremely
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Figure 7 (Color online) We implement our system in a practical industry environment. (a) The online autonomous bin packing

system with an RGB-D sensor and a robot arm; (b) the digital twin which constructed by our method based on the captured data.

small coefficient (10−6) during the search so that the stability estimation for n will not be influenced
by nonexistent items. The mass coefficient cannot be zero otherwise the virtual items will lose physical
constraint with other virtual ones. We also notice that calculating the feasibility mask based on height
map update and stability estimation in MCTS is inevitably time-consuming for real-time since this process
would be invoked thousands of times in a whole MCTS. To improve the efficiency, we adopt a root-based
parallelization for the MCTS. Different from leaf-based parallelization and tree-based parallelization [45],
there is no communication between clones during the parallelization. All the root children of the separate
Monte Carlo trees are merged with their corresponding clones after every parallelization iteration. After
the search, we choose the action an corresponding to the permutation with the highest path value. MCTS
allows a scalable lookahead for BPP-k with a complexity of O(km) wherem is the number of permutations
sampled.

However, parallelizing MCTS will sacrifice the sampling frequency per thread and harm the perfor-
mance. We modify the MCTS node expansion strategy to ensure that MCTS focuses more on meaningful
sequences. The items coming soon in actual order will be more likely to be sampled during the permu-
tation search since a partial sequence given by a virtual order is sometimes meaningless. The sample
possibility of item(vi) is Psample(x) ∼ N (0, 1) in our implementation where x means item(vi)’s sorted
arrival index among unselected items. This attention-based fashion would give MCTS a soft constraint
to sample more items with the actual order.

3.5 Implementation

We implement our system in a practical industry environment to validate the actual packing performance.
Figure 7 illustrates the online autonomous bin packing system with an RGB-D sensor and a robot arm.

Environment configuration. The model of the RGB-D sensor is Percipio R©FM811-GIX-E1 whose
depth capture resolution is 1280 × 960. The robot arm is STEP R©SR20E which can pick and place box-
like items (up to 10 kg) with an air pump driven suction cup. Our packing control system is implemented
on a desktop computer (ubuntu 16.04), which equips with an Intel Xeon Gold 5115 CPU @ 2.40 GHz,
64 G memory, and an Nvidia Titan V GPU with 12 G memory. The size of box items we adopted in our
test meets the transportation standard of S.F.Express R© and Taobao R©, which ranges from 20 to 50 cm
on each dimension. The items would come continuously and randomly with the conveyor belt at a fixed
speed and will be packed by the robot arm to the bin placed on the floor which is driven by our system.

Terminals. Our system contains three terminals. The robot terminal drives the robot arm with
Codesys, which is a development environment for programming controller applications. The planning
terminal is Python-based, which runs the DRL network we proposed to find the optimal packing strategy.
The detection terminal is working with the RGB-D sensor, which segments the input depth image and
recognizes the size and location of the coming items. These three terminals are communicated through
a TCP protocol which centered on the detection terminal.

Executive procedure. Before running the whole system, an alignment between our three terminals
is required. A hand-eye calibration [46] is performed between the detection terminal and robot terminal,
and thus the coordinate system of the object recognized by the RGB-D sensor can be aligned with the
robot coordinate system. Meanwhile, we measure the relative position between the pallet and the robot
and align the pallet coordinate system with the robot coordinate system as well.
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The detection terminal would capture the depth image of items on the conveyor belt, and the PEAC
method [47] is performed to judge whether there is an item in the field and measure its size. If an item is
detected, the detection terminal would stop the conveyor belt and send the item size dn = [ln, wn, hn]

T ∈
Z
3 to the planning terminal for packing strategy search.
While the planning terminal is calculating the optimal LP for the input item n, the robot terminal

would drive the robot arm to pick this item up. It would take few seconds for the robot to complete the
picking and the planning terminal can finish the calculating during this period. Once the robot arm leaves
the camera’s field of view, the detection terminal will restart the conveyor belt and the robot terminal
would pack the picked item to the LP given by our planning terminal. At normal speed, it takes 8–9 s
for our system to pack a box item from the conveyor belt to the pallet while human palletizers need to
spend over 11 s without counting the rest time.

4 Experiments

Our DRL agent is trained in PyTorch [48]. Training on a spatial resolution of 100 × 100 takes about
12 h and a single decision time is less than 10 ms. We compare our method with some state-of-the-art
online bin packing methods to demonstrate the superiority. OnlineBPH [17] and OnlineDRL [5] are two
representatives, where OnlineBPH is non-learning based and OnlineDRL learns how to pack from the
data. Ref. [5] also proposed a heuristic baseline called boundary rule method. It replicates human’s
behavior by trying to place a new item side-by-side with the existing packed items and keep the packing
volume as regular as possible.

4.1 Training and test set

We set L = W = H = 100 in our experiments with 125 pre-defined item dimensions (|I| = 125). The
100 × 100 resolution is large enough for most of the packing applications in the real world. To avoid
over-simplified scenarios, we limit li 6 L/2, wi 6 W/2, and hi 6 H/2. The training and test sequences
are synthesized by generating items out of I, and the total volume of items should be equal to or bigger
than the bin’s volume. We employ three types of data proposed by [5] to train and evaluate our method.
One of them generates the sequences by randomly sampling items (RS) out of I. Since the optimality
of an RS sequence is unknown, the other two types of sequences are generated via cutting stock [49].
Specifically, items in a sequence are created by sequentially “cutting” the bin into items of the pre-defined
125 types so that we understand the sequence may be perfectly packed and restored to the bin. CUT-1
sorts the cut items into the sequence based on Z coordinates of their FLBs, from bottom to top. CUT-2
sorts the cut items on their stacking dependency. We generate 2000 sequences on RS, CUT-1, and CUT-2
respectively for testing purposes. The performance of the packing algorithm is quantitated with space
utilization (space uti.) and the total number of items packed in the bin (# items).

4.2 Ablation study and evaluation

Table 1 reports an ablation study about different adoptions. The feasibility mask Mn saves the efforts
of exploring invalid actions during the training and guarantees the basic performance of the algorithm.
The performance is impaired if the infeasibility loss Einf is not contributed to the final loss since some
exploration would be wasted for infeasible actions. Eentropy encourages the agent to find better solutions
and benefits the final performance. The decision condition input (Figure 2(b)) for each actor-head also
facilitates more stable training and better performance. Figure 8 visualizes the effect of different algorithm
settings.

4.3 Stacking tree based stability estimation

Next, we demonstrate that the proposed stacking tree based stability estimation is necessary for both
efficiency and performance. Table 2 reports a quantitated comparison between the proposed method and
four alternatives on the RS benchmark. The simulator reports the stability estimation given by Bullet [50]
according to a numerical force analysis. Bullet is able to present precise stability estimation while it is
time-consuming. Secondly, Ref. [5] introduced a heuristic-based approach to discriminate stability of n
depends on whether it satisfies any of the following conditions: (1) over 60% of n’s bottom area and all of
its four bottom corners are supported by existing items; or (2) over 80% of n’s bottom area and three out
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Table 1 Effect of different adoptions on the RS dataseta)

Mn Einf Eentropy Cond. Space uti. (%) # items

✗ ✗ ✗ ✗ 39.5 15.2

✗ ✓ ✓ ✓ 60.0 23.2

✓ ✗ ✓ ✓ 67.9 26.1

✓ ✓ ✗ ✓ 68.3 26.4

✓ ✓ ✓ ✗ 68.4 26.5

✓ ✓ ✓ ✓ 71.3 27.6

a) Cond. means the decision condition input for each actor-head; space uti. means space utilization; # items means the total

number of items packed in the bin.
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Figure 8 (Color online) Visualization of the ablation study. The numbers beside each bin are space uti. and # items.

Table 2 Quantitated comparison between the proposed method and four alternatives on RS benchmark. Our method can achieve

the best packing performance with the high accuracy of stability estimation. Note that the counting stops when unstable placement

occurs.

Space uti. (%) # items Stability (%) Time (s)

Bullet simulator [50] – – – 5.8 × 10−2

Heuristic rule [5] 58.3 22.8 100.0 1.8 × 10−4

OnlineBPH [17] 29.1 11.0 11.7 –

Only current packing 66.3 25.68 93.7 3.8 × 10−4

Ours 71.3 27.6 99.9 5.0 × 10−4

of four bottom corners are supported; or (3) over 95% of n’s bottom area is supported. This approach
can also promise 100% accuracy for stability estimation. However, the heuristic constraints are too strict
for our network, the packing performance would be limited in this scenario.

To demonstrate that our stacking tree structure is necessary for stability estimation, we also evaluate
the accuracy and performance if only the current packing item n’s stability is checked based on our
supported centroid approach. It will fail in some cases, which can only achieve 93.7% accuracy. The
whole implementation of our stability estimation gives the best packing performance with a 99.9% esti-
mation accuracy while OnlineBPH [17] can only achieve 29.1% space utilization with 11.7% estimation
accuracy. Note that our high-speed stability estimation method is for the convenience of DRL training.
In practice, we can perform a slower but more accurate stability estimation thread in parallel to avoid
the misestimation hazards which account for only 0.1%.
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Table 3 Performance comparison with different resolutions between method with decomposed action space (ours) and method

with uniform action space [5]. Note that Ref. [5] fails with 100 × 100 and 200 × 200 while our method can still maintain a good

performance.

10 × 10 30 × 30 50 × 50 100 × 100 200 × 200

Ours
Space uti. (%) 70.1 71.7 72.6 71.3 70.2

# items 27.1 27.7 28.1 27.6 27.1

[5]
Space uti. (%) 72.3 72.4 51.7 – –

# items 27.9 27.9 20.6 – –

Table 4 Comparison between different methods. The action decomposition method has reached a good level both in performance

and training overhead. Unified action space would fail when the resolution increases to 100 × 100.

Uniform Continuous Ours

Space uti. (%) 72.3 54.6 70.2

10 × 10
# items 27.9 21.5 27.1

GPU memory (MB) 948 942 944

Network update time (s) 2.0 × 10−2 1.4 × 10−2 2.7 × 10−2

Space uti. (%) – 51.2 71.3

100 × 100
# items – 20.3 27.6

GPU memory (MB) 8302 1352 1356

Network update time (s) 84.7 1.6 × 10−2 5.1 × 10−2

4.4 Action space decomposition

Benefit from the design of action space decomposition, our model is able to handle the input states with
higher resolution. The dimensions of the pre-defined item set I are scaled to fit the state representation
at different resolutions. For instance, a cube item whose length is 20 cm in all dimensions is expressed
as li = wi = hi = 20 at a resolution of 100 × 100, while li = wi = hi = 2 at a resolution of 10 ×
10. The dimensions of all items are integer multiples of the different resolution unit lengths. Table 3
reports the packing performance change as the resolution grows. Note that the small fluctuations of
performance are normal since different sizes of convolution kernels are adopted to encode features with
different resolutions. The packing performance of our method remains stable with different resolutions
while the performance of [5] drops significantly. The results demonstrate the superiority of the action
space decomposition when dealing with high resolution input states.

We compared our design of action space decomposition with other forms of action space: unified action
space and continuous action space. Unified action space refers to the uniform encoding of all actions like
an = xn +L · yn+L ·W · on and only one actor is trained. Another alternative is to map a unified action
space to a continuous domain in the range of [0, 1]. As the agent predicts in this continuous domain,
we project the result back to the discrete domain. We evaluate these three methods with two different
resolutions, 10× 10 and 100× 100. The result is reported in Table 4.

The unified action space can achieve good performance with high computational efficiency when the
state resolution is low. However, the performance drops significantly and the computing overhead has
increased dramatically when the action space resolution is high. The continuous form of action space is
computational friendly, but cannot achieve a good packing performance. Meanwhile, our action space
decomposition method can not only maintain similar performance in different spatial dimensions but also
maintain a reasonable computational overhead.

High-resolution action space provides more flexibility to practical packing. If an item’s dimension is
not an integer with the resolution of the action space, an intuitive approach is filling in this non-unit
dimension upwards, e.g., from 15 to 20 cm, which also leads to space waste shown in Figure 9(a). If the
resolution cell is small, the agent can place items in a more compact way, shown in Figure 9(b). When
the item set I contains non-unit dimension items, our method’s performance at 100 × 100 is 70.9%, while
67.0% at 10 × 10.

Another problem that may arise in the real packing process is that the drift exists between the excepted
position and actual placement, due to robot manipulation error or item misdetection. Here we demon-
strate that the high-resolution action space can tolerate item drift more via a toy example in Figures 9(c)
and (d). We also provide quantitative experimental results here. Assuming that the size of the pallet
is 100 cm × 100 cm, we will impose a random non-zero drift from −5 to 5 cm to the placed item with
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Figure 10 (Color online) (a) Our MCTS implementation avoids the factorial computational cost of exhaustive permutation.

The parallelization of MCTS also reduces the execution time by nearly half. (b) Our parallel MCTS achieves similar performance

(average space uti.) as the brute-force search over permutation tree. The performance of the serial MCTS drops when the lookahead

size is larger than 5 due to the ever-increasing search space.

a probability of 20%. If we pack items at a high resolution of 100 × 100, 1 cm per cell, the packing
utilization is 68.2% while the utilization is 71.3% if no drift is imposed. If we execute the same task at
a low resolution of 10 × 10, which means 10 cm per cell, the packing utilization drops to 63.1% from
70.1%.

4.5 Scalability of BPP-k

Once the agent has mastered the capability of lookahead, it should better exploit the remaining space and
deliver a more compact packing. The environment space increases exponentially as k value increases due
to the factorial complexity. The agent should make its decision in a reasonable period. In Figure 10(a),
we compare the time overhead and algorithm performance of the parallel MCTS with the serial approach.
In Figure 10(b), we show that the performance of MCTS improves with the number of lookahead. Note
that the root parallelization of MCTS not only improves the efficiency but also enables a larger search
space, while the serial MCTS would be easily stuck in a local optimum with a large lookahead size.

In the process of MCTS simulation, only legally sampled sequences would be adopted in the training.
Sampling quality would directly impact search efficiency. We evaluate 6 different node sampling strategies
with k = 10 and the result is reported in Table 5. Here we can see, if we first sample the nodes that
actually arrive late with strategy 5x, the performance drops significantly since too many illegal sampled
sequences are generated in this scenario. If we first sample the nodes that actually arrive early, MCTS
begins to be able to utilize lookahead information and achieve better performance. N (0, 1) is the best
sampling strategy among them. Fixed sampling order performs worse since it cannot explore the search
space well.



Zhao H, et al. Sci China Inf Sci January 2022 Vol. 65 112105:14

Table 5 The node sample strategy will influence the performance of MCTS. N (0, 1) is the best sampling strategy among them.

5x Random 1/x N (0, 1) (1/5)x Fixed sampling order

Space uti. (%) 72.9 79.1 80.6 82.5 81.2 77.9

# items 27.7 31.1 31.6 32.3 31.6 30.0
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Figure 11 (Color online) (a)–(c) Comparison with the online BPH method [17] on BPP-k with 100× 100 state resolution. Note
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Figure 12 (Color online) (a) Segmentation result under BPP-1 view. (b) The item n is labeled with an anchor, and its dimension

and location are recognized. (c) Segmentation result under BPP-k (k is a variable) view. (d) If multiple items are observed by the

camera, we sort their positions and select the first one in the queue.

4.6 Comparison with existing methods

We compare to the state-of-the-art non-learning online bin packing method OnlineBPH [17] to demon-
strate that our method can achieve competitive performance on this problem. Note that Ref. [17] allows
the agent to select arbitrary one from k lookahead items (i.e., BPP-k with re-ordering) and therefore
relaxes the order constraints. We also help this method to make a pre-judgment of stability to make it
perform better. In Figures 11(a)–(c), we report the comparison under the setting of BPP-k with 100×100
state resolution on the three benchmarks. Our method can surpass OnlineBPH [17] in most cases even
re-ordering is allowed in this method while our method does not. Note that OnlineDRL [5] which adopts
the unified action space would fail in the training with such a high state resolution.

The most concerning issue should be the comparison between our algorithm and human intuition. To
get the conclusion, we asked 50 human users to pack items manually with a Sokoban-like App proposed
by [5]. The same sequence is collected and used to test AI (our method). The one with higher space uti-
lization wins. 15 of the users are palletizing workers and the rest are CS-majored undergraduate/graduate
students. No time limit is given. We conduct 2104 comparisons and the statistics are plotted in Fig-
ure 11(d). Our method outperforms human players in general (1772 AI wins vs. 289 human wins and
43 evens): it achieves 70.4% average space utilization while human players only have 56.3% (palletizing
workers achieve 57.6% while CS-majored students achieve 55.2%).

4.7 Robot implementation in industry environment

We test our BPP-1 and BPP-k methods in a practical industry environment. The implementation details
can be found in Subsection 3.5. For BPP-1, the RGB-D camera recognizes the coming item by segmenting
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Table 6 Performance evaluation of BPP-1 and BPP-k in a practical industry environment. Our method can achieve good

performance while keeping the stack stable and avoiding collision.

Space uti. (%) #items Stability (%)
Collision rate (%)

Ours w/o collision-free reward

BPP-1 71.2 49.0 100 2 35

BPP-k 77.9 53.5 100 0 30

BPP-k packing sequences

BPP-1 packing sequences

Figure 13 (Color online) Visual examples are given by our robot implementation. The robot places items in a far-to-near order

and reduces collisions with packed items.

the captured depth map (Figure 12). If multiple items are observed by the camera at the same time, we
sort their positions and select the item at the front of the queue to pack.

Next, we evaluate our BPP-1 and BPP-k in this real demo as well in Table 6. Figure 13 shows
some visual captures of the packing process given by our robot implementation. Note that, as shown in
Figure 12(d), the number of observed items is uncertain and k is changing while the packing. This is even
more challenging when k is fixed. To fully test our BPP-k method, we choose Express R©box standard
as our test data since its box size is relatively small which ranges from 20 to 50 cm on each dimension.
The input would include more numbers of observed items in this configuration. We also test the packing
stability and robot arm collision in this experiment. The packing given by our method is 100% stable in
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all the 50 test sequences with BPP-1 and BPP-k. With the help of our design of collision-free reward,
the robot places items in a far-to-near order and only 1 sequence encounters a collision between the robot
arm and the packed item with BPP-1. If the collision-free reward is not included, the agent would place
items uniformly on the XY plane of the bin and the number of collision sequences would significantly
increase.

5 Conclusion

We have provided a practical solution to online 3D-BPP with only partial sequence observation and
deployed it on a real robot. To learn a feasible packing policy, we propose three new designs. First,
we propose an online analysis of packing stability with a novel stacking tree. Second, we propose a
decoupled packing policy learning for different dimensions of placement which enables high-resolution
discretization and thus high packing precision. Third, we introduce a reward function that dictates the
robot to place items in a far-to-near order and therefore simplifies the collision detection and movement
planning of the robotic arm. It is also an interesting problem that investigating the possibility of teaching
the agent to learn this far-to-near order without explicitly revising the reward function. Including the
robot packing path planning into the RL training may provide a better and more customized strategy to
avoid collision. However, the complexity of the optimization space and the efficiency of simulation would
make it a challenging problem. As future work, we would like to investigate more on the problem of
domain transfer of learned packing policies, e.g., monitoring the possible item drift with high precision.
In addition, we would like to investigate more variants of this problem such as stability estimation of
items with irregular shapes and study combined solutions of palletizing and depalletizing.

Acknowledgements This work was supported in part by National Key Research and Development Program of China (Grant No.

2018AAA0102200), National Natural Science Foundation of China (Grant Nos. 62132021, 61825305, 62002375, 62002376, 62102435),

NUDT Research Grants (Grant No. ZK19-30), DEGP Key Project (Grant No. 2018KZDXM058), GD Science and Technology

Program (Grant No. 2020A0505100064), and Shenzhen Science and Technology Program (Grant No. JCYJ20210324120213036).

We thank Qijin SHE, Yin YANG, Kun HUANG, Yixing LAN, Kaiwen LI, Junkai REN, and Yao DUAN for active discussion. We

also thank Hanchi HUANG for maintaining a good community to communicate reinforcement learning related technologies.

References

1 Korte B, Vygen J. Bin-packing. In: Kombinatorische Optimierung. Berlin: Springer, 2012. 499–516

2 Martello S, Pisinger D, Vigo D. The three-dimensional bin packing problem. Oper Res, 2000, 48: 256–267

3 Crainic T G, Perboli G, Tadei R. Extreme point-based heuristics for three-dimensional bin packing. Informs J Comput, 2008,

20: 368–384
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