
SCIENCE CHINA
Information Sciences

January 2022, Vol. 65 112103:1–112103:17

https://doi.org/10.1007/s11432-020-3182-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Reveal training performance mystery between
TensorFlow and PyTorch in the single GPU

environment

Hulin DAI1, Xuan PENG1, Xuanhua SHI1*, Ligang HE2, Qian XIONG1 & Hai JIN1

1National Engineering Research Center for Big Data Technology and System, Service Computing Technology and System Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
2Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Received 12 September 2020/Revised 14 December 2020/Accepted 3 February 2021/Published online 16 December 2021

Abstract Deep learning has gained tremendous success in various fields while training deep neural networks

(DNNs) is very compute-intensive, which results in numerous deep learning frameworks that aim to offer

better usability and higher performance to deep learning practitioners. TensorFlow and PyTorch are the two

most popular frameworks. TensorFlow is more promising within the industry context, while PyTorch is more

appealing in academia. However, these two frameworks differ much owing to the opposite design philosophy:

static vs dynamic computation graph. TensorFlow is regarded as being more performance-friendly as it has

more opportunities to perform optimizations with the full view of the computation graph. However, there

are also claims that PyTorch is faster than TensorFlow sometimes, which confuses the end-users on the

choice between them. In this paper, we carry out the analytical and experimental analysis to unravel the

mystery of comparison in training speed on single-GPU between TensorFlow and PyTorch. To ensure that

our investigation is as comprehensive as possible, we carefully select seven popular neural networks, which

cover computer vision, speech recognition, and natural language processing (NLP). The contributions of this

work are two-fold. First, we conduct the detailed benchmarking experiments on TensorFlow and PyTorch

and analyze the reasons for their performance difference. This work provides the guidance for the end-users

to choose between these two frameworks. Second, we identify some key factors that affect the performance,

which can direct the end-users to write their models more efficiently.

Keywords deep learning, performance, comparison, TensorFlow, PyTorch

Citation Dai H L, Peng X, Shi X H, et al. Reveal training performance mystery between TensorFlow and PyTorch

in the single GPU environment. Sci China Inf Sci, 2022, 65(1): 112103, https://doi.org/10.1007/s11432-020-3182-1

1 Introduction

Deep learning has gained tremendous success in many fields including computer vision, speech recognition,
and natural language processing (NLP). It relies on training deep neural networks (DNNs). The networks
have been becoming deeper and more complex, and revolutionize from convolution neural network (CNN)
and recurrent neural network (RNN), to Transformer and graph neural network (GNN). Training needs
enormous computation power, which requires lots of hardware to accelerate it, such as GPU, TPU [1], and
FPGA. Among these hardware choices, the GPU is the prevalent choice currently. The complexity from
both applications and the continuous evolution of DNNs and hardware motivates the developers of deep
learning frameworks to provide better usability and higher performance to deep learning practitioners.

There are many deep learning frameworks nowadays, including Caffe [2] developed by UC Berkeley,
TensorFlow [3] by Google, PyTorch [4] by Facebook, CNTK [5] by Microsoft, MxNet. Currently, Ten-
sorFlow and PyTorch are two most popular frameworks. TensorFlow is appealing thanks to its vibrant
community and good visualization, while PyTorch is popular because of its easy programming and de-
bugging. TensorFlow and PyTorch differ much owing to their opposite design philosophies: static vs.
dynamic computation graph. TensorFlow follows data as code and code is data idiom, which builds a

*Corresponding author (email: xhshi@hust.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3182-1&domain=pdf&date_stamp=2021-12-16
https://doi.org/10.1007/s11432-020-3182-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3182-1
https://doi.org/10.1007/s11432-020-3182-1


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:2

computation graph before it starts running. Programming in PyTorch is more dynamic: the users can
define and execute graph nodes as the execution goes along. Therefore, TensorFlow is capable of perform-
ing graph optimizations to have more efficient execution, while PyTorch could suffer from the overhead of
Python interpreter and lack the opportunity of holistic optimizations compared to TensorFlow. Nonethe-
less, there are some voices claiming that PyTorch could be faster than TensorFlow [6]1)2)3), which should
not be ignored. There are many studies [6–13]4) which evaluate various deep learning frameworks on
different hardware. However, they usually focus on the output results of the frameworks to compare
these deep learning frameworks, but not to explain the underlying reasons systematically for the output.
The reason why there is little discussion about the underlying reasons is that it is very hard to compare
these two frameworks owing to their totally different software stack, including the way to construct a
computation graph, runtime scheduling.

In this work, we aim to dig deep into TensorFlow and PyTorch and to reveal the mystery of their
performance comparison in single-GPU training. To make this analysis as comprehensive as possible, we
select seven very popular neural networks, which includes CNN, RNN, and Transformer and also covers
computer vision, speech recognition, and natural language processing. Note that this work focuses on
single GPU training, because multi-GPU or multi-node training will introduce communication time and
parameters aggregation time, and there are a lot of studies [14–18] that focus on the optimizations of multi-
GPU and multi-node training. We believe the multi-GPU and multi-node training is deserving another
piece of in-depth work. Nonetheless, we present some multi-GPU training speed results in Section 5 and
prove that our findings can still hold in distributed training. Our major findings are summarized below.

• Most of the model training time is consumed by GPU computation time, which indicates that the
implementation of key kernels plays a vital role in GPU training, such as convolution layer, long short-
term memory (LSTM) [19] layer.

• The convolution layer can have many different implementations with different speeds. Faster algo-
rithms usually need much more memory. TensorFlow has a better memory management than PyTorch,
which means that when the model is big or the training batch size is large, TensorFlow is a better choice
than PyTorch.

• The best convolution algorithm needs to profile the available algorithms at runtime. The users have
three options for choosing the algorithm, including attempting all available algorithms for the best one
(with extra profiling overhead), using a heuristic approach for obtaining a suitable algorithm (suboptimal
performance), or using the default convolution algorithm (poor performance). For the first option, when
the input size is fixed, this process only happens at the first mini-batch, which has little influence on the
overall training. However, when the input size is varied, this process continues through the first epoch,
which introduces non-trivial overhead, but delivers better performance in the next epoch. So when users
want to try a new network (by running a few steps), it is better to use the cuDNN’s heuristic approach for
obtaining the best algorithm. But if users have decided the networks (run lots of epochs), this profiling
should be enabled.

• There are a few LSTM implementations on GPU currently, e.g., LSTMCell which is the most basic
implementation, LSTMBlockCell5), and cuDNNLSTM6). cuDNNLSTM is the fastest and can be 10×
faster than the basic one [20]. However, it is very popular to regularize RNNs, such as weight decay,
dropout, and zoneout [21], which preserves the information instead of dropping hidden units in dropout.
Some of them can only be built with more basic LSTM implementation (like LSTMCell), which are
not available in well-optimized cuDNNLSTM. So, on the one hand, practitioners should use more well-
optimized LSTM implementation when they can. On the other hand, the kernel writers should provide
more flexible APIs while achieving high performance.

• Graph optimizations show little impact on the training speed in most neural networks and should
not be considered for the purpose of training speed when hesitating between TensorFlow and PyTorch.

1) Tensorflow issues 21881. https://github.com/tensorflow/tensorflow/issues/21881.

2) Reddit discussion: why is Tensorflow so slow. https://www.reddit.com/r/MachineLearning/comments/8iguaw/d why is

tensorflow so slow/.

3) Reddit discussion: Why is PyTorch as fast as (and sometimes faster than) TensorFlow? https://www.reddit.com/r/

MachineLearning/comments/cvcbu6/d why is pytorch as fast as and sometimes faster/.

4) Baidu. DeepBench: benchmarking deep learning operations on different hardware. 2017. https://github.com/baidu-research/

DeepBench

5) Lstmblockcell of tensorflow. http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api docs/

python/tf/contrib/rnn/LSTMBlockCell.html.

6) Optimizing recurrent neural networks in cuDNN 5. https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-

cudnn-5/, 2016.

https://github.com/tensorflow/tensorflow/issues/21881
https://www.reddit.com/r/MachineLearning/comments/8iguaw/d_why_is_tenso rflow_so_slow/
https://www.reddit.com/r/MachineLearning/comments/cvcbu6/d_why_is_pytor ch_as_fast_as_and_sometimes_faster/
https://www.reddit.com/r/MachineLearning/comments/cvcbu6/d_why_is_pytor ch_as_fast_as_and_sometimes_faster/
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api_docs/python/tf/contrib/rnn/LSTMBlockCell.html
http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api_docs/python/tf/contrib/rnn/LSTMBlockCell.html
https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-
cudnn-5/


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:3

2 Background

2.1 DNN model and deep learning training

The emergence of DNN has enabled the rapid development of deep learning, and has received exten-
sive attention in the artificial intelligence (AI) communities. Starting from AlexNet [22], various DNN
architectures (such as GoogLeNet [23], ResNet [24]) appear in a short time and provide better feature
detection and accuracy. Generally, the DNN structures are composed of an input layer, an output layer
and multiple hidden layers in between. The layers can be regarded as a set of operations. Some frame-
works such as Caffe use layer abstractions, while others such as Caffe27) and TensorFlow use operation
(or operator) abstraction. For different applications and purposes, there are different types of layers,
such as convolution layer, pooling layer and activation layer for feature extraction in image classification,
attention layer for filtering information in NLP, and the LSTM layer for saving memory. Even considering
the existing layers, the combination of layers can also be explored to meet the application requirements,
such as ResNet.

Deep learning training aims to find a suitable set of model parameters to minimize the loss function,
which reflects the error between the prediction result of the sample and the ground truth label. The
training process typically consists of millions of iterations, each of which involves two computationally
intensive phases, i.e., forward and backward propagation. In the forward propagation, the training
samples are fed into the input layer, together with weights and bias to calculate the output feature map,
which is used as the input of the next layer. Finally, the forward propagation ends with the calculation of
loss by comparing the output with the ground truth label at the output layer. The backward propagation
(more commonly called backpropagation [25]) starts from the output layer, traverses the layers in reverse,
calculates the gradients of parameters in each layer according to the loss value through the chain rule, and
optimizes the parameters. There are many optimizers for backpropagation, such as stochastic gradient
descent (SGD), Momentum [26] and Adam [27]. Generally, as the number of iterations increases, the loss
value becomes smaller and smaller. Training will end when a certain condition is reached, for example,
the loss value is less than a threshold, or the accuracy of the validation is higher than a threshold.

2.2 Deep learning frameworks

Deep learning frameworks can be divided into two categories: declarative and imperative frameworks.
TensorFlow8), Caffe, and CNTK embrace the declarative programming. PyTorch adopts the imperative
model. MxNet [28] uses the programming model mixed with these two. TensorFlow announces the
imperative programming, eager execution [29], as its default execution mode from version 2.0. However,
it is a new feature in TensorFlow, which is still in rapid development. So we only study its stable
declarative programming in this work. This limitation is also explained in Section 5. Among these
frameworks, TensorFlow and PyTorch are the two most popular frameworks in industry and academia.
Therefore, we focus on the TensorFlow and PyTorch in this work.

TensorFlow. TensorFlow is a framework for machine learning which is developed by Google. It
uses the data flow graph to describe computation, where the graph nodes represent the mathematical
operations and the edges represent the data (Tensor in TensorFlow). The users use the API in Tensor-
Flow to build the models, which will be transformed into an internal computation graph at TensorFlow
runtime. In this process, TensorFlow can perform some optimizations to the graph for improving the
performance. For example, pruning and constant folding can be used to simplify the graph. Common
subexpression elimination (CSE) can be applied to eliminate computations. Owing to the characteristic
of static computation graph in TensorFlow, it is much more difficult to handle RNN because it usually
needs a dynamic computation graph.

PyTorch. PyTorch is a framework revolutionized from Torch [30] and developed by Facebook. It also
follows the dataflow paradigm, and is same as TensorFlow. However, it offers more flexible APIs, which
can define dynamic computation graphs. It embraces the “pythonic” coding style, which makes it simple
to learn and use by the users. Tensor is also the core data abstraction in PyTorch which represents
the multi-dimensional arrays. To facilitate the users, both PyTorch and TensorFlow offer automatic
differentiation (also known as backpropagation) for all operations on Tensors. The difference is that:

7) Caffe2 framework, 2017. https://caffe2.ai.

8) Although TensorFlow supports these two programming models currently, it adopts the declarative programming model first,

which lasts for a long time.

https://caffe2.ai


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:4

TensorFlow builds the graph of backpropagation before running, while PyTorch tracks the operations
and builds the graph at runtime.

3 Experimental methods

3.1 Workloads selection

To make our analysis as comprehensive as possible, the testing workloads in this work cover the major
application domains and also include the mainstream architectures of current DNNs.

3.1.1 Computer vision

Computer vision is a field of artificial intelligence that trains the computers to interpret and understand
the visual world. It includes the applications, such as image classification, object detection. Since AlexNet
beats the traditional methods and shows deep learning is a promising method for image classification,
the neural networks in this field have been developing rapidly. In this work, we choose three most
representative models: VGG16 [31], ResNet-50 [24], and InceptionV3 [32]. All these three models are
CNN.

3.1.2 Speech recognition

DeepSpeech2 [33] is an end-to-end automatic speech recognition engine from Baidu, which is constructed
with the convolution layer, the RNN layer, and the fully connected (FC) layer. It can be used to recognize
either English or Chinese, two very different languages. Tacotron2 [34] is a neural network architecture for
speech synthesis directly from text. It is composed of two components: a sequence-to-sequence network
followed by a modified WaveNet vocoder. The major layers in Tacotron2 are the convolution layer, LSTM
layer, and FC layer.

3.1.3 Natural language processing

Natural language processing is a branch of artificial intelligence that enables machines to read, understand,
and derive meaning from human language. RNN is the pioneer of the networks that are applied in deep
learning because the dependency in the language sequence is suitable for RNN to process. In recent years,
the attention mechanism is becoming popular in NLP. Based on that, Google first abandons traditional
CNN and RNN networks, but uses attention to build the entire network, which is called Transformer [35].
Therefore, we select two popular networks: GNMT [36], which is an LSTM-based network with attention,
and BERT [37] from Google, which is a transformer-based model and breaks the records of many NLP
tasks at the time when it is released.

3.2 Unify the implementations between TensorFlow and PyTorch

The implementations of the same neural network could vary between TensorFlow and PyTorch in a few
aspects, which impacts the training performance and affects a fair comparison. Therefore, we try to unify
the implementations of TensorFlow and PyTorch so as to provide a fair comparison. We present the
implementation from two aspects: model structure and hyper-parameters. The key model settings are
listed in Table 1 [24, 31–34,36–39].

3.2.1 Model structure

In general, the structure of a model is fixed when its corresponding paper is published. However, the
detailed implementations in workloads on different frameworks could vary. In our experiment, only the
implementation of Tacotron2 differs between TensorFlow and PyTorch while others are the same. For
Tacotron2, the implementation in TensorFlow is aligned with the model structure in the paper, while
PyTorch’s implementation is modified in the LSTM regularization, which uses the normal dropout to
replace the original zoneout9). The decoder in PyTorch has an attention RNN layer, which is implemented
by an LSTM layer, an attention layer and a decoder RNN layer, which is implemented by an LSTM layer,

9) Tacotron2 implemented in PyTorch. https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Speech

Synthesis/Tacotron2.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Speech
Synthesis/Tacotron2


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:5

while in TensorFlow’s implementation, a decoder RNN is implemented by two LSTM layers followed by
an attention layer. In order to unify them, we replace zoneout in TensorFlow with dropout, and change
the decoder in PyTorch’s implementation to be the same as that in TensorFlow’s. In addition, we only
focus on the sequence-to-sequence network of Tacotron2 as it is the main architecture of Tacotron2 while
others are the plug-in networks.

3.2.2 Hyper parameters

The hyper-parameters are configurable parameters with the default value, such as learning rate, dropout
rate and batch size. We set the same hyper-parameter values in TensorFlow and PyTorch. Note the
batch size will influence the training speed greatly. We list the default batch size of our experiments in
Table 1. In the experiments, the results are obtained with the default batch size unless stated otherwise.

3.3 Obtaining accurate training speed

Training DNNs can last from weeks to months. To gather the training performance efficiently, we only
sample a short run of the entire training owing to the iteration characteristic of deep learning training.
However, the sampling periods could vary from the input. For the models with the fixed-length input,
such as CNNs, the training could stabilize very soon which means the difference between iterations is
very small. Therefore, we can gather an accurate training performance with a short period of running.
For the models with the input of variable length, such as RNNs, the training speed of each iteration is
different owing to different input sizes. In this case, it is necessary to train an epoch (traverse the entire
dataset) to obtain the stable performance.

Besides, there is usually a warm-up phase at the beginning of the training, which is used to construct the
computation graph, allocate memory, and explore some parameters (i.e., the workspace size of different
convolution layers). Only after that, the computation of each step would show a repeated behavior, which
can be used to represent accurate performance.

Next, we will describe the methodology of obtaining the accurate training speed in these seven models.

3.3.1 CNNs

We set 10 warmup steps to ensure that the training speed is stable enough. Then we record the elapsed
time of 200 steps after warmup to calculate the average running time of a step. So, the training speed
(images/s) can be calculated by the following formula:

speed =
batch size× num steps

elapsed time
.

3.3.2 RNNs & BERT

We use steps/s to express the speed in RNN and BERT. Because profiling the convolution algorithm
could exist during the entire first epoch in DeepSpeech2 and Tacotron2 (explained in Subsection 4.4.1),
which affects the training performance, we use the run-time of the second epoch to calculate the speed.
We run 200 and 300 steps and calculate the average speed in GNMT and BERT, respectively.

4 Evaluation

4.1 Experimental setup

Our experiment is conducted on the GPU computing type gn5 in Alibaba Cloud10), which has an NVIDIA
Tesla P100 GPU, 2.50 GHz Intel(R) Xeon(R) CPU E5-2682 v4 processors with 8 logical cores, 60 GB
RAM and 440 GB local NVMe SSD, running Ubuntu 16.04 OS. The CUDA version is 10.0. cuDNN is
7.6.4. The CUDA driver is 418.87.01. Our models are trained and tested on TensorFlow-GPU v1.15.2
and PyTorch v1.4.0 using the data type of 32-bit floating-point.

10) Alibaba Cloud. https://www.aliyun.com/.

https://www.aliyun.com/


D
a
i
H

L
,
e
t
a
l.

S
c
i
C
h
in

a
In

f
S
c
i

J
a
n
u
a
ry

2
0
2
2
V
o
l.

6
5
1
1
2
1
0
3
:6

Table 1 The workloads and settings in TensorFlow and PyTorch

Domain Model Key layer’s implementation BS Dataset
Github repository

TensorFlow PyTorch

CV

ResNet-50 [24]

Conv(cuDNN) 64 ImageNet [38] TensorFlow/Benchmarksd) PyTorch/Examplesi)VGG16 [31]

InceptionV3 [32]

SR
Tacotron2 [34]

Encoder cuDNNLSTM
32 LJSpeecha) Rayhane-Mamah/Tacotron-2e) NVIDIA/DeepLearningExamplesj)

Decoder LSTMBlockCell

DeepSpeech2 [33] Conv (cuDNN), cuDNNLSTM 20 LibriSpeech [39] TensorFlow/Modelsf) SeanNaren/deepspeech.pytorchk)

NLP
GNMT [36]

Encoder cuDNNLSTM
128 WMT’16 EN-DEb) NVIDIA/DeepLearningExamplesg) NVIDIA/DeepLearningExamplesl)

Decoder cuDNNLSTM

BERT [37] Embedding, Full-Connect 32 wikitext-103-rawc) Google-research/BERTh) Huggingface/Transformersm)

a) Ito K. The LJ speech dataset. 2017 https://keithito.com/LJ-Speech-Dataset/.

b) ACL 2016 first Conference on Machine Translation (wmt16), 2016. http://www.statmt.org/wmt16/it-translation-task.html.

c) Merity S. The WikiText long term dependency language modeling dataset. https://blog.einstein.ai/the-wikitext-long-term-dependency-language- modeling-dataset/.

d) https://github.com/tensorflow/benchmarks.git.

e) https://github.com/Rayhane-mamah/Tacotron-2.

f) https://github.com/tensorflow/models.git.

g) https://github.com/NVIDIA/DeepLearningExamples.git.

h) https://github.com/google-research/bert.git.

i) https://github.com/pytorch/examples.git.

j) https://github.com/NVIDIA/DeepLearningExamples.git.

k) https://github.com/SeanNaren/deepspeech.pytorch.

l) https://github.com/NVIDIA/DeepLearningExamples.git.

m) https://github.com/huggingface/transformers.

https://keithito.com/LJ-Speech-Dataset/
http://www.statmt.org/wmt16/it-translation-task.html
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-
modeling-dataset/
https://github.com/tensorflow/benchmarks.git
https://github.com/Rayhane-mamah/Tacotron-2
https://github.com/tensorflow/models.git
https://github.com/NVIDIA/DeepLearningExamples.git
https://github.com/google-research/bert.git
https://github.com/pytorch/examples.git
https://github.com/NVIDIA/DeepLearningExamples.git
https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/NVIDIA/DeepLearningExamples.git
https://github.com/huggingface/transformers


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:7

Table 2 Overall training speed on TensorFlow and PyTorch

Model TensorFlow PyTorch Difference (%)

ResNet-50 216.14 (images/s) 206.15 (images/s) 4.85

VGG16 150.32 (images/s) 131.54 (images/s) 14.28

InceptionV3 145.18 (images/s) 138.12 (images/s) 5.11

BERT 1.73 (steps/s) 1.77 (steps/s) 2.31

GNMT 2.085 (steps/s) 2.030 (steps/s) 2.71

DeepSpeech2 0.696 (steps/s) 0.735 (steps/s) 5.60

Tacotron2 0.286 (steps/s) 0.307 (steps/s) 7.34

4.2 Overall training performance comparison

In this subsection, we first look into the comparison of overall training performance between TensorFlow
and PyTorch. The results are shown in Table 2.

As we can see from the results, the performance difference between TensorFlow and PyTorch is trivial,
which is less than 8% in most models except 14.28% in VGG16. Generally, TensorFlow exhibits better
training performance on CNN models, while PyTorch is better on BERT and RNN models (except for
GNMT). In conclusion, the training performance between TensorFlow and PyTorch is very close, which
is different from some previous work or statements in [6, 11, 40]. The following two main reasons can
be attributed to this result. (1) Frameworks version. The versions of TensorFlow and PyTorch in our
experiment are all very stable, e.g., TensorFlow v1.15.2 is the last version (until the time we conducted
the experiments) that uses the graph execution as the default execution, which means that the well-known
optimizations have been implemented (e.g., asynchronous execution and using the NCHW data format in
GPU). (2) The model. The detailed implementation of the same model or some hyper-parameter values
could vary in different frameworks. But we have unified the model structure and hyper-parameters
(described in Subsection 3.2).

Even though the overall training performance of TensorFlow and PyTorch is similar, the performance
gap increases in some cases (e.g., different batch sizes), which will be shown next.

We now dig deep into the training process of TensorFlow and PyTorch to find out the reasons behind
the results. This part is organized as follows. First, we break down the training process on a single
GPU and analyze the procedure further in Subsection 4.3. Then, Subsection 4.4 presents how different
implementations of key layers in current models affect the training speed. Finally, we reveal the benefit
of a principle difference between TensorFlow and PyTorch, i.e., graph optimization, in Subsection 4.5.

4.3 GPU processing dominates the training process

Deep learning training in a single GPU can be decomposed into reading data from disk, preprocessing in
CPU, memory copy, and GPU processing (including kernel launch and kernel execution). The memory
copy includes data transfer from CPU to GPU and GPU to CPU. The former is mostly regarding the
input data transfer, such as image, word embedding, while the latter is mostly regarding the transfer of
parameters, which is used to update the model weights. From experiments, we observe that most of the
model training time is consumed by GPU processing. In the majority of models, the GPU processing is
mainly about GPU kernel execution (over 85.91%) while the GPU kernel launch time increases in RNN
(Tacotron2 has the longest kernel launch time). We discuss this point as follows.

The training process is asynchronous in TensorFlow and PyTorch, which means that reading data from
disk, preprocessing in CPU and memory copy can all be overlapped with GPU computing. Firstly, we
test the training speed using ramdisk (the CPU memory is used to simulate the disk) and the original
disk. The difference between them is very small and can be neglected. So, the impact of the disk can be
ignored in a single-GPU training. We also test the CPU usage in the training process, which is relatively
low such that it has no effect on overall training performance.

Then, we collect the overall training time, GPU kernel execution time, and memory copy time using the
NVIDIA visual profiler (nvprof). We calculate the ratio of memory copy time and GPU kernel execution
time to the overall training time, respectively. For memory copy, the ratio is less than 3% and 1.42% on
average in all models. Combing with its overlapping with GPU computing, the influence on the training
is trivial. For GPU kernel execution, the result is shown in Table 3. We can see that the percentage is
greater than 96% for CNN models no matter in TensorFlow or PyTorch. The value on BERT also exceeds



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:8

Table 3 Percentage of GPU computation time

Model TensorFlow (%) PyTorch (%)

ResNet-50 96.38 96.03

VGG16 99.64 99.34

InceptionV3 96.23 97.02

BERT 98.96 92.59

GNMT 85.91 96.55

DeepSpeech2 87.04 92.69

Tacotron2 54.31 66.62

92% because of that matrix multiplication dominates in the computation of transformer-based models,
while matrix multiplication is well-optimized operation in GPU. Thus we will focus mainly on CNN and
RNN models in the next. For GNMT and DeepSpeech2, the percentages are around 86% on TensorFlow,
and lager than 92% on PyTorch. The smallest ratio appears on Tacotron2 for two frameworks, which is
caused by the GPU kernel launch time. From the nvprof result, we observe that there are a lot of time
intervals between the GPU kernel executions along the timeline of Tacotron2’s decoder. This is because
Tacotron2 will enumerate the input at the dimension of time steps and launch the kernel to process each
of the time steps (76649 kernel launch in one step vs. 447 in VGG16). On the one hand, the data size
of a single time step is very small, which makes the kernel so tiny that the computation is completed
quickly. On the other hand, the number of these tiny kernels is enormous. These are the two reasons
why the GPU kernel execution time is far from enough to overlap the kernel launch time. Further, we
increase the default batch size (32) of Tacotron2 to 64. We find that the percentage of GPU computation
time increases from 54.31% to 78.2% in TensorFlow, and from 66.62% to 85.81% in PyTorch.

Insight 1. In the single-GPU training, the training process is dominated by GPU processing (kernel
launch+kernel execution+memory copy). Memory copy shows nearly no effect on the training per-
formance. For CNNs and transformer-based models, the training time is mainly consumed by kernel
execution. For RNNs, the kernel launch occupies a small part of training owing to the long kernel launch
stage, which cannot be overlapped by kernel execution. Therefore, optimizing the kernel algorithm and
reducing the execution time of important kernels can improve the training performance effectively. How
to fuse more kernels and reduce the overhead of kernel launch is also very important for RNNs.

4.4 Kernel implementation has big impact

4.4.1 Convolution layer

The convolution layer is the key layer in the field of computer vision. It is also the most time-consuming
in CNN owing to the time complexity of convolution. Therefore, the execution time of convolution layers
plays a key part in the overall training time of CNN.

There are seven implementations of the convolution algorithms totally in cuDNN that can be catego-
rized into three kinds: GEMM-based, FFT-based, and Winograd’s minimal filtering algorithms [41]. The
GEMM transforms the input into a large matrix and another matrix is generated with the elements of each
filter. Then, the result can be got by the matrix multiplication of both matrices. There are two variants
of the basic GEMM: GEMM-impl and GEMM-impl-precomp, where the transformation is performed on
the fly by the kernel that computes the GEMM. There is a tiled version of FFT, where the inputs are split
into smaller tiles, and a fused version Winograd, where the transformations of inputs, filters, and outputs
are included in the kernel that computes the multiplication. There is not the best algorithm for all con-
volution layers because of two reasons: (1) different input sizes prefer different convolution algorithms;
(2) some algorithms need extra memory space to store the auxiliary variables (faster convolution algo-
rithms need more space generally). Hence the algorithm with the best performance may not be available
owing to the limit of GPU memory. Because of this, both TensorFlow and PyTorch allow to select the
fastest algorithm for a specific input size in all available convolution algorithms. PyTorch implements this
by calling a specific cuDNN API (cudnnFindConvolutionForwardAlgorithmEx11)), which attempts all
available cuDNN algorithms for forwarding convolution layer using the GPU memory allocated by users,
and outputs the performance metrics. TensorFlow achieves this through running all available convolution
algorithms at runtime and selecting the fastest one among them. Moreover, both frameworks cache the

11) It is for the forward convolution algorithm. The backward convolution also has the similar API.



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:9

90.0

107.5

125.0

142.5

160.0

177.5

195.0

212.5

230.0

8 16 32 64 128

T
ra

in
in

g
 s

p
ee

d
 (

im
ag

es
/s

)

Batch size

TF-profiling

TF-fixed

PT-profiling

PT-fixed

PT-ori

40

55

70

85

100

115

130

145

160

8 16 32 64 128

T
ra

in
in

g
 s

p
ee

d
 (

im
ag

es
/s

)

Batch size

70

80

90

100

110

120

130

140

150

8 16 32 64 128

T
ra

in
in

g
 s

p
ee

d
 (

im
ag

es
/s

)

Batch size

(a)

(c)

(b)

Figure 1 Training speed for (a) ResNet-50, (b) VGG16, (c) InceptionV3.

best convolution algorithm for this input size, and use the best one when meeting convolution of this
input size again. This feature is denoted as profiling mode. Also, this feature can be disabled by the user
in both TensorFlow and PyTorch through setting the environment variable and option, respectively. In
this situation, the default convolution algorithm12) will be chosen, which we call fixed mode. These two
modes in TensorFlow and PyTorch are denoted by TF-profiling, TF-fixed, PT-profiling, and PT-fixed in
the rest of the paper. The original TensorFlow also uses the profiling mode. In addition, PyTorch uses
cudnnGetConvolutionForwardAlgorithm v713) to select the algorithm by default, which uses a heuristic
approach to evaluate the performance of all algorithms, and thus consumes a trivial amount of time. We
denote this as PT-ori.

We first test the CNN models on these five settings to illustrate the effect of different convolution
algorithms and compare the performance between TensorFlow and PyTorch. We also conduct the ex-
periments with the batch size of 8 to 128 (8, 16, 32, 64, 128) to compare the results under different
memory pressure. The results of ResNet-50, VGG16, and InceptionV3 are shown in Figure 1(a) and (b).
For the convenience and clarity of comparison, we first look into the training speed between PT-ori and
PT-profiling. They are nearly the same in most cases except for VGG16 with the batch size of 128 on
which the speed of PT-ori is slightly faster than PT-profiling. This is because in the profiling mode, the
cached best algorithm is determined only by the input size. It does not consider different convolution
layers with the same input size. Their best algorithms could be different as the free GPU memory for
the workspace is different for them. However, this difference is still small. So, we will mainly focus on
the comparison of profiling mode and fixed mode in TensorFlow and PyTorch, which is listed below.

• Profiling mode vs. fixed mode. For TensorFlow, the training speed of profiling mode is 19.38%
faster than the fixed mode for ResNet-50 on average. The value is 19.63% for InceptionV3. For VGG16,
the profiling mode has the greatest performance improvement, which is over 102% with a batch size of
128. These results can be explained by the following two reasons: (1) the convolution layers account for
more in VGG16 compared to ResNet-50 and InceptionV3; (2) the kernel sizes of convolution layers are
big in VGG16, but small in ResNet-50 and InceptionV3, which means that the performance difference
is more prominent between the convolution algorithms with the lowest and highest performance. In

12) The default convolution algorithms usually consume little memory but have low performance. They are coded in the source

code of TensorFlow and PyTorch, and are the same in two frameworks.

13) The backward convolution also has the similar API.



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:10

Table 4 Training time of DeepSpeech2 and Tacotron2

Model PT-ori (s) PT-fixed (s)
PT-profiling (s)

1st epoch 2nd epoch

DeepSpeech2 2149.15 3081.88 2816.39 1940.25

Tacotron2 1412.98 1433.56 1520.39 1331.52

PyTorch, the result is similar.

• TF-fixed vs. PT-fixed. The training speeds of TF-fixed and PT-fixed are very close (the difference
is 3.7% on average). This is because that the mainly GPU kernels are totally the same between TensorFlow
and PyTorch, and thus show similar training performance. It also support our viewpoint: GPU processing
dominates the training process.

• TF-profiling vs. PT-profiling. For the overall results, the difference in training speed between
TensorFlow and PyTorch is within 6% in ResNet-50 and InceptionV3. On VGG16, TensorFlow is faster
than PyTorch by 15% on average and by 21.5% maximum. Second, the performance advantage of
TensorFlow becomes more prominent when increasing the batch size in all three models. On the one
hand, this is because TensorFlow has a better memory management module than PyTorch owing to
the fact that TensorFlow holds the whole computation information which can free unnecessary memory
more timely. Therefore, when GPU memory pressure increases along with the batch size, TensorFlow can
spare more available memory to opt for faster convolution algorithms compared to PyTorch (in one of the
convolution layers in backpropagation of VGG16, PyTorch uses the default algorithms14), which consume
8.72 kB memory for filter algorithm and 75.63 kB for data algorithm, while TensorFlow uses faster
algorithms15), which consume 3530 MB memory), and therefore, show a better training performance. On
the other hand, recall that VGG16 has a larger convolution kernel size and hence its performance gap is
the biggest among these three models.

Insight 2. In CNN models, the training performance is similar between TensorFlow and PyTorch.
However, TensorFlow shows better training performance than PyTorch in larger batch size owing to its
better GPU memory management.

We also test Tacotron2 and DeepSpeech2 which also have convolution layers. The biggest difference
from the CNN models is that the input data size varies with iterations. Therefore, the profiling of
convolution algorithms will occur during the first epoch, which adds non-trivial overhead. Hence, we
show the performance of the first and second epoch separately in profiling mode. The result is shown in
Table 4. Here, we only show the result of PyTorch as the original PyTorch uses a heuristic convolution
algorithm choosing API that TensorFlow does not support. Besides, TensorFlow shows a similar result
on the profiling and fixed mode in our tests.

We can see that in the first epoch, DeepSpeech2 consumes less training time in PT-ori than in profiling
mode and fixed mode by 23.69% and 30.26%, respectively. For Tacotron2, the values are 7.06% and
1.44%. Owing to the power of profiling, which allows to choose the faster convolution algorithms, the
profiling mode exhibits the best training speed in the second epoch. For DeepSpeech2, it takes less time
than PT-ori and fixed mode by 9.72% and 37.04%, respectively. For Tacotron2, the difference narrows to
5.77% and 7.12%. The reason why Tacotron2 shows a smaller difference is mainly the dataset. When the
input data size is different across iterations, the profiling overhead will occur in every iteration. When the
input data size of subsequent iterations has appeared in a previous iteration, there is no profiling overhead,
which amortizes the overall profiling overhead in the first epoch. Thus the performance difference will be
smaller.

Insights 3. The convolution algorithm chosen in the models (usually RNN+CNN) with variable input
length is a little tricky. Because the profiling of convolution algorithms, i.e., cudnnFindConvolution-
ForwardAlgorithmEx11), will introduce non-trivial overhead in the first epoch, but deliver a better
performance in the following epoch. Therefore, when the end-users just want to try a neural net-
work (run a few steps), using the heuristic convolution algorithm choosing API is the best choice, i.e.,
cudnnGetConvolutionForwardAlgorithm v7 in the original PyTorch. By the way, TensorFlow should
also support this API. But when the end-users have determined the networks and need to train lots of
epochs, the profiling mode will be the best option.

14) CUDNN CONVOLUTION BWD FILTER ALGO 1 and CUDNN CONVOLUTION BWD DATA ALGO 1 for backward filter and data algorithms.

15) CUDNN CONVOLUTION BWD FILTER ALGO WINOGRAD NONFUSED and CUDNN CONVOLUTION BWD DATA ALGO WINOGRAD NONFUSED for backward

filter and data algorithms.



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:11

Table 5 Various LSTM implementations on TensorFlow and PyTorch

Model LC LBC cuDNNLSTM

DeepSpeech2 ✔ ✔ ✔

GNMT ✔ ✔ ✔

Tacotron2
Encoder ✔ ✔ ✔

Decoder ✔ ✔ ✗

 0

 0.2

 0.4

 0.6

 0.8

 1.0

DeepSpeech2 Tacotron2

N
o
rm

al
iz

ed
 s

p
ee

d
 (

st
ep

/s
)

LC LBC cuDNNLSTM

 0

 0.2

 0.4

 0.6

 0.8

 1.0

DeepSpeech2 Tacotron2

N
o
rm

al
iz

ed
 s

p
ee

d
 (

st
ep

/s
)

GNMT GNMT

Figure 2 Normalized performance of different LSTM implementations in (a) TensorFlow and (b) PyTorch.

4.4.2 LSTM layer

LSTM neural networks, which stand for long short-term memory, are a type of recurrent neural networks.
Simply put, LSTM networks have some internal contextual state cells that act as long-term or short-term
memory cells. The output of the LSTM network is modulated by the state of these cells. This is a
very important property when the prediction of the neural network needs to depend on the historical
context of inputs, rather than only on the very last input. Although various LSTM implementations had
been benchmarked [20], it only tests the basic LSTM layer which lacks analysis on the real-world neural
networks. In addition, some of the statements in [20] are out-of-date, such as “TensorFlow cuDNNLSTM
is not tested with variable length data as it does not support such input”, which is already fixed in the
new version of TensorFlow16). Therefore, we will test various LSTM implementations in the end-to-end
models with state-of-the-art features.

There are mainly three GPU LSTM implementations currently, which are listed as follows. We evaluate
these LSTM implementations on DeepSpeech2, GNMT, and Tacotron2. The availability of three LSTM
implementations in these three models is shown in Table 5. In summary, except that cuDNNLSTM is not
available in Tacotron2’s decoder, all other implementations are supported. This is because the LSTM
state of each time step needs to be processed separately in the decoder of Tacotron2 (irregular), while
cuDNNLSTM can only perform the calculation on the data of all time steps (regular) currently (the
latest version when we did the experiment).

• LSTMCell (LC): pure frameworks-based implementation, easy to modify. Loop over time is
tf.while loop in TensorFlow while Python For loop in PyTorch.

• LSTMBlockCell (LBC): optimized LSTM with a single operation per time-step. Loop over time is
tf.while loop in TensorFlow while Python For loop in PyTorch.

• cuDNNLSTM: cuDNN’s LSTM implementation.
We evaluate various LSTM implementations on these three models, and show the training speeds in

Figure 2(a) and (b). Note that the decoder of Tacotron2 cannot use cuDNNLST. Hence we use LBC
for Tacotron2 decoder when testing cuDNNLSTM. For DeepSpeech2, using cuDNNLSTM is 2.69× faster
than using LC on TensorFlow, and 4.14× faster on PyTorch. For GNMT, the speed difference is about
50% between cuDNNLSTM and LC on both TensorFlow and PyTorch. Various implementations of
LSTM in Tacotron2’s encoder have little effect on training speed. We can also see that the performance
improvement of LBC is within 10% compared with LC, except for on DeepSpeech2, which is 34%.

Generally, cuDNNLSTM is the best-optimized implementation. Users should use it whenever they can.
LBC shows little performance improvement compared to LC because it also needs to launch the kernel
in each time step, which is the same as LC. Thus the kernel launch overhead is still the bottleneck of the
performance.

16) Tensorflow pull requests 23588. https://github.com/tensorflow/tensorflow/pull/23588.

https://github.com/tensorflow/tensorflow/pull/23588


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:12

Insights 4. Among the LSTM implementations, cuDNNLSTM shows incomparable training perfor-
mance. So end-users should use cuDNNLSTM in their models whenever possible. However, the flexibility
of cuDNNLSTM is not compatible with its superior performance for now. For example, it does not offer
an interface for end-users to perform some complicated LSTM regularization, e.g., zoneout. Hence, for the
algorithm developers, it is necessary to continue improving the algorithm in both aspects of performance
and flexibility.

4.5 Forget about graph optimization

A big difference between TensorFlow and PyTorch is graph optimization. Common knowledge is that
declarative programming (e.g., TensorFlow) has better performance as it holds the entire computation
graph and can perform lots of optimizations to the graph. However, there are also voices claiming that
PyTorch has achieved better training speed than TensorFlow [6]. These two different views confuse
practitioners about how to choose between TensorFlow and PyTorch from the perspective of training
speed. Therefore, we investigate the effect of graph optimization on the training speed through a series
of experiments.

First, we will give a brief introduction to the graph optimization in TensorFlow and what it does. There
are 14 kinds of graph optimizations totally in current TensorFlow17). However, some of them are not
enabled by default, such as autoparallel optimization. Some can be done when there is no computation
graph, such as layout optimization, which is also available in PyTorch. So, we only care about the
optimizations which can only be performed when there is a computation graph before running, which is
listed below18).

• Pruning optimization. Pruning the nodes that have no effect on the output from the graph. It is
usually run first to reduce the size of the graph and speed up the processing in other optimizations.

• Constant folding. Inferring the value of tensors statically when possible by folding constant nodes
in the graph and materializing the result using constants.

• Arithmetic optimization. Simplifying the arithmetic operations by eliminating common subex-
pressions and simplifying arithmetic statements.

• Dependency optimization. Removing or rearranging control dependencies to shorten the critical
path for a model step or enable other optimizations; also removing the nodes that are effectively no-Ops
such as identity.

In the following, the graph optimizations are referred to the above four optimizations.

4.5.1 Overall performance without graph optimizations

First, we evaluate the training speed of the seven models by disabling the graph optimizations. The result
is shown in Figure 3. We can see that when disabling graph optimizations, the performance degradation
is less than 0.6% for CNNs; for GNMT and DeepSpeech2 the degradation is less than 2%; the value is
about 2.5% for BERT. The biggest performance loss is on Tacotron2, which is close to 15%.

Generally, we can see that the performance degradation by disabling graph optimizations is negligible
in most models except for Tacotron2. Next, we will find out what happens in the graph optimizations
and explain why the performance loss is larger in Tacotron2.

4.5.2 Digging into graph optimizations

The graph optimizations essentially reduce the number of computation nodes in a graph. For example,
pruning removes unnecessary nodes. Constant folding uses less constant nodes to replace constant nodes
in the graph. The arithmetic operation removes some common computation nodes. Therefore, we use the
number of reduced nodes to represent the effect of graph optimizations. The result is shown in Figure 4.
Note that constant folding will add some nodes (constant node), and therefore the sum could exceed
100%. We organize the results of graph optimizations according to the model architecture.

• CNN: graph optimizations reduce about 55% of the nodes, in which pruning reduces about 45%
nodes and arithmetic operation reduces roughly 5%.

• RNN: graph optimizations reduce over 70% of the nodes, in which pruning reduces over 50% and
arithmetic and dependency together reduce about 20%.

17) Specifically for TensorFlow v1.15.2.

18) TensorFlow graph optimization with Grappler. https://www.tensorflow.org/guide/graph optimization.

https://www.tensorflow.org/guide/graph_optimization


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:13

0.75

0.80

0.85

0.90

0.95

1.00

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce

VGG16

ResN
et-5

0

Inceptio
n V

3
BERT

GNMT

DeepSpeech2

Tacotro
n2

0

0.25

0.50

0.75

1.00

R
ed

u
ce

d
 n

o
d
es

 p
er

ce
n
ta

g
e

Model pruning Constant folding Arithmetic Dependency Final node

VGG16

ResN
et-5

0

Inceptio
n V

3
BERT

GNMT

DeepSpeech2

Tacotro
n2

Figure 3 Normalized performance without graph optimiza-

tions.

Figure 4 Reduced nodes percentage of each graph optimiza-

tion.

Table 6 Percentage of operations’ types

Model Expensive Ops (%) Cheap Ops (%) No Ops (%)

ResNet-50 0.0397 9.4766 90.4837

VGG16 0.173 11.9377 87.8893

InceptionV3 0.0255 10.4699 89.5046

BERT 0 8.7593 91.2407

GNMT 0.6309 12.8987 86.4704

DeepSpeech2 0.1421 13.6461 86.2118

Tacotron2 0.5241 20.6355 78.8404

• CNN+RNN: graph optimizations reduce over 85% of the nodes. Especially the value nearly reaches
90% for Tacotron2. The pruning reduces about 65% of the nodes.

• Transformer: graph optimizations reduce about 60% of the nodes, in which pruning reduces about
23% and arithmetic reduces about 27%.

Further, we classify these reduced nodes into three categories according to the calculation time of their
corresponding operations, which is listed below.

• Expensive operations: operations such as convolution calculation, matrix multiplication, fast fourier
transformation and RNN, which have complicated numerical calculations.

• Cheap operations: operations such as add, sub, multiplication, division, whose computation is very
fast on GPU.

• No operations: operations such as Const, Assign, Identity, Shape, which only perform value assign-
ment or variable initialization and do not perform any numerical calculation.

Then we count the types of the operations corresponding to the reduced nodes and calculate the
percentage. The result is shown in Table 6. The majority of the operations are no Ops which accounts
for over 90%, whose computation time can be totally ignored. As for the expensive Ops, they are less
than 1% in all models, and thus introduce trivial overhead to the overall runtime. Therefore, the graph
optimizations deliver little performance improvement in most cases.

For Tacotron2, we profile one step of its execution by enabling and disabling graph optimizations and
count the execution time of those reduced nodes. The execution time with/without graph optimizations
is 3.402820 s and 3.896510 s, respectively, in which the difference is 0.49369 s. The total execution time
of those reduced nodes is 0.508513 s, which is very close to the time difference. This result means this
difference is caused by the execution overhead of extra nodes, not by the scheduling overhead. This also
supports our first viewpoint: GPU time dominates the training process. We also found that most of
these reduced nodes are created at the pre-processing phase, which does not affect the core computation
of the models. Therefore, it does not introduce any problems in PyTorch, which is consistent with the
competitive performance of PyTorch in Tacotron2.

Insights 5. Graph optimization in TensorFlow shows trivial training performance speedup in most
models. This is because the graph optimization mainly reduces the nodes whose operations are very
cheap (even without any numerical computations) to compute or some initialization nodes. Therefore,
the advantages of graph optimization should not be considered from the perspective of training speed.



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:14

5 Limitation of this work and discussion

This work does not cover the multi-GPU and multi-node training as they need to introduce different
factors, such as inter-GPU bandwidth, inter-node bandwidth, that makes the training performance of a
specific model be tightly related to GPU models, communication bandwidth (including inter-device and
inter-node), parameter synchronization strategy, even CPU type [14, 42], which warrants another piece
of in-depth work. Although we will not make any conclusion in multi-GPU or multi-node environments
in the scope of this paper, we intend to prove that the insights presented in this paper still hold in the
distributed training scenario. Therefore, we benchmark the CNN models, an RNN model (GNMT), and a
transformer-based model (BERT) in multi-GPU environment and show the overall training performance,
which is listed in Table 7. We discuss the performance of distributed training in the following.

This work does not study the final training accuracy, inference speed of different deep learning frame-
works as it falls into another scope of deep learning. This work does not include some new features such as
PyTorch’s TorchScript19) and TensorFlow’s eager execution [29]. The former aims to improve the perfor-
mance and deployment through serialization in PyTorch while the latter enables imperative programming
in TensorFlow. These two features intend to bridge the gap between TensorFlow and PyTorch. But the
models need to be rewritten. Only a few models support these two features currently. So, we leave
these for future work. This work does not investigate the compilers in deep learning, e.g., TensorFlow
XLA20), TVM [43] and PyTorch GLOW [44]. Except for the official deep learning compiling tools for
each framework, there are a lot of research studies aiming to accelerate the deep learning procedure via
compiling optimizations. Recently, Rammer [45] optimizes the execution of DNN models by holistically
exploiting parallelism through inter- and intra- operator co-scheduling. TASO [46] proposes an automatic
graph substitutions approach to optimize the data-flow graph. AutoTVM [47], FlexTensor [48], Tensor
comprehension [49], and Halide [50] try to tune and generate efficient hardware-specific operator code.
Therefore, we leave the comparison of the compiling techniques between TensorFlow and PyTorch for
future work.

Distributed training discussion. There are two different methods to run distributed training,
i.e., data parallelism and model parallelism, in which data parallelism is the most popular approach as
model parallelism needs careful model partition and operator placement that is non-trivial and usually
costly [51]. Hence, we mainly focus on data parallelism. The experiment environment has two NUMA
CPUs connected via QPI. There are 4 NVIDIA V100 GPUs (32 GB GPU memory with NVlink) split
into two groups and 4 GPUs are connected as a ring. Except for the bi-directional bandwidth between
the second GPU and third GPU is ≈ 50 GB/s (1 NVLink connection), the left bi-directional bandwidth
between GPUs is ≈ 100 GB/s (2 NVLinks connection). The CPU and GPUs are connected by PCI-e
3.0×16 (16 GB/s theoretical bandwidth). The software environment is consistent with Section 4.

Need to note that the synchronization strategy needs to be unified in TensorFlow and PyTorch, and
then the training performance comparison is meaningful. There are two synchronization strategies in
data parallelism, i.e., all-reduce ana Parameter Server (PS). All-reduce aggregates every GPU’s gradients
in a collective manner before GPUs update their own parameters locally, while PS architecture consists
of workers and PS, in which workers push the gradients to PS and PS aggregates the gradients from
different workers and updates the parameters. In PyTorch, there are two API to support distributed
training, i.e., torch.nn.parallel.DistributedDataParallel and torch.nn.DataParallel. They all
parallelize the model by splitting the input across the specified devices by chunking in the batch dimen-
sion, and replicate the model on each device to handle a portion of the input. During the backward
propagation, gradients from each replica are summed into the original model. The difference is that
torch.nn.DataParallel is single-process multi-thread parallelism and naturally suffers from Python
GIL contentions while torch.nn.parallel.DistributedDataParallel uses multi-process parallelism
and hence there is no GIL contention across model replicas. We use the latter one (all-reduce) to run
distributed training as it is recommended by PyTorch official document. In TensorFlow, both PS and
all-reduce are supported in distributed training but with considerable code modification compared to
PyTorch. Here, CNN models use all-reduce but GNMT’s implementation in TensorFlow only supports
PS mode. The official BERT’s implementation in TensorFlow does not support multi-GPU, so we use a
third-party’s implementation21) which leverages Horovod [52] with NCCL as backend. For all experiment

19) TORCHSCRIPT. https://pytorch.org/docs/stable/jit.html.

20) XLA: Optimizing Compiler for Machine Learning. https://www.tensorflow.org/xla.

21) BERT’s multi-GPU mplementation with Horovod. https://github.com/lambdal/bert.

https://pytorch.org/docs/stable/jit.html
https://www.tensorflow.org/xla
https://github.com/lambdal/bert


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:15

Table 7 Multi-GPUs training speed and communication overhead

GPU number

Model

ResNet-50 VGG16 InceptionV3 GNMT BERT
(images/s) (images/s) (images/s) (steps/s) (steps/s)

Training

speed

TensorFlow

1 368.78 243.60 240.38 3.29 3.241

2 723.42 474.35 475.87 3.122 3.117
4 1440.03 963.91 956.92 2.731 3.031

PyTorch

1 344.918 225.813 236.533 3.125 3.08
2 657.027 431.794 – 2.89 2.91
4 1316.561 838.252 – 2.882 2.89

Communication

overhead

TensorFlow
2 1.917% 2.638% 1.017% 5.106% 3.838%
4 2.379% 1.077% 0.478% 16.991% 6.467%

PyTorch
2 4.756% 3.608% – 7.520% 5.519%
4 4.574% 6.737% – 7.782% 6.169%

in multi-GPU, the batch size in Table 1 is per GPU batch size which means the global batch size needs
to multiply by the number of GPUs.

Firstly, we can see that the training performance comparison between TensorFlow and PyTorch in
a single V100 GPU is basically aligned with the conclusion (BERT in TensorFlow is a bit faster than
PyTorch, but the difference is with 5%) in P100 GPU from Table 7. In a multi-GPU environment,
for CNN models, InceptionV3’s multi-GPU training speed is blank as its multi-GPU implementation
in PyTorch has bugs. The communication overhead is calculated by the following formula, in which
m step/s is the step/s of multi-GPU training speed and s step/s is the step/s of single-GPU:

communication overhead = 1−
m step/s

s step/s
.

It is obvious that the communication overheads in CNN models are all very low which means the models
are scaling well with more GPUs. The largest is 6.737% that is PyTorch’s VGG16 running on 4 GPUs.
It is because that VGG16 is the largest model in these three CNN models that makes the parameter
synchronization take more time compared to the other two models. For GNMT and BERT, they are
also scaling well using NCCL as backend whose communication overheads are less than 8%. The largest
communication overhead happens in GNMT of TensorFlow on 4 GPUs using PS mode. It results from
that PS mode transfers parameters and gradients using PCI-e lane between CPU and GPU which is far
lower than high bandwidth NVLinks between GPUs leveraged by NCCL. Thus the backward computation
is not enough to overlap the data transfer and parameter update.

In summary, we can see that when TensorFlow and PyTorch adopt the same parameter synchronization
strategy (all-reduce in this benchmark), the communication overheads are all very low across all models
in the benchmark. Furthermore, the communication overheads of the same models in TensorFlow and
PyTorch are also very close. That means the model computation part (i.e., the computation in single-
GPU) becomes the major different part in multi-GPU and multi-node environment. Then the discussion
falls back to the scope of this paper: training performance comparison between TensorFlow and PyTorch
in single-GPU environment. Therefore, the insights presented in this paper could still hold in a distributed
training scenario.

6 Related work

There is much research that focuses on benchmarking the deep learning workloads, but varies in the
target and granularity of benchmarking. In this section, we discuss the existing research according to its
benchmarking target.

Benchmark deep learning frameworks. There are two kinds of granularity to benchmark deep
learning frameworks: model and operation. The former tests the performance metrics of the entire model
while the latter tries to analyze it from the lower-level (such as matrix multiplication). DeepBench from
Baidu measures the number of operations that appear in models. In such low-level profiling, it is hard to
capture the characteristics of the entire neural network. Ai Matrix [9] evaluates at both two granularities.
TBD [8] focuses on the profiling training on GPUs and measures the characteristics, e.g., CPU and GPU
utilization and memory consumption. However, it only summarizes the experiment results and does not
explain the reasons behind the results. Thus it cannot provide general advice to end-users. MLPerf [7] and



Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:16

some other studies [6,10–12,53] benchmarked not only the throughput but also accuracy, while we focus
on the system-level metrics but leave the domain-specific metric (accuracy) for application practitioners
to explore. Specifically, Ref. [6] carried out their experiments in the CPU environment. Besides, Ref. [54]
tried to model the performance in distributed training on GPUs.

Benchmark heterogeneous hardware. Ref. [55] was a recent work that proposed a benchmark
methodology for analyzing deep learning and conducted the experiments on Intel CPU, Nvidia GPU,
and Google TPU. Ref. [56] evaluated deep learning tools in docker containers, while the work in [57]
was deployed on HPC architectures. Ref. [58] presented the performance analysis on both CPU- and
GPU-based deep learning training. Ref. [13] performed the evaluation on GPUs and FPGA, and showed
their characteristics. Ref. [59] focused on selecting the optimum models and frameworks for inference
at edge devices. Our work only tests the GPU at the moment as GPU is still the most prevalent and
well-developed deep learning training platform. We plan to extend our work to more hardware platforms,
such as TPU.

7 Conclusion

The ultimate goal of this paper is to help the end-users make an informed decision about how to choose
between the two most popular deep learning frameworks: TensorFlow and PyTorch, in the single-GPU
training. We evaluate the single-GPU training on TensorFlow and PyTorch systematically using seven
representative models. Through these comprehensive experiments, we provide insightful observations
and advice to both end-users and system developers. Firstly, we break down the single-GPU training
process to show that the training process is mainly consumed by GPU processing, which is mostly
the kernel execution time. Therefore, the running speed of the key layers plays a vital role in single-
GPU training. Then, we evaluate the performance of various models using different implementations
of key layers and present the trade-off between them, in order to shed light to the end-users about
choosing various implementations in reality. Finally, we evaluate the effect of the main difference between
TensorFlow and PyTorch, i.e., graph optimization, on the training performance. The conclusion is that
it should not be considered when making decisions between TensorFlow and PyTorch from the angle of
performance.

Acknowledgements This work was partly supported by National Key R&D Program of China (Grant No. 2017YFC0803700)

and National Natural Science Foundation of China (Grant No. 61772218). We thank Fan YANG, Ying CAO and Xiaosong MA for

their valuable comments.

References

1 Jouppi N P, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the
44th Annual International Symposium on Computer Architecture, Toronto, 2017. 1–12

2 Jia Y, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the
22nd ACM International Conference on Multimedia, 2014. 675–678

3 Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation, 2016. 265–283

4 Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch. In: Proceedings of the Autodiff Workshop on
NIPS, 2017

5 Seide F, Agarwal A. CNTK: Microsoft’s open-source deep-learning toolkit. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016. 2135–2135

6 Shi S, Wang Q, Xu P, et al. Benchmarking state-of-the-art deep learning software tools. In: Proceedings of the 7th Interna-
tional Conference on Cloud Computing and Big Data (CCBD), 2016. 99–104

7 Mattson P, Cheng C, Coleman C, et al. MLPerf training benchmark. In: Proceedings of the 3rd Conference on Systems and
Machine Learning (SysML’20), 2020

8 Zhu H, Akrout M, Zheng B, et al. TBD: benchmarking and analyzing deep neural network training. In: Proceedings of
International Symposium on Workload Characterization (IISWC 2018), 2018

9 Zhang W, Wei W, Xu L, et al. AI matrix: a deep learning benchmark for Alibaba data centers. 2019. ArXiv:1909.10562
10 Liu L, Wu Y, Wei W, et al. Benchmarking deep learning frameworks: design considerations, metrics and beyond.

In: Proceedings of 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), 2018. 1258–1269
11 Shatnawi A, Al-Bdour G, Al-Qurran R, et al. A comparative study of open source deep learning frameworks. In: Proceedings

of the 9th International Conference on Information and Communication Systems (ICICS), 2018. 72–77
12 Coleman C, Narayanan D, Kang D, et al. DAWNBench: an end-to-end deep learning benchmark and competition. Training,

2017, 100: 102
13 Karki A, Keshava C P, Shivakumar S M, et al. Detailed characterization of deep neural networks on GPUs and FPGAs.

In: Proceedings of the 12th Workshop on General Purpose Processing Using GPUs, 2019. 12–21
14 Jiang Y, Zhu Y, Lan C, et al. A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU

clusters. In: Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation, 2020. 463–479
15 Hashemi S H, Jyothi S A, Campbell R H. TicTac: accelerating distributed deep learning with communication scheduling.

2018. ArXiv:1803.03288
16 Jayarajan A, Wei J, Gibson G, et al. Priority-based parameter propagation for distributed DNN training. 2019. ArXiv:

1905.03960

https://arxiv.org/abs/1909.10562
https://arxiv.org/abs/1803.03288
https://arxiv.org/abs/1905.03960


Dai H L, et al. Sci China Inf Sci January 2022 Vol. 65 112103:17

17 Peng Y, Zhu Y, Chen Y, et al. A generic communication scheduler for distributed DNN training acceleration. In: Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019. 16–29

18 Wang G, Venkataraman S, Phanishayee A, et al. Blink: fast and generic collectives for distributed ML. 2019. ArXiv:1910.04940
19 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735–1780
20 Braun S. LSTM benchmarks for deep learning frameworks. 2018. ArXiv:1806.01818
21 Krueger D, Maharaj T, Kramár J, et al. Zoneout: regularizing RNNs by randomly preserving hidden activations. 2016.

ArXiv:1606.01305
22 Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of

Advances in Neural Information Processing Systems, 2012. 1097–1105
23 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015. 1–9
24 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 770–778
25 Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323: 533–536
26 Yu X, Loh N K, Miller W. A new acceleration technique for the backpropagation algorithm. In: Proceedings of IEEE

International Conference on Neural Networks, 1993. 1157–1161
27 Kingma D P, Ba J. ADAM: a method for stochastic optimization. 2014. ArXiv:1412.6980
28 Chen T, Li M, Li Y, et al. MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems.

2015. ArXiv:1512.01274
29 Agrawal A, Modi A N, Passos A, et al. TensorFlow eager: a multi-stage, Python-embedded DSL for machine learning.

In: Proceedings of the 2nd Conference on Systems and Machine Learning (SysML’19), 2019
30 Collobert R, Kavukcuoglu K, Farabet C. Torch7: a Matlab-like environment for machine learning. In: Proceedings of BigLearn,

NIPS workshop, 2011
31 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. ArXiv:1409.1556
32 Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016. 2818–2826
33 Amodei D, Ananthanarayanan S, Anubhai R, et al. DeepSpeech2: end-to-end speech recognition in English and Mandarin.

In: Proceedings of International Conference on Machine Learning, 2016. 173–182
34 Shen J, Pang R, Weiss R J, et al. Natural TTS synthesis by conditioning WaveNet on Mel spectrogram predictions.

In: Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. 4779–
4783

35 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Proceedings of Advances in Neural Information
Processing Systems, 2017. 5998–6008

36 Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: bridging the gap between human and machine
translation. 2016. ArXiv:1609.08144

37 Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding. 2018.
ArXiv:1810.04805

38 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2009. 248–255

39 Panayotov V, Chen G, Povey D, et al. Librispeech: an ASR corpus based on public domain audio books. In: Proceedings of
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. 5206–5210

40 Bahrampour S, Ramakrishnan N, Schott L, et al. Comparative study of deep learning software frameworks. 2015.
ArXiv:1511.06435

41 Lavin A, Gray S. Fast algorithms for convolutional neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016. 4013–4021

42 Xiao W, Han Z, Zhao H, et al. Scheduling CPU for GPU-based deep learning jobs. In: Proceedings of the ACM Symposium
on Cloud Computing, 2018. 503–503

43 Chen T, Moreau T, Jiang Z, et al. TVM: an automated end-to-end optimizing compiler for deep learning. In: Proceedings of
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), 2018. 578–594

44 Rotem N, Fix J, Abdulrasool S, et al. Glow: graph lowering compiler techniques for neural networks. 2018. ArXiv:1805.00907
45 Ma L, Xie Z, Yang Z, et al. Rammer: enabling holistic deep learning compiler optimizations with rTasks. In: Proceedings of

the 14th USENIX Symposium on Operating Systems Design and Implementation, 2020. 881–897
46 Jia Z, Padon O, Thomas J, et al. TASO: optimizing deep learning computation with automatic generation of graph substitu-

tions. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, 2019. 47–62
47 Chen T, Zheng L, Yan E, et al. Learning to optimize tensor programs. Adv Neural Inf Process Syst, 2018, 31: 3389–3400
48 Zheng S, Liang Y, Wang S, et al. Flextensor: an automatic schedule exploration and optimization framework for tensor

computation on heterogeneous system. In: Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020. 859–873

49 Vasilache N, Zinenko O, Theodoridis T, et al. Tensor comprehensions: framework-agnostic high-performance machine learning
abstractions. 2018. ArXiv:1802.04730

50 Ragan-Kelley J, Barnes C, Adams A, et al. Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. ACM SIGPLAN Not, 2013, 48: 519–530

51 Mirhoseini A, Pham H, Le Q V, et al. Device placement optimization with reinforcement learning. In: Proceedings of the
34th International Conference on Machine Learning, 2017. 70: 2430–2439

52 Sergeev A, Balso M D. Horovod: fast and easy distributed deep learning in TensorFlow. 2018. ArXiv:1802.05799
53 Wu Y, Cao W, Sahin S, et al. Experimental characterizations and analysis of deep learning frameworks. In: Proceedings of

IEEE International Conference on Big Data (Big Data), 2018. 372–377
54 Shi S, Wang Q, Chu X. Performance modeling and evaluation of distributed deep learning frameworks on GPUs. In: Pro-

ceedings of 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International
Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing
and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), 2018. 949–957

55 Wang Y E, Wei G Y, Brooks D. A systematic methodology for analysis of deep learning hardware and software platforms.
In: Proceedings of the 3rd Conference on Systems and Machine Learning (SysML’20), 2020

56 Xu P, Shi S, Chu X. Performance evaluation of deep learning tools in docker containers. In: Proceedings of the 3rd International
Conference on Big Data Computing and Communications (BIGCOM), 2017. 395–403

57 Shams S, Platania R, Lee K, et al. Evaluation of deep learning frameworks over different HPC architectures. In: Proceedings
of IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 2017. 1389–1396

58 Awan A A, Subramoni H, Panda D K. An in-depth performance characterization of CPU-and GPU-based DNN training on
modern architectures. In: Proceedings of the Machine Learning on HPC Environments, 2017. 1–8

59 Velasco-Montero D, Fernandez-Berni J, Carmona-Galan R, et al. Optimum selection of DNN model and framework for edge
inference. IEEE Access, 2018, 6: 51680–51692

https://arxiv.org/abs/1910.04940
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1806.01818
https://arxiv.org/abs/1606.01305
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1511.06435
https://arxiv.org/abs/1805.00907
https://arxiv.org/abs/1802.04730
https://doi.org/10.1145/2499370.2462176
https://arxiv.org/abs/1802.05799
https://doi.org/10.1109/ACCESS.2018.2869929

	Introduction
	Background
	DNN model and deep learning training
	Deep learning frameworks

	Experimental methods
	Workloads selection
	Computer vision
	Speech recognition
	Natural language processing

	Unify the implementations between TensorFlow and PyTorch
	Model structure
	Hyper parameters

	Obtaining accurate training speed
	CNNs
	RNNs & BERT


	Evaluation
	Experimental setup
	Overall training performance comparison
	GPU processing dominates the training process
	Kernel implementation has big impact
	Convolution layer
	LSTM layer

	Forget about graph optimization
	Overall performance without graph optimizations
	Digging into graph optimizations


	Limitation of this work and discussion
	Related work
	Conclusion

