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Abstract The growing popularity of intelligent manufacturing is driven by deterministic transmission

demands of applications in industrial cyber-physical systems (ICPS). However, the ossified shortages of in-

dustrial wireless communication such as diverse quality of service (QoS) and complex signaling processes

incur a severe long tail of transmission delay distribution. As a solution, the 5th generation (5G) wire-

less communication technology provides ultra-reliable and low-latency communication (URLLC) for industry

scenarios. Moreover, the newly proposed time-sensitive networking (TSN) standards guarantee the trans-

mission determinacy by gate mechanism. In this paper, we propose a heterogeneous time-sensitive network

(HTSN) co-designed by 5G and TSN. We first develop a predictive multi-priority wireless scheduling mecha-

nism based on semi-persistent scheduling (SPS) to reduce signaling delay by reserving resources in advance.

Then we propose an adaptive data injection mechanism for TSN based on per-stream filtering and policing

(PSFP), which dynamically adjusts the priority of data for queue injection in TSN. To further reduce the

long tail of delay, we employ a risk-sensitive learning method to improve the worst-case delay. Simulations

on a hot rolling production scenario demonstrate that the proposed mechanisms under HTSN achieve great

performance in terms of integrated delay and resource utilization.
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1 Introduction

With the promotion of the fourth industrial revolution (also known as industry 4.0), manufacturing is
converted from traditional industrial automation to intelligent manufacturing, where the latter integrates
a huge amount of devices that are embedded and networked together in industrial cyber-physical systems
(ICPS) [1]. To improve the manufacturing performance of ICPS, such as real-time monitoring and
control, deterministic communication is imperative from the industry field to the data center in order to
provide online control for the control system. In particular, the automatic control system has a stringent
timeliness request, where violating a deadline may severely damage the control quality and even result in
serious economic and safety problems. However, the diversity of CPS applications makes it intractable
to meet their quality-of-service (QoS) demands timely [2].

As a new generation of wireless communication, the 5th generation (5G) wireless communication
technology is expected to expand industrial informatics and automation into much broader contexts [3].
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Among several typical usage scenarios of 5G, ultra-reliable and low latency communication (URLLC)
has the characteristics of high reliability up to 99.9999% and low delay down to millisecond [4], which is
appropriate for intelligent manufacturing, smart grid, and other automatic control scenarios that require
extremely high reliability as well as ultra-low latency. Besides, massive machine type communication
(mMTC) is another target scenario for 5G, which is designed for massive data monitoring and collection
in ICPS. Unfortunately, there are three main challenges to apply 5G technology to the ICPS. (1) Due to
the complex signaling process of the dynamic access mechanism, the conventional cellular network fails
to guarantee the strict timelines of industrial automation. (2) The ICPS have many characteristics such
as the complex communication environment, limited radio resources, and severe interference, which lead
to the long tail effect of the delay distribution. (3) Data’s QoS requirements are diverse and the dynamic
burst data always carry safety information, which make it intractable to deliver data on demand.

Contrary to the 5G technology, time-sensitive networking (TSN) standards ensure the determinacy and
reliability of its innovative mechanisms such as gate control list (GCL) and time-aware shaper (TAS),
which are suitable for URLLC scenarios. Moreover, TSN gateways can deliver data in a guaranteed time
window with bounded latency, small jitter, and extremely low data loss [5]. However, TSN is designed
for standard ethernet, which has the inherent shortcomings of wired transmission, such as the limited
coverage, the higher cost of maintenance, and the complexity of installation.

Example 1. Taking the hot rolling process as an example, it roughly includes five steps: heating,
milling, colling, coiling and delivering. Sensors are randomly distributed among the whole rolling process,
fixed large equipment (such as the furnace, the charge machine, the down coiler) and flexible mobile
devices (such as automated guided vehicles, AGV) work together, and staffs operate in order. If the
periodic vibration data are not timely delivered via 5G due to the severe industrial electromagnetic
interference, the thickness of the slab will not be uniform since the mill cannot control it without the
feedback data. Moreover, it is unnecessary for the furnace and other fixed equipment to communicate
with others via 5G as sensors need to be charged frequently. 5G network is more suitable for mobile
devices. In addition, as the main communication mode in the current industry, the industrial ethernet is
compatible with TSN, while it may incur a high upgrade cost to completely use 5G.

Therefore, it is inevitable to propose a more flexible and deterministic transmission architecture to
meet the strict requirements of intelligent manufacturing via 5G and TSN. To address this problem, we
propose a heterogeneous time-sensitive network (HTSN), a heterogeneous architecture integrating 5G
and TSN. The contributions of this paper are summarized as follows.

(1) HTSN: a heterogeneous 5G-TSN integrated architecture. To provide flexible and de-
terministic transmission, we propose a heterogeneous architecture HTSN, which flexibly guides data to
access the TSN gateway via the 5G network and forwards deterministically within the TSN network.
This architecture has both advantages of 5G and TSN and can deliver data timely after the adjustment
in 5G and TSN, respectively.

(2) Predictive multi-priority wireless scheduling mechanism. Considering the limited resources
of ICPS, we design a preemption-based predictive multi-priority wireless scheduling mechanism on the
basis of semi-persistent scheduling (SPS). In particular, limited resources are reserved for sensors before-
hand according to their triggering correlations. Thus, the handshaking delay is reduced and the resource
utilization is improved.

(3) Adaptive data injection mechanism from 5G to TSN. To deal with the interference of
the industrial wireless environment, we propose an adaptive data injection mechanism based on the per-
stream filtering and policing (PSFP) mechanism of TSN to offset the jitter caused by the 5G network.
The relationship between the priority of queues and the transmission delay through TSN is given to
adjust the priority of data when they are injected into the TSN network.

(4) Risk-sensitive learning strategy for wireless scheduling and data injection. In consider-
ation of the long tail of the transmission delay, a risk-sensitive utility function is proposed, which consists
of the expectation, variance, and third-order central moment of the total delay. Leveraging reinforcement
learning to adjust the number of reserved resource blocks (RB) and the TSN injection queue, the delay
distribution is more centralized with a shorter tail. Thus, the diverse QoS requirements of data are
satisfied and the centralized delay distribution brings a more reliable transmission.

The remainder of this paper is organized as follows. In Section 2, we introduce the related work of the
heterogeneous network and real-time scheduling, and then we give the overview of our HTSN in Section 3.
In Section 4, we introduce the system model and formulate the optimization objective. Then we present
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the risk-sensitive learning strategy and simulation results in Sections 5 and 6, respectively. Finally, this
paper is concluded in Section 7.

2 Related work

The smart factory has received increasing attention for its strict communication demand of lower latency
and higher reliability. The accompanying problem is how to improve the transmission determinacy of
end-to-end (E2E) delay from the industry field to the data center under our HTSN, which brings two
main issues to focus on: the deterministic transmission via a heterogeneous network and the low access
delay of the wireless network. Therefore, the related work is concluded in two aspects as mentioned
above.

2.1 Heterogeneous network architecture

2.1.1 Wireless/wired hybrid network

In recent years, the combination of wireless and wired networks has attracted significant attention [6–9].
The authors in [6, 7] concentrated on using software-defined networking (SDN) to provide centralized
control of the wireless/wired network. Ref. [6] proposed a network architecture where wireless and wired
transmissions are used in parallel to make up for the shortcomings of the other one. Ref. [7] proposed a
multi-path transmission mechanism under the architecture from wired to wireless to promote the video’s
transmission performance. Except for SDN, Ref. [8] proposed a protocol to support multimedia data in
hybrid wireless/wired networks, which efficiently utilizes the wireless link with coexisting TCP flows and
can provide satisfactory QoS for delay-sensitive multimedia applications. As for the industry, Ref. [9]
pointed out that since current wireless networks are not suitable to fulfill the applications’ requirements,
hybrid wired-wireless networks have to be developed in order to support the implementation of ICPS.
However, these studies only focus on the hybrid transmission based on the traditional TCP/IP network
while the coming 5G and TSN are more suitable for industrial communication.

2.1.2 5G-TSN integrated network

The TSN industry white paper recently points out that the URLLC scenario of 5G is the key to realizing
the industrial internet. How to deeply combine 5G and TSN is the research hotspot. For this issue,
Ericsson proposes a 5G-TSN integration conception in [5], where the SDN controller manages the whole
network, and TSN protocols are applied in 5G users to guarantee strict E2E delay demands. Furthermore,
Ericsson thinks that the integration of URLLC in the manufacturing process has great potential to
accelerate the transformation of the manufacturing industry [10]. Nevertheless, these combinations of 5G
and TSN are only preliminary ideas that still have a long way to be implemented.

2.2 Real-time scheduling of wireless communications

2.2.1 Risk-sensitive transmission

As stated in Section 1, the risk is a notion in financial mathematics [11], which we use to measure the
risk of transmission delay. For wireless communication, the risk is equivalent to the loss of valuable
information due to the instability and randomness of wireless transmission. For example, the quality
of the stochastic channel may cause a variation of latency, which will incur emergency information lost
when the variation is higher [12]. What is more, some fine-grained characteristics of delay in queueing
networks, such as the delay distribution and probability boundary (the tail of delay), are critical while
most studies only care about the average delay rather than the worst delay [13]. In existing studies,
Refs. [14, 15] studied URLLC and low-latency communication to evaluate the performance under the
influence of data dispersion and network density. They all focus on maximizing the average delay of
network throughput or minimizing the average latency without providing any guarantee of the higher
moment such as variance, skewness, kurtosis. Refs. [16,17] took the mean and variance of delay account
to capture the tail of delay and optimize the bandwidth and transmission power without considering
frequency diversity. To maximize the throughput of eMBB data, Ref. [18] took burst URLLC data into
account and assumed it is a Rayleigh distribution, while the burst data are actually dynamic sporadic.
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2.2.2 Semi-persistent scheduling

Due to the complex “scheduling request-scheduling grant (SR-SG)” signaling mechanism, the conventional
dynamic access scheme of the cellular network cannot satisfy the strict delay requirements [19]. To this
end, a fast uplink access scheme based on SPS is proposed in LTE Release 13 [20]. Thus the uplink
resources are assigned in advance to reduce the “SR-SG” overhead, which is suitable for machine-type
communications (MTC) in industrial automation [21]. However, SPS is designed for VoIP originally,
the transmission of which is fixed and known, while the QoS of MTC devices varies, and the scheduling
request is time-varying and even dynamic sporadic [22]. For this, Ref. [23] proposed an adaptive SPS
scheme to adjust the resources in the next transmission by buffer report. Moreover, to make further use
of unused resources, other devices can be assigned partial resources in a semi-persistent way based on a
device-to-device (D2D) manner, which can lead to extra latency [24].

2.2.3 Multi-priority wireless transmission

In industrial wireless networks (IWNs), the priority of data can be established according to the re-
quirements of applications [25]. Thus the essential requirement of IWNs is to support the transmission
of mixed-priority data that have different demands of latency and reliability [26, 27]. For example, as
mentioned in [28], there are four different types of information in the industry: the safety/emergency
information which requires the highest reliability and the lowest latency, the regulate/monitor control
information which possesses the lenient requirements, the open-loop control information which allows
minute-level delay, and the monitoring information which has no requirements. To deal with this prob-
lem, Ref. [29] proposed a time division multiple access (TDMA)-based multichannel superframe strategy
to keep the superiority of each priority with full radio channel reuse while the strategy is implemented for
cluster-based IWN without considering burst data. Similarly, a multi-priority scheme named p-persistent
is proposed in [30] based on carrier sense multiple access (CSMA), which guarantees the transmission of
high priority at the expense of longer delay of low priority data and still does not take burst data into
account.

In conclusion, although optimizing wireless transmission has been well studied, it is still a big challenge
to apply it to industrial automation. Moreover, the integration of 5G and TSN is a promising trend for
intelligent manufacturing.

3 Overview of HTSN

As illustrated in Figure 1, the architecture of HTSN consists of two coupling stages: the 5G network and
the TSN network. The 5G network is composed by a set of S = (s1, s2, . . . , s|S|) sensors, communication
nodes and controllers, etc. Different sensors collect different types of data. The TSN consists of a set of
TSN gateways which also work as 5G base stations (BSs). The BSs are in charge of the assignment of
the RBs R = (r1, r2, . . . , r|R|), where one RB denotes a series of time-frequency domain radio resource
blocks and is sufficient to transmit most of the data collected by sensors. RB’s corresponding time
period, denoted by subslot, is the minimum non-divisible time unit in 5G. The frequency band of one RB
represents a channel, which is flat fading and homogeneous. In more detail, the time-frequency resources
of one RB mean that we can use the frequency band for a period of time (referred to as the channel
and the subslot mentioned before). We divide the RB pool into three parts: predictive reserved RBs,
RBs for signal transmission, and RBs for dynamic access. The industrial field data from different sensors
(temperature sensors, vibration sensors) are transmitted through shared RBs to TSN gateways, and then
are sent to the remote data center via wired TSN.

Due to the diverse QoS requirements of field data, it is divided into three types. (1) Non-scheduled
(NS) data, which is sporadically triggered by the emergency event and has the highest priority. (2) Time-
critical (TC) data, which is the typical type of data in industrial automation and the amount of which is
much larger than that of NS data. (3) Best-effort (BE) data, which has the lowest priority and follows the
best-effort forwarding rules. In industry, such as a hot rolling production process, data are transmitted
periodically, so we only consider the transmission in one time period, denoted by transmission time
interval (TTI), which consists of 5G and TSN parts. The whole cycle of industrial automation can
be regarded as the accumulation of TTIs. In each TTI of 5G, we first select the nodes that are most
likely to trigger, and then we assign the TC data collected by these nodes on predictive reserved RBs



Zhang Y J, et al. Sci China Inf Sci January 2022 Vol. 65 110204:5

Multi-priority

queue injection

Reserved RBs

Dynamic traffic

Signal channel

Reserved RBs

Dynamic traffic

Signal channel

Influence 5G 

parameter

as prior 

knowledge

in the next 

time slot

Influence TSN 

deadline in the 

current time slot

Preemption transmission

Predictive static reservation

(Semi-persistant scheduling, SPS)

Field

data

Field

data

F
re

q
u
en

cy

Time

F
re

q
u
en

cy

Time

TAS control

5G radio resource 

reservation 

TSN network

5G network with shared radio resource 

Field

data

Figure 1 (Color online) The architecture of HTSN.

based on the SPS technique to omit handshaking (signaling) delay. The residual TC data and BE data
are served on dynamic RBs by the conventional dynamic access procedure orderly, which consists of
handshaking in signaling procedure of transmission process. The difference between predictive reserved
RBs and dynamic RBs is that the reserved RBs are assigned to sensors in advance without explicit SR-SG
signaling procedure. Considering the highest priority and the sporadically triggered feature of NS data,
we set a fixed reserved RB at each subslot for possible NS data. To improve the utilization of RBs, the
fixed reserved RBs can be used by TC data and BE data with no NS data arriving. And NS data can
preempt any data as soon as they arrive. Note that the priority of NS data is the same as that of TC
data after it is embedded in the 5G network.

Based on the PSFP mechanism in the IEEE 802.1Qci protocol, TSN gateways assign different gate
IDs to data according to their transmission delay in 5G and the total delay demand. Data arrived at the
gateway are injected into the gateway’s sending queue that matches its gate ID assigned before. Thus,
data from the 5G network are scheduled differentially in the TSN to meet their diverse QoS requirements
and achieve time-sensitive transmission under HTSN.

Specifically, the delay of the TC data (including arrived NS data) across 5G network and TSN network
in TTI t, denoted by T5G(t) and TTSN(t), respectively, is coupled. Note that the E2E delay of TC data
from the industrial field to the remote data center can be calculated as TE2E(t) = T5G(t) + TTSN(t). In
each TTI, the total amount of RBs is fixed, so that the larger amount of predictivel reserved RBs |Rr(t)|
in TTI t, the smaller the number of RBs for dynamic access. Note that |Rr(t)| is much smaller than the
number of sensors in field (i.e., |Rr(t)| ≪ |S|). If T5G(t) of TC data is larger than excepted, it should be
injected into a high priority queue Q(t) of TSN gateways to offset the time deviation caused by 5G stage.
Otherwise, data that have low 5G delay can be injected into low priority TSN queue to reserve resources
for other data. Here, we aim to minimize the E2E delay of TC data, so it is necessary to consider both
the T5G(t) and the TTSN(t) simultaneously.

Example 2. We take the rolling production process as an illustration. As shown in Figure 1, the 5G BS
is installed in the TSN gateway as a local control center with learning ability. At the beginning of each
TTI, the BS decides the number of reserved RBs according to the history data (the accumulated TE2E(t)).
Then sensors correlated with the sensors that activated before are assigned to predictive reserved RBs and



Zhang Y J, et al. Sci China Inf Sci January 2022 Vol. 65 110204:6

Transmission 

time interval

Subslot

Time

F
re

q
u
en

cy

Time critical traffic

Best effort traffic

Reserved RBs

Fixed reserved RBs

Non-scheduled traffic

Arrived non-scheduled traffic

Signaling channel

Figure 2 (Color online) The embedment of multi-priority data in 5G network.

execute the signaling procedure in advance. After that, the residual sensors dynamically access BSs with
handshaking delay, and thus 5G delay T5G(t) can be calculated according to the transmission state in
5G. Based on T5G(t) and the QoS requirement of data, the BS decides the gate ID of the TSN gateway’s
queue that data will inject into.

4 System model

4.1 Multi-priority transmission model based on SPS

As discussed in Section 3, there are three issues of the 5G network: (1) predictive assign sensors that
are the most correlated, (2) embed sensors obeying their diverse QoS requirements, and (3) preemption
of TC data when NS data arrive. To this end, a preemption-based predictive multi-priority scheduling
mechanism is proposed in this subsection. The predictive sensor selection policy will be expounded in
Subsection 5.1 later.

As mentioned before, in intelligent manufacturing, a massive amount of data with diverse QoS require-
ments are generating all the time, which should be served on their time demand. However, the complex
uplink “SR-SG” signaling process brings extra delay for handshaking. As a solution, reserving RBs to
correlated sensors in advance without a signaling procedure is a suitable way to reduce transmission time.
Even so, the urgent and critical data may still have an additional queuing delay due to the shortage of
time-frequency radio resources in the factory. To this end, a preemption mechanism is proposed in this
paper, which permits NS data to preempt TC data and BE data in order to realize no-wait transmission
as soon as they arrive.

According to the QoS demands of data, we split radio resources into four parts in time order: predictive
reserved RBsRr(Rr ⊂ R, referred to as reservation area), RBs for signaling transmission, RBs to transmit
TC data dynamically, RBs to transmit BE data dynamically, as shown in Figure 2. Taking NS data that
carry safety information into account, we set one fixed reserved RB dedicated to NS data at each subslot.
There comes a problem: what will happen if the NS data arrive while the fixed reserved RB has already
been allocated to the other data? That should be discussed according to whether the assigned sensor is
triggered in Table 1, where rbrt,i(t) denotes fixed reserved RB at the i-th subslot of TTI t, si(t) denotes the

sensor assigned to rbrt,i(t), ϕ(t) =
∑|Rr(t)|/|C|

i=1 ϕi denotes the number of fixed reserved RBs in reservation

area, to which the sensors assigned are triggered, ζ(t) =
∑|Rr(t)|/|C|

i=1 ζi denotes the number of arrived

NS data in reservation area, and γ(t) =
∑|Rr(t)|/|C|

i=1 γi denotes the number of fixed reserved RBs that is
preempted by NS data while sensors assigned to them are triggered as well. Note that C = {c1, c2, c3, . . .}
is the set of channels and the number of channels is |C|.

Therefore, the number of RBs whose sensors are neither triggered nor preempted in the reservation
area can be

|Rr(t)| − (|Se(t)|+ ζ(t) − γ(t)) , (1)
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Table 1 The condition of preemption and triggering on fixed reserved RBs

γi = ζiϕi 1 0

ζi rbrt,i(t) is preempted rbrt,i(t) is not preempted

ϕi si(t) is triggered si(t) is not triggered
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Figure 3 The process of multi-priority data transmission with preemption considered.

where |Se(t)| is the number of the TC data that embedded in the reservation area. Thus the total number
of high priority sensors at TTI t, including TC data and embedded NS data, is given by

|Sh(t)| = |Rr(t)| − (|Rr(t)| − (|Se(t)|+ ζ(t) − γ(t))) + |Sc(t)|+ |Sb(t)| − ζ(t)

= |Se(t)| + |Sc(t)|+ |Sb(t)|+ ϕ(t)− γ(t),
(2)

where |Sh(t)| is the total number of high priority sensors (TC data and embedded NS data) scheduled
at TTI t, |Sc(t)| and |Sb(t)| are the number of sensors generating TC data for dynamic access and the
number of sensors generating NS data, respectively.

Ignoring the preemption of NS data, sensors pre-allocated to reserved RBs are scheduled firstly, followed
by dynamic access sensors with extra signaling delay, and the BE data are scheduled in the end if there
are any resources left. The whole transmission process is shown in Figure 3. It is worth mentioning that
we here only focus on the delay of TC data, which is the time difference between the last served TC data
and the beginning of the current TTI. The 5G delay can be calculated as follows:

T5G(t) =

⌈

|Rr(t)|+ (|Sc(t)|+ |Sb(t)| − (ζ(t) − γ(t)))(1 + δ)

|C|

⌉

× TRB, (3)

where TRB is the time duration corresponding to one RB, δ is the proportion of signaling in the overall
transmission, and ⌈∗⌉ represents the smallest integer which ∗ is less than or equal to. It can be seen from
Figure 2 that if the last TC sensor is left in the last column alone, the 5G delay still needs to be extended
for one TRB.

4.2 Data injection model of TSN gateways

As mentioned in Section 3, there are several sending queues in each port of TSN gateways, which have
different transmission priorities. The coordination of TAS and GCL can make sure the data forwarded
in TSN are deterministically delivered within their time demand while keeping the priority.

The PSFP mechanism proposed by IEEE 802.1Qci points out that each piece of data arrived owns a
priority number, named internal priority values (IPV), which is related to its QoS demands and serves
as a reference to transmit data heterogeneously in TSN. In detail, every piece of data will be assigned a
gate ID to match its IPV number, where each gate ID represents a TSN sending queue, so the data with
different IPV will be injected into different TSN queues. It can be seen that the key to deciding which
queue to inject is the value of IPV, so we propose a data injection mechanism of TSN gateways based
on IPV to offset the time deviation, such as jitters, caused by the 5G network. Thus, the TSN delay is
adjusted according to the 5G network delay. Note that the data with a lower IPV number has higher
priority.

Outlined in Figure 4, the data from the 5G network will be firstly gathered into a frame pool, where
data generated within a TTI are classified into different priorities (referred to as IPV numbers) according
to their 5G delay, and then injected into different TSN queues dynamically.
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First, we divide the forwarding delay of TC data via TSN into x parts:

∆ =
Tmax
TSN − Tmin

TSN

x
, x = 1, 2, . . . , (4)

where Tmax
TSN and Tmin

TSN denote the maximum and the minimum forwarding delay through TSN, respec-
tively, and x is the number of queues of a TSN port, which is usually eight.

Thus we can get the forwarding deadline of each queue as follows:

Λ (Q(t)) = Tmin
TSN +Q(t)×∆, Q(t) = 1, 2, . . . , x, (5)

where Q(t) is the gate ID of TSN queues, which is related to the IPV number of the arriving data
from 5G at TTI t. In other words, the transmission threshold of the queue Q(t) can be calculated by
(Tmin

TSN + (Q(t)− 1)×∆, Tmin
TSN +Q(t)×∆], which represents the scheduling capacity of TSN queue Q(t)

and means that it can afford the TC data of which the deadline within Q(t)’s capacity. Therefore, we
get the forwarding deadline function of Q(t), which can be used to calculate the delay of TSN and get
the number of Q(t) in reverse.

The TSN deadline with different queues is given by

TTSN(t) = H

⌈

|Sh(t)| ×D × Λ (Q(t))

θlowTcyc

⌉

Tcyc, (6)

where |Sh(t)| has been given in Subsection 4.1, H is the number of hops within TSN with fixed starting
node and terminal, D is the fixed amount of data that one RB transmits, Tcyc is the forwarding cycle of
TSN gateways, and θlow is the lowest data rate of TSN.

Based on the TSN deadline we get above, the value of Q(t) is obtained by Λ (Q(t)) as follows:

Q(t) = arg min
16Q(t)6x

(TTSN(t)− (Tddl(t)− T5G(t))) , (7)

where Tddl(t) is the delay demand of TC data arrived at TTI t, and T5G(t) is the transmission delay
through previous 5G network.

Thus the entire transmission delay under HTSN at TTI t is given by

TE2E (T5G(t), TTSN(t)) = T5G(t) + TTSN (Q(t),F (T5G(t))) . (8)

Example 3. Obviously, the delay of 5G network T5G(t − 1) and the delay of TSN TTSN(t − 1) are
coupling and interact with each other as shown in Figure 5. In particular, we first take the cumulative
transmission delay

∑t−2
m=1 TE2E(m) as prior information to obtain the number of reserved RBs Rr(t− 1)

at TTI t − 1. Then according to the 5G delay calculated by Rr(t − 1) and the coupling relationship
between 5G delay and TSN delay, we can get the IPV number of TC data based on the data injection
mechanism above. Finally, on the basis of the newly got T5G(t−1) and TTSN(t−1), we can get the entire
transmission delay TE2E(t − 1) under HTSN at TTI t− 1, whereby it can be added into the cumulative

transmission delay to get
∑t−1

m=1 TE2E(m) and become the prior information of TC data in TTI t.
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Figure 5 The operation process of TC data between TTIs under HTSN.

4.3 Risk-sensitive utility formulation

Considering the unreliability caused by the long tail of the 5G network delay, the higher-order quantity
of wireless delay should be involved in the optimal problem as mentioned in Section 1. In this regard, we
apply entropic risk measure 1

ρ ln (E [exp (ρT )]) and formulate a risk-sensitive minimization utility function

of the entire transmission delay under HTSN as follows [13]:

P1 : min
{|Rr(t)|,Q(t)}

1

ρ
ln

(

E

[

exp

(

ρ

t−1
∑

m=1

TE2E(m)

)])

s.t. |Rr(t)| 6
∣

∣Πsel
∣

∣ ,

1 6 Q(t) 6 8,

(9)

where E[∗] is the expectation operator,
∣

∣Πsel
∣

∣ represents the number of predictive selected candidate
sensors which is described in detail in Subsection 5.1.

The entropic risk measure 1
ρ ln (E [exp (ρT )]) can be expanded out as 1

ρ ln(E[exp(ρT )]) = E[T ] +
ρ
2! Var(T ) + ρ2

3! E
[

(T − E[T ])3
]

+ · · · , where T denotes the cumulative time
∑t−1

m=1 TE2E(m). It is ob-
vious that the optimal objective takes into account the variance Var(T ) and the third central moment

E
[

(T − E[T ])3
]

of T . Note that the skewness of T is equal to E
[

(T − E[T ])3
]

/Var(T )
3

2 . In other words,
we formulate the optimization problem in the view of the mean, varience, skewness and other high-order
quantities of the cumulate time

∑t−1
m=1 TE2E(m). Additionally, the parameter ρ > 0 reflects the weight of

high-order statistics.
Because the function 1

ρ ln (∗) is monotonically increasing, we remove it and focus on an equivalent
utility problem as follows:

P2 : min
{|Rr(t)|,Q(t)}

E

[

exp

(

ρ

t−1
∑

m=1

TE2E(m)

)]

s.t. |Rr(t)| 6
∣

∣Πsel
∣

∣ ,

1 6 Q(t) 6 8,

(10)

which can be expanded by Maclaurin series expansion analogously, i.e., E[exp(ρT )] = 1 + ρE[T ] +
ρ2

2! E[T
2] + ρ3

3! E[T
3] for T =

∑t−1
m=1 TE2E(m).

It is challenging to solve the minimization problem because of TSN’s dynamic network state and the
unknown environmental factors of each gateway. Thus, we leverage the principles of multi-armed bandits
(MAB) in reinforcement learning to optimize the long-term transmission delay.

5 Risk-sensitive learning strategy for predictive scheduling

For the minimization problem we formulated above, a risk-sensitive learning (RSL) strategy is employed
to solve the problem in a static stage and a dynamic stage. The static stage attempts to improve the
prediction precision and constrain the number of reserved RBs by selecting sensors through the access
history. Then the total delay and the long tail of TE2E are considered in the dynamic stage based on the
gradient multi-armed bandits (GMAB) scheme.
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5.1 Static stage: sensor selection algorithm

As discussed above, the main task of the static stage is to select the most correlated sensors to compose
the reservation sensor candidates set. Obviously, the utilization of reserved RBs is determined by whether
the assigned sensors trigger. So a high prediction precision is necessary to reduce the 5G transmission
delay. Besides, a salient feature of industrial automation is that the triggering of one event-triggered
MTC device may increase the probability that other devices in the vicinity also generate data in quick
succession [3, 31]. Based on this, calculating the correlation between sensors at two adjacent TTIs is the
key to predictively selecting sensors to be reserved. Here we do not care about the relationship between
sensors but only concern the correlation between their trigger events. In [3], the naive Bayesian model is
applied to learn the correlation of sensors since it simplifies the assumption of conditional independence.

x(t) = {x1(t), x2(t), . . .} denotes the set of sensors triggered at TTI t − 1. We select sensors to make
up the reservation candidates set y(t) = {y1(t), y2(t), . . .}(x(t) ∩ y(t) = ∅), which may be triggered at
the TTI t with a high probability. Note that the scale of y(t) is not related to the scale of x(t).

In order to explore the correlation between sensors, the access history is used to get the triggering
probability of sensor yi(t) as P(yi(t))(yi(t) ∈ S), and then three metrics are used to measure the correlation
between the set x(t) and the sensor yi(t) as follows [32].

(1) Conditional probability. Conditional probability at TTI t− 1 is the probability that sensors out of
x(t) will trigger after any sensor in x(t) that has been triggered, which can be obtained by

PC(yi(t),x(t)) = P(yi(t) | xj(t)) =
∑

xj(t)∈x(t)

P(yi(t), xj(t))

P(xj(t))
, (11)

where P(yi(t), xj(t)) is the joint probability of yi(t) and xj(t) and it is calculated as P(yi(t), xj(t)) =
P(yi(t) | xj(t))× P(xj(t)).

(2) Mutual information (MI). As described in information theory, MI can measure the development of
the triggering probability of yi(t) after x(t) is triggered, which is given by

PMI(yi(t),x(t)) =
∑

xj(t)∈x(t)

P(yi(t), xj(t)) log2
P(yi(t), xj(t))

P(yi(t))P(xj(t))
, (12)

where P(yi(t), xj(t)) = PC(yi(t), xj(t))× P(xj(t)).
(3) Chi-square (χ2). Chi-square (χ2) test is a suitable way to estimate the relevance of two sensors by

comparing P(yi(t), xj(t)) and P(yi(t)) ∗P(xj(t)), so as to judge whether these two sensors are dependent.
We use χ2 test metric as below:

Pχ2(yi(t),x(t)) =
∑

xj(t)∈x(t)

(P(yi(t), xj(t))− P(yi(t)) × P(xj(t)))
2

P(yi(t))× P(xj(t))
. (13)

The aim of these three metrics is to evaluate the correlation between yi(t) and x(t). Thus we can select
the most relevant sensors to x(t) to be reserved predictively at TTI t for higher resource utilization and
lower transmission delay. Thus we use a policy Πsel = {π1, π2, . . . } to select the sensors as follows:

πi =

{

1, if P(yi(t),x(t)) > α,

0, otherwise.
(14)

As we can see from (14), the number of the reserved RBs depends on the threshold α we set, since
πi = 1 when P(yi(t),x(t)) > α. In fact, there exists a trade-off of the number of reserved RBs |Rr(t)|
for the following reasons. If |Rr(t)| is too small, most of the sensors still need to access the 5G network
dynamically with a high handshaking cost, which may violate the time demand of NS data and TC data.
On the other hand, if |Rr(t)| is too big but the prediction precision cannot be guaranteed, the time-
frequency resources left will be insufficient for dynamic access sensors. Besides, the reserved resources
will also be wasted a lot. Therefore, α is a critical factor to balance this trade-off.

From [3] we know that sensors with lower triggering frequency will obtain a higher ranking in the χ2

test than in the MI. Based on this, we propose a sensor selection algorithm that is outlined in Algorithm
1 for better practicability. Note that hi(t) is the i-th element of the history access samples set H(t)
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Algorithm 1 Sensor selection algorithm (SSA)

Input: Access samples at last TTI x(t− 1) = {x1(t− 1), x2(t− 1), . . .}, history access samples H(t) = {h1(t),h2(t), . . . ,h|S|(t)}

with length |S|, y(t) = ∅;

Output: Predictive select sensors set y(t) = {y1(t), y2(t), . . .};

1: for i = 1, i 6 |x(t)| do

2: if T (i) 6 β and yi(t) 6∈ x(t) then

3: P(yi(t),x(t)) = P
χ2(yi(t),x(t));

4: else {T (i) > β and yi(t) 6∈ x(t)}

5: P(yi(t),x(t)) = PMI(yi(t),x(t));

6: end if

7: if πi then

8: y(t) = y(t) ∪ {yi(t)};

9: end if

10: end for

with length |S| at TTI t, and it records the number of the triggering times of the sensor i. And β is the
threshold of triggering time used to select a metric.

In a word, we use three different metrics in the static stage to measure the correlation of sensors
according to different scenarios, which can improve the precision of sensor selection, and then reduce the
delay of the 5G network by multi-priority scheduling based on SPS while considering preemption.

5.2 Dynamic stage: RSL algorithm based on GMAB

As mentioned in Subsection 5.1, the number of reserved RBs |Rr(t)| brings a trade-off. There are three
parameters that are influenced by this trade-off such as the 5G delay, the IPV number of data when it
is injected into TSN gateway, and the entire transmission delay under HTSN. Each TSN gateway needs
to make decisions based on limited state information at every TTI to find out the optimal policy to
dynamically reserve RBs and inject data into its sending queues while guaranteeing the time demands as
well. This predictive pre-allocation problem with no prior knowledge is skin to the famous multi-armed
bandits’ problem [3,33,34], which also concerns the balance of multiple arms’ exploration and exploitation
to gain the long-term rewards via trying to choose different arms.

We here leverage the GMAB tool to solve the predefined problem since it only focuses on the relative
preferences between actions rather than the value of the action itself. In particular, each TSN gateway
acts as an agent that selects an action to maximize the long-term rewards. The action set is defined as
κ = (k1, k2, . . . , k|κ|), where ki = (|Rr(i)| , Qi) denotes the corresponding action of the i-th arm. The
policy gateway made at TTI t is given by ̟(t) = {̟1(t), ̟2(t), . . . , ̟|κ|(t)}, which means the agent
chooses the i-th arm with probability ̟i(t) at TTI t. Here we define the long-term delay in (10) as a

utility function U(t) = − exp(ρ
∑t−1

m=1 TE2E(m)). The steps of GMAB algorithm are outlined as follows:
(1) Each TSN gateway is given an initial policy: ̟(0) = {̟1(0), ̟2(0), . . . , ̟|κ|(0)} and the preference

function Hki
(t) of each action is the same (i.e., Hki

(0) = 0 for all i in |κ|).
(2) At every TTI t, each TSN gateway selects actions according to the policy updated at TTI t − 1,

and then obtains a utility function U(t) = − exp(ρ
∑t−1

m=1 TE2E(m)) as the reward of the actions selected.
(3) Then, TSN gateway calculates each action’s probability by a soft-max distribution based on the

preference function got before:

Pr {ki = (|Rr(i)| , Qi)}
.
=

eHki
(t−1)

∑|k|
j=1 e

Hkj
(t−1)

.
= ̟ki

(t− 1) (15)

and gets the new policy ̟(t).
(4) Subsequently, each TSN gateway updates the preference of actions by

Hki
(t)

.
= Hki

(t− 1) + η(U(t− 1)− Ū(t− 1))(1−̟ki
(t− 1)), and

Hkj
(t)

.
= Hkj

(t− 1)− η(U(t− 1)− Ū(t− 1))̟kj
(t− 1), for all kj 6= ki,

(16)

where η > 0 is a step-size parameter and Ū(t) is the average rewards up to TTI t − 1, which can be
computed incrementally [35].

(5) TSN gateway iteratively updates its policy ̟(t) severally and makes new decisions abide by the
latest policy so that the likelihood of choosing the optimal action is proportional to its rewards.

Since we take high-order quantity into account when we formulate the minimization problem, the tail
of transmission delay is optimized as well as the optimal policy is learned via reinforcement learning.
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Table 2 Proportions of sensors’ trigger events

Proportion NS data (%) TC data (%) BE data (%)

Proportion 1 6 40 54

Proportion 2 4 40 56

Proportion 3 2 40 58

Proportion 4 2 50 48

Proportion 5 2 30 68
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Figure 6 (Color online) The prediction performance of different correlation metrics.

6 Numerical results

6.1 Sensor prediction simulation

In this subsection, we evaluate the performance of the proposed HTSN architecture based on data with a
stringent deadline, which is generated by monitoring sensors deployed along the hot rolling line. Sensors
for monitoring temperature, humidity, pressure and so on are randomly distributed to sense the manu-
facturing process to provide robust control via closed-loop feedback. Sensors activate periodically and
generate TC data, which are the main data we care about. Event-triggered sensors such as camera and
vibration sensors only activate as long as there occur safety emergencies. They generate burst NS data,
which have the highest priority and can preempt TC data.

Here, data from different processes with their particular transmission deadline are transmitted in turns.
What we need to do is to learn the correlation between sensors and ignore the interference brought by
sensors that with no relationships. We consider the proportion of sensors’ trigger events as in Table 2.

The performance of the predictive SSA is evaluated in terms of prediction accuracy (successful predic-
tion ratio). We compare the performance of three correlation metrics (X2: chi-square test, MI: mutual
information, Cond: conditional probability) and the sensor selection algorithm we proposed on three
sizes (3000, 4500, 6000) of data. Figure 6 shows how different correlation metrics diverse in the per-
formance of prediction accuracy. It is obvious that the X2 metric, as well as the Cond metric, has the
best performance when the iteration times are few. The prediction accuracy of MI is much lower than
the other two. But after several iterations, the difference between these three metrics’ performance is
inconspicuous, and the prediction accuracy of them all converges to 0.8. Since the SSA algorithm we
proposed chooses the metric by thresholds α and β, its performance is as good as the best metric. The



Zhang Y J, et al. Sci China Inf Sci January 2022 Vol. 65 110204:13

240

220

200

180

160

140

120

100

240

220

200

180

160

140

120

100

80

60

L
at

en
cy

 o
f 

5
G

 n
et

w
o
rk

 (
µ

s)
L

at
en

cy
 o

f 
5
G

 n
et

w
o
rk

 (
µ

s)

L
at

en
cy

 o
f 

5
G

 n
et

w
o
rk

 (
µ

s)

0 2 4 6 8 10 12 14

Reserved RB numbers

0 2 4 6 8 10 12 14

Reserved RB numbers

Reserved RB numbers

300

250

200

150

100

50

0

L
at

en
cy

 o
f 

5
G

/T
S

N
 n

et
w

o
rk

 (
µ

s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Signal ratio

250

200

150

100

50

0

5

4

3

2

1

0

IP
V

 n
u
m

b
er

 o
f 

T
C

 d
at

a

130

120

110

100

90
6.0 6.5 7.0 7.5

Data size: 3000

Data size: 4500

Data size: 6000

130

120

110

100

90
6.0 6.5 7.0 7.5

5G

TSN

Total delay

RTSN_3000

RTSN_4500

RTSN_6000

t_ddl

5G

TSN

Size:3000

Size:4500

Size:6000

|R
r
(t)|:6

|R
r
(t)|:7

|R
r
(t)|:8

|R
r
(t)|:9

Size:3000

Size:4500

Size:6000

(a) (b)

(c)
(d)

Figure 7 (Color online) The varies of 5G delay (a), 5G and TSN delay (b), data IPV and 5G delay (c) with |Rr(t)|. (d) The

varies of 5G delay with signal ratio.

high prediction accuracy guarantees the resource utilization of 5G and lays the foundation for the HTSN
architecture.

6.2 HTSN simulation

Since the 5G network and TSN are coupled and interacted, the main influence factor of HTSN is the
number of reserved RBs |Rr(t)|. Thus, we simulate the relationship between |Rr(t)| and delay of 5G/TSN.
Figure 7(a) shows that as |Rr(t)| growing, the delay of the 5G network decreases first and then increases.
The lowest point of the delay curve is the trade-off point we mentioned in Subsection 5.1, which is
because the prediction accuracy cannot reach 100%, and thus, assigning sensors in advance would cause
the waste of radio resources. Here we set the total number of subslot to 15, and the performance of the
pre-allocation mechanism is optimal when |Rr(t)| = 7 as we can see from Figure 7(b). What is more,
the reason why the delay of the 5G network increases rapidly after the trade-off point is the limitation of
the radio resources. The more |Rr(t)| is reserved, the more resource is wasted accordingly, and the fewer
resources used for dynamic access, the lower reliability of transmission.

Based on the dynamic injection mechanism of the TSN queue, the indeterminacy of transmission
caused by the 5G network can be made up by the TSN to meet the strict transmission requirements of
intelligent manufacturing. Figure 7(b) shows the interaction of 5G and TSN as |Rr(t)| growing. It can
be seen that the delay of 5G and TSN has a near-ideal negative correlation via adjusting the IPV of TC
data adaptively. Given the deadline = 250 µs, the TSN tries to save as many resources as it can under
the premise of not violating the deadline of the total delay under HTSN. Obviously, the data injection
mechanism we proposed makes up for the shortcoming of the 5G network perfectly and improves the
determinacy since it scarcely violates the deadline.

To further analyze the relationship between TSN queue and 5G delay, we give Figure 7(c), from which
we can see that the IPV number of data and the 5G network delay also have a similar negative correlation.
Since the IPV number of data is always identical to gate ID and directly proportional to its TSN delay,
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Figure 8 (Color online) The comparison of different types of filed data with different proportions. 5G delay (a) and TSN delay
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the general trends of the queue priority curve and TSN delay curve are analogous. However, there are
some step-changes of the IPV number as it is an integer. It can be concluded that although we arrange
an IPV number between 0 and 8, we cannot assign 5G data to the queue corresponding to IPV 8 since the
scheduling capability of the 5G network is not enough to realize low-latency high-reliability transmission
by itself.

Except for |Rr(t)|, the ratio of signaling transmission is also a critical factor that influences the SPS
within the 5G network and the total delay of HTSN. Here, we formulate the extra delay caused by signaling
as a signal ratio and plot the relationship between it and the 5G delay. As shown in Figure 7(d), we
select |Rr(t)| from 6 to 9 according to Figure 7(a). It can be seen that no matter |Rr(t)| is larger than,
equal to, or less than the trade-off point, the delay of 5G network increases with the increase of signal
ratio. This is because |Rr(t)| has nothing to do with the number of TC data; there always exist TC data
to be dynamically scheduled due to the inaccuracy of prediction, so the increase of signal ratio will lead
to the increase of the 5G network’s delay.

Lastly, the types of field data can influence the latency of the co-design 5G and TSN network as well.
According to Table 2, we give the comparison of different types of data with different proportions in
Figure 8. It can be seen that the 5G delay increases as the TC data ratio grows in Figure 8(a), and
the TSN delay decreases in Figure 8(b) accordingly. Moreover, the trade-off point moves to the right
with a higher proportion of TC data. This is because that we need more reserved resources to achieve
low-latency communication if the predictive accuracy does not change. The variation trends of 5G delay
and TSN delay are analogous in Figures 8(c) and (d), which is due to the increase of data as the NS data
ratio grows.

6.3 Risk-sensitive learning simulation

To deal with the tail of the 5G delay, we use a risk-sensitive utility function to optimize expectations
and high-order quantities of accumulative integrated delay of HTSN. The proposed HTSN architecture
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Figure 9 (Color online) (a) The normalized reward of risk-sensitive reinforcement learning with different run times; (b) the total

delay of HTSN with different learning run times.

is evaluated as an integral in Figure 9(a), which delineates the improvement brought by the risk-sensitive
utility. We repeat GMAB learning for three sizes (20, 100, 500) of independent runs, and for each run
we measure its performance with experience over 1000 time steps. With the increase of repetitions, the
risk-sensitive learning curve is more stable, and the learning reward is getting closer to the normalized
true reward. It means that the learning rate of risk-sensitive learning is faster than classical learning.
Besides, with the increase of iteration times, the convergence rate of risk-sensitive learning is faster.

As for the performance of the total delay shown in Figure 9(b), the curve of risk-sensitive learning is
steeper than the classical one, which means that the high-order quantities are optimized while learning,
and the delay distribution of HTSN is more centralized with a shorter tail. It proves the risk-sensitive
reinforcement learning strategy we proposed works and improves the transmission reliability.

7 Conclusion

In this paper, we proposed HTSN, a heterogeneous architecture that co-designs 5G and TSN to provide
deterministic transmission from the industrial field to the remote data center with wireless access and
wired forwarding. Within the 5G network, a preemption-considered multi-priority wireless scheduling
mechanism was proposed to satisfy the diverse QoS requirements of field data by exploring the triggering
correlation between uplink sensors in industrial process automation. To offset the time deviation caused
by the 5G network, an adaptive data injection mechanism of the TSN gateway queue was developed here
to reduce the total delay under HTSN. Then we formulated a risk-sensitive utility function, which takes
the high-order quantities of the total delay into account. Finally, a risk-sensitive reinforcement learning
based on GMAB was executed and thus the determinacy of HTSN is improved.
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