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Dear editor,

Most existing ontology matching methods utilize literal in-

formation to discover alignments [1, 2]. However, some lit-

eral information in ontologies may be opaque and some on-

tologies may not have sufficient literal information. These

ontologies are named weak informative ontologies (WIOs)

and it is challenging for existing methods to match WIOs.

On one hand, string-based and linguistic-based matching

methods cannot work well for WIOs. On the other hand,

some matching methods use external resources to improve

their performance, but collecting and processing external

resources are still time-consuming.

To address the issue of matching WIOs, we propose a

practical matching method which is inspired by our previ-

ous work [3, 4] about the semantic subgraph and similarity

propagation. Figure 1 depicts an overview of the proposed

method, which involves three steps: (1) building the ontol-

ogy graph from the WIO, (2) extracting semantic subgraphs

from the ontology graph, and (3) calculating similarity prop-

agation to obtain similarity matrix and the alignment.

Ontology graph. We first use the hybrid ontology graph to

represent the WIO for distinguishing multiple properties be-

tween concepts, then explicitly describe the containers and

collections in the ontology graph, afterward, enrich the on-

tology by discovering hidden semantics, furthermore, refine

the ontology graph by removing annotation and definition

triples. As a result, according to the original source WIO

and target WIO, we build two ontology graphs, which can

clearly describe the semantic information in ontologies.

Semantic subgraph. For each concept or property in the

ontology graph, we extract the corresponding semantic sub-

graph, which can precisely describe the meaning of the con-

cept or property.

Definition 1. Given an element e in a hybrid ontology

graph Gh, its semantic subgraph Gs(e) is composed of top-

k (top-k ∈ N) related triples that describe e. Gs(e) ⊆ Gh

and Gs(e) has the following features. (1) The size of Gs(e)

is limited; (2) Gs(e) does not emphasize semantic complete-

ness; (3) Gs(e) is unique; (4) Gs(e) prefers triples related to

e.

We apply a circuit model to efficiently rank triples and

then extract semantic subgraphs. More concretely, in the

circuit model, the conductivity C simulates the capability of

conveying information, the voltage V indicates the capabil-

ity of preserving information, and the current I denotes the

semantic information flows on edges in the ontology graph.

Let I(u, v) denote the current from vertex u to vertex v,

V (u) and V (v) be the voltages on u and v, and C(u, v) be

the conductivity on the edge between u and v. z is a sink

node and each vertex has an edge to z. Then an ontology

graph is converted into a circuit, which has the initial condi-

tions: V (s) = 1, V (z) = 0. The delivered current Î(P ) in a

prefix-path P = (s = u1, . . . , ui) is the volume of electrons

that arrives at ui through P , and it can be calculated by

Î(s = u1, . . . , ui) = Î(s = u1, . . . , ui−1)
I(ui−1, ui)

Iout(ui−1)
, (1)

where Iout(u) is the total current coming from u. There-

fore, the captured flow of subgraph Gs is the sum of all the

delivered current in the prefix-path in Gs:

CF(Gs) =
∑

P=(s,...,t)∈Gs

Î(P ). (2)

For all subgraphs with k triples, the subgraph with the max-

imum capture flow is the semantic subgraph. In other words,

a semantic subgraph is determined by the captured flow on

paths, which contains relevant triples about s.

In an ontology graph, the conductivity for any triple

t = 〈s, p, o〉 can be obtained based on the weights of s, p

and o. Since s and o are relevant to other triples, their

weights should be divided by the degrees:

w(t) =

w(s)
degree(s)

+ w(p) +
w(o)

degree(o)

3
. (3)

Matcher based on semantic subgraph. For an element,

we organize relevant literal information based on seman-

tic subgraphs as a virtual document [5] and call this vir-

tual document the semantic description document (SDD).

Each concept, property, or instance has a basic SDD Dbase,

which consists of the local name, label, and annotation.

The SDD of concept C is organized by concept hierar-

chy, axioms, related properties and instances. The SDD
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Figure 1 (Color online) Overview of matching weak informative ontologies.

of property P is organized by domain and range state-

ments. The SDD of a blank node b in an ontology is cal-

culated recursively according to triples that contain b. A

SDD is a set of vocabularies with weights, namely, SDD =

{p1 ×W1, p2 ×W2, . . . , px ×Wx}.

Let Doc = {SDD1, SDD2, . . . ,SDDN}, and each SDD

contains n items t1, t2, . . . , tn. Thus each document

SDDi can be described as an n-dimension vector Di =

(di1, di2, . . . , din), where dij is the weight of j-th item. The

similarity between two virtual documents is the cosine value

of vectors. Therefore, the similarity between Di and Dj is

Sim(Di,Dj) =

∑n
k=1 dik × djk

√

∑n
k=1 d

2
ik

×
∑n

k=1 d
2
jk

. (4)

Similarity propagation. Considering the characteristics

of ontologies, we design a new similarity propagation model

with strong constraint condition (SC-condition). Given two

ontology graphs and initial similarity seeds, we first con-

struct a pairwise connectivity graph, then get an induced

propagation graph, and finally obtain the new similarities

by fixpoint value calculation. This similarity propagation

model not only avoids the performance drawbacks but also

can handle the property alignment in ontology matching.

The similarity propagation between ontology graphs can be

computed iteratively until the final similarity matrix is con-

verged.

Definition 2. Given two triples ti = 〈si, pi, oi〉 and

tj = 〈sj , pj , oj〉, let Ss, Sp and So denote the correspond-

ing similarities of (si, sj), (pi, pj) and (oi, oj), respectively.

Similarities can be propagated only if ti and tj satisfy the

following three conditions. (1) In Ss, Sp and So, at least two

similarities must be larger than threshold θ; (2) If ti includes

ontology language primitives, the corresponding positions of

tj must be same; (3) ti or tj has at most one ontology lan-

guage primitive.

For each element pair (x, y), which would be subject

pair, predicate pair or object pair, its new similarity in the

(i + 1)th propagation contains four parts: (1) the similar-

ity in ith propagation; (2) the propagation similarity when

(x, y) is object pair; (3) the propagation similarity when

(x, y) is subject pair; (4) the propagation similarity when

(x, y) is predicate pair.

The propagation model employs the updating mecha-

nism, credible seeds, penalty, termination condition, and

propagation scale strategies in order to ensure a balance be-

tween matching efficiency and quality. In particular, the

initial credible seeds in propagation are provided by the

matcher based on semantic subgraphs, i.e., the matcher

calculates the similarities between the semantic description

documents, which are constructed from semantic subgraphs.

Lastly, after the similarity propagation, we obtain the simi-

larity matrix and then extract the alignment from it.

Results. The proposed method is evaluated on the open

OAEI benchmark datasets: benchmark2008 and bench-

mark2009, which have 110 matching tasks, among them,

78 tasks are WIOs. According to our experimental results,

we observe the following facts. (1) The proposed similar-

ity propagation method improves the quality of matching

results, especially for the WIOs; (2) For the WIOs, the sim-

ilarity propagation model can increase the recall of results

greatly; (3) For informative ontologies, our method can also

produce good results. It means that our method is a general

matching method. Moreover, compared with more than 20

ontology matching systems, our method achieves an average

of 0.90 precision and 0.76 recall on WIO matching tasks and

average 0.95 precision and 0.84 recall on general matching

tasks, which are the state-of-the-art performances on the

OAEI benchmark datasets.

Conclusion. We proposed a method for matching weak

informative ontologies. The success of our method is at-

tributed to two techniques: semantic subgraphs and a

new similarity propagation model. Semantic subgraphs can

not only precisely describe ontology elements with limited

triples, but also can be used to calculate the similarity by

constructing the semantic description virtual documents.

The similarity propagation model is based on the strong

constrained condition, and it is reasonable for handling on-

tology matching.
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