
SCIENCE CHINA
Information Sciences

December 2021, Vol. 64 222302:1–222302:13

https://doi.org/10.1007/s11432-020-3228-8

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Differential game-based analysis of multi-attacker
multi-defender interaction

Qiuyue GAO, Huici WU*, Yunfei ZHANG & Xiaofeng TAO

National Engineering Laboratory for Mobile Network Technologies,

Beijing University of Posts and Telecommunications, Beijing 100876, China

Received 7 September 2020/Revised 25 January 2021/Accepted 23 March 2021/Published online 18 September 2021

Abstract Due to the increasing number of wireless terminals and progressively extensive interconnections

among them, interaction between the attack group and defense group is becoming a dominant security man-

ifestation in future wireless networks. This paper focuses on the modeling and analysis of multi-attacker

to multi-defender interaction. First, considering the continuous interaction between the attack group and

defense group in real-time, a differential game-based multi-attacker to multi-defender interaction model is

explicated with paralysis threshold introduced to reduce the ping-pong effect in paralysis. Optimal con-

trol theory is then introduced to obtain the equilibrium strategy with Hamilton best control method and a

proposed optimal strategy selection algorithm for multi-attacker to multi-defender interaction. Finally, sim-

ulations are provided to demonstrate the evolutionary trajectory of optimal attack and defensive strategies

and the relationship between the paralysis threshold and the group strength evolution results. Numerical

results show the attackers and defenders are aggressive to strengthen their groups initially and then gradually

decrease their strength to obtain ideal cost-effectiveness ratios. Moreover, increasing the defense paralysis

threshold within a certain range will be more conducive to improving the defense effectiveness.
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1 Introduction

With the explosive increase of communication equipment in future wireless networks, the progressively
pervasive interconnection among them remarkably expands network attack surfaces and introduces poten-
tial challenges to network security [1,2]. Peculiarly, attack and defense interaction in massive machine type
communications (mMTC) can be easily dominated by centralized machines, which makes cooperative at-
tack and defense become an inescapable phenomenon and the most considerable form of cybersecurity [3].
It is urgently required for defenders to take dynamic and adaptive protective measures to deal with the
increasing intricacy of the attacks.

Existing studies on network attack and security defense mainly focus on the interaction between single-
attacker and single-defender. The interactions between an advanced persistent threat (APT) attacker and
a defender are investigated in [4, 5], where the attack interval and scan interval are respectively chosen
with the consideration of subjective decisions. A multi-attacker single-defender model is constructed
in [6] where jamming attack and eavesdropping attack exist simultaneously. In addition, single-attacker
multi-defender models are analyzed in [7, 8] where multiple friendly jammers join to defend against the
eavesdropping attacker. Nevertheless, interaction among cooperative attackers and cooperative defenders
will be the most considerable form of network security while multi-attacker multi-defender interaction has
rarely been analyzed in existing works. The analysis of such interaction is urgently required to provide a
more comprehensive theoretical insight for network security.
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In this paper, we investigate the strategy interaction between the attack group and defense group in a
multi-attacker multi-defender scenario. Multiple attackers (resp. defenders) are allied to awaken sleeping
nodes and paralyze defense (resp. attack) nodes to enhance the attack (resp. defense) group strength,
which is defined as the attack (resp. defense) intensity. The group strength is a function of the number of
awakened nodes, retreated nodes, and paralyzed nodes and can be varied by awakening the sleeping nodes
or retreating the participating nodes. Members of one group can be paralyzed if the relative strength
gap between the attack group and defense group is greater than a predefined paralysis threshold which
is introduced to reduce ping-pong effect in paralysis. In order to characterize the dynamic evolution
of the system security state, differential equations are formulated for the group strength of attackers
and defenders. Based on which a differential game model is constructed to describe the confrontation
interaction between the attack group and defense group. By Hamilton optimal control method, existence
of the game equilibrium is proven and the closed-form expressions for the equilibrium strategy are derived.
Furthermore, an optimal strategy selection algorithm for the attack group and defense group is proposed
to achieve the equilibrium. Finally, numerical results are provided to demonstrate the evolution of
strategy and strength interaction. The impact of the paralysis threshold on strength evolution is also
analyzed. The main contributions in our paper are epitomized as follows.

• Considering the dynamic and continuous interaction between attack group and defense group, the
multi-attacker to multi-defender interaction is investigated. A differential game-based attack and defense
model is constructed where the strategy choosing process is real-time.

• Existence of the equilibrium is proven and derived by Hamilton optimal control method. An optimal
strategy selection algorithm is proposed to obtain the equilibrium attack and defense strategies.

• Numerical results are provided to demonstrate the evolutions of the attack and defense interaction.
It is revealed that no matter how the paralysis threshold changes, both attack and defense groups tend
to increase their strength initially but gradually decrease their strength with the progress of interaction.
Moreover, improving the paralysis threshold will magnify the gap between groups and accelerate the
evolution process.

The remainder of this paper is organized as follows. Related work is provided in Section 2. Section 3
constructs the system model for multi-attacker to multi-defender interaction. The optimal strategy
selection algorithm for the differential game model is provided in Section 4. Numerical results are analyzed
in Section 5. Lastly, Section 6 concludes our paper.

2 Related work

As a theoretical method for describing players’ strategic interaction, game theory can be used to model
and analyze the attack and defense process in network security. Stackelberg game, Markov game, and
differential game are the most commonly applied models in existing references.

Stackelberg game is generally used in physical layer attack and defense to capture the characteristic of
sequential decision-making [9]. In [10], the power control of jammer and secondary user (SU) in cognitive
radio network is studied by Stackelberg game, where they perform the game against the target signal-
to-interference-plus-noise-ratios. Furthermore, an eavesdropper in cognitive radio network is considered
where SUs adjust the interference signal power to maximize data transmission rate and prevent the
eavesdropper while the primary user adjusts the service load for spectrum access of SU and maximizes
security rate [7]. Ref. [6] studies the power control of sensor and jammer in network physical transmission
system by Stackelberg game. Especially, the jammer interferes both eavesdropper and remote controller.
Multiple eavesdroppers are considered in [11], where the source selects partners for cooperation. In the
two-layer game model, the top layer and bottom layer are formulated as Stackelberg game and power
selection game, respectively. Moreover, multiple friendly jammers with a single antenna are considered
to defend against eavesdroppers with multi-antenna in the downlink communications [8]. From a macro
perspective, Stackelberg game is used to verify the effectiveness of honeypot against spoofing attacks in
cognitive radio network [12].

The above studies are one-shot games with no consideration of the dynamic characteristics of attack
and defense. In a more practical scenario, a one-shot game can be developed more than once, and players’
behaviours can restrict the following decision-making process [13]. As a consequence, it is more felicitous
to model the attack and defense interaction of multiple stages, which is generally analyzed by the Markov
game. A moving target defense game based on the Markov model is formulated in [14]. The number of
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detection systems is constantly changed by the defender, and privilege levels of the attacker correspond to
different states of the Markov process. In addition, a Markov secure game model for computer networks is
established and by handling nonlinear programming (NLP), the equilibrium strategies are obtained [15].
In [16], the strategic security decision is modeled by a stochastic game to defend the cross-layer attackers,
in which the Markov decision process and matrix games are integrated.

However, the realistic security interaction is generally time-continuous which is not premeditated in
the existing Markov game models. Some differential game-based studies concentrating on the attack-
defense interaction can depict the continuous and dynamic process of network state evolution and real-
time strategy selection. In reference to the epidemic dynamics model, Ref. [17] constructed a normal-
infected-restored-malfunctioned (NIRM) model to study the state evolution process of network security.
Equilibrium strategy selection of attacker and defender is deduced by a differential game-based security
model. On this basis, Ref. [18] proposed a multi-stage security model which is the synthesis of Markov
game and differential game. In [19], considering devices with heterogeneous computation demands in D2D
networks, a dynamic model describing the spread of malicious software is established. The equilibrium
is derived and verified to be bang-bang strategy. Moreover, Ref. [20] formulated a differential game for
malware-defense in which the sensor network system selects strategies and minimized the cost while the
malware maximizes it. Furthermore, the saddle point strategy is proven to exist and derived as bang-bang
control strategy.

Nevertheless, the emergence of a great number of communication devices will bring more severe chal-
lenges to network security, triggering cooperative attack and cooperative defense becoming an inescapable
phenomenon and the most considerable form of cybersecurity in future wireless networks. It is eagerly
demanded to build a game model that can explicate a multi-attacker and multi-defender, continuous,
dynamic, and real-time interaction process. Therefore, a differential game-based interaction model is
built in the following sections.

3 Multi-attacker to multi-defender interaction system model

The schematic diagram of the system model is shown in Figure 1, where multiple states and their tran-
sitions are introduced for the modeling of the attack and defense interaction with propagation charac-
teristics, such as distributed denial of service (DDoS) and APT. The system contains legitimate nodes,
attackers, sleeping nodes, and paralyzed nodes. The legitimate nodes are defenders that cooperate to
maintain the secure and efficient work of the system. The attackers cooperate as a group to control the
sleeping nodes or attack the legitimate nodes. The sleeping nodes can be awakened by legitimate nodes
or attackers and then act as defenders or attackers. Paralyzed nodes are those compromised legitimate
nodes and paralyzed attackers which bring loss to groups due to their abnormal actions. Each node has
the ability of self-regulating to accommodate the time varying circumstances in this system.

Node state transition of this model depends on the strategies of legitimate nodes and attackers and the
attack-defense interaction. In the attack and defense interaction process, both groups aim to paralyze as
many nodes of each other as possible while ensuring their own optimal utility by increasing or decreasing
the strength of the group. For example, sleeping nodes awakened by attackers can empower the attack
group, but additional cost is brought in simultaneously. Retreating nodes from the interaction can save
cost for the group, but also increasing the risk of being compromised in the interaction. The paralyzed
nodes lose their competitiveness and can only bring loss to the group. Therefore, it is essential to weigh
the strategy cost and group strength when making decisions, rather than blindly enhancing the group
strength.

In order to concisely analyze the multi-attacker to multi-defender interaction, we first establish the
state transition model for one node, detailed as Figure 2. Abstractly, a node in the system is assumed
to be in one of five identity states: sleeper (S), attacker (A), defender (D), paralyzed attacker (PA), and
paralyzed defender (PD).

S: The sleeper, acting as candidate attacker or candidate defender, does not belong to any group but
it will affect the attack and defense results once awakened.

A: The participating attacker in the attack and defense interaction, who can adjust its attack be-
haviours to change the interaction results.

D: The participating defender in the attack and defense interaction, who can adjust its defense be-
haviours to change the interaction results.
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Figure 1 (Color online) Multi-attacker to multi-defender interaction system model.
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Figure 2 State transitions of one node.

PA: The paralyzed attacker, which is compromised by the defense group, can no longer contribute to
the attack group.

PD: The paralyzed defender, which is compromised by the attack group, can no longer contribute to
the defense group. In the attack and defense interaction process, the emergence of paralysis results from
the strength disparity between the two groups. And this disparity is quantified by the paralysis threshold
defined later.

Being one of the most important elements that affect the results of attack and defense interaction,
the node strategies will determine the transition probability among the above five states. Conversely,
the interaction results also have influence on the selection of attack and defense strategies. As shown
by the arrow marks in Figure 2, the strategies contain wake-up strategy and retreat strategy. The state
transitions of nodes at time t are as follows.

S → A: When the attack group needs to increase strength to empower itself, the sleepers are awakened
with intensity W1(t) and transformed into participating attackers. We introduce a parameter a to weigh
the wake-up intensity of the attack group.

A → S: When the attack group needs to decrease strength to save the cost, the attackers are retreated
with intensity S1(t) and transformed into sleepers. We introduce a parameter c to weigh the retreat
intensity of the attack group.

A → PA: When the strength of defense group is more dominant than that of attack group, the attackers
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are paralyzed with intensity X(t) and transformed into paralyzed attackers. We introduce a parameter h
to weigh the paralysis intensity of attack group, which is positively correlated with the protection degree
of defense measures.

S → D: When the defense group needs to increase strength to empower itself, the sleepers are awakened
with intensity W2(t) and transformed into participating defenders. We introduce a parameter b to weigh
the wake-up intensity of the defense group.

D → S: When the defense group needs to decrease strength to save the cost, the defenders are
retreated with intensity S2(t) and transformed into sleepers. We introduce a parameter d to weigh the
retreat intensity of the defense group.

D → PD: When the strength of the attack group is more dominant than that of the defense group,
the defenders are paralyzed with intensity Y (t) and transformed into paralyzed defenders. We introduce
a parameter f to weigh the paralysis intensity of the defense group, which is positively correlated with
the damage degree of attack measures.

To describe the dynamic strength evolution process, we define A(t) and D(t) as the group strength
of attackers and defenders, respectively. Combining the above definitions and the state transitions in
Figure 2, the evolution of group strength is represented as follows: the awakened nodes caused by wake-
up strategy minus the retreated nodes caused by retreat strategy minus the paralyzed nodes. Thus, the
evolution process of group strength is expressed as differential equations (1a) and (1b):

•

A(t) =
dA(t)

dt
= aW1(t)− cS1(t)− hX(t), (1a)

•

D(t) =
dD(t)

dt
= bW2(t)− dS2(t)− fY (t). (1b)

At t = 0, the initial strength condition of the attack group and defense group for the differential
equations is given by (2a) and (2b), respectively:

A(0) = A0, (2a)

D(0) = D0. (2b)

The paralysis intensities X(t,m) and Y (t, n) are functions of the relative strength gap between the
attack group and defense group. In order to reduce the ping-pong effect, an attack paralysis threshold
m and a defense paralysis threshold n are introduced. When the ratio of D(t) − A(t) and A(t) exceeds
m, the attackers will be paralyzed with intensity X(t,m). Similarly, when the ratio of A(t) −D(t) and
D(t) exceeds n, the defenders will be paralyzed with intensity Y (t, n). Therefore, the paralysis intensities
X(t,m) and Y (t, n) are given by (3a) and (3b), respectively:

X(t,m) =







D(t) −A(t),
D(t)−A(t)

A(t)
> m,

0, otherwise,

(3a)

Y (t, n) =







A(t)−D(t),
A(t)−D(t)

D(t)
> n,

0, otherwise.

(3b)

In (3a) and (3b), the paralysis intensities X(t,m) and Y (t, n) increase with respect to their opponent
strength and decrease with respect to their own strength. In particular, when m = n = 0, once there
is a disparity in strength, the weak group will be paralyzed, and there is no delay judgment caused by
paralysis thresholds.

4 Optimal multi-attacker multi-defender strategy selection

In this section, the strength evolution differential equations in Section 3 are applied to construct the
differential game-based multi-attacker to multi-defender interaction model. On the basis of proving the
existence of game equilibrium, an optimal strategy selection algorithm for multi-attacker to multi-defender
interaction is proposed to obtain the equilibrium strategy.
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4.1 Differential game-based multi-attacker to multi-defender interaction model

Definition 1. Differential game model of multi-attacker to multi-defender interaction is expressed as
(P,B, t, F, C, g, U), where

• P = {PA, PD} denotes the set of players in the game, PA and PD represent the participating attackers
and participating defenders, respectively.

• B = {W,S} denotes the action set of attackers and defenders, W and S denote to wake-up nodes
and to retreat nodes, respectively.

• t ∈ [0, T ] denotes the time in the attack and defense interaction process. With the consideration of
continuous interaction between attack and defense groups in real-time, the strategies, group strength and
their utility are all with respect to time t.

• F = {A(t), D(t)} denotes the group strength of attackers and defenders at time t. A(t) is the strength
of attack group and D(t) is the strength of defense group.

• C = {CA(t) = {W1(t), S1(t)}, CD(t) = {W2(t), S2(t)}} is the control strategy set of attackers and
defenders. W1(t) and S1(t) are the wake-up strategy and retreat strategy of attack group, respectively.
W2(t) and S2(t) are the wake-up strategy and retreat strategy of defense group, respectively.

• g = {gA(t), gD(t)} represents the strength evolution function of attack group and defense group,

where gA(t) =
•

A(t), gD(t) =
•

D(t) with the initial group strength conditions A(0) = A0 and D(0) = D0.
More details can be seen in (1a), (1b), (2a), and (2b).

• U = {UA(t), UD(t)} represents the set of utility functions. UA(t) and UD(t) represent the utility
functions of attack group and defense group, respectively.

For the attack group, participating nodes A(t) provides positive while paralyzed nodes X(t,m) pro-
vide negative impacts on the attack utility UA. For simplicity, we define X(t,m) , [D(t) − A(t)] ·

ε(D(t)−A(t)−mA(t)) where ε(t) is a step function defined as ε(t) =
{

0, t < 0

1, t > 0
. Considering that awaken-

ing nodes W1(t) brings cost to the group while retreating nodes S1(t) saves cost for the group, we define
the strategy cost as α

2W
2
1 (t) −

β
2S

2
1(t), where α and β are the cost coefficients of wake-up and retreat

strategy, respectively. In addition, the benefit and cost are ordinarily square form of state variables and
strategy functions with constant term 1

2 [21, 22]. With the above definitions and analysis, the instant
utility for the attack group uA(t) is expressed as

uA(t) =
γ

2
[A2(t)− [D(t)−A(t)]2 · ε (D(t)−A(t) −mA(t))]−

[

α

2
W 2

1 (t)−
β

2
S2
1(t)

]

, (4a)

where γ is the profit-loss coefficient for the attack group. Then, the total utility of the attack group is

obtained by integrating over time [0, T ], i.e., UA =
∫ T

0
uA(t)dt.

Similarly, the instant utility for the defense group uD(t) is expressed as

uD(t) =
ϕ

2
[D2(t)− [A(t)−D(t)]

2
· ε(A(t)−D(t)− nD(t))]−

[

η

2
W 2

2 (t)−
ξ

2
S2
2(t)

]

, (4b)

where ϕ is the profit-loss coefficient for the defense group. η and ξ are the cost coefficients of wake-up

and retreat strategy, respectively. Then, the total utility of the defense group is UD =
∫ T

0 uD(t)dt.
In (4a) and (4b), the profit-loss coefficients γ and ϕ can represent the importance of nodes such as

degree centrality in the scenario considering network topology, network resources owned in the network
resource competition scenario or privacy data stored in the privacy theft scenario. The cost coefficients
α, β, η, and ξ are related to the difficulty of strategy implementation. It can be seen that the value of
utility functions uA(t) and uD(t) increase with respect to the group strength A(t) and D(t) and decrease
with respect to the number of paralyzed nodes X(t,m) and Y (t, n). With the implementation of wake-up
strategies W1(t) and W2(t), the strategy cost and strength of both groups increase. As a result, the
change of the value of utility functions cannot be determined. Similarly, with the implementation of
retreat strategies S1(t) and S2(t), the strategy cost and strength of both groups decrease. Therefore, the
change of the value of utility functions can also not be determined. This makes it necessary for players
to weigh the constraints between strength and cost.

After the definition and analysis of utility functions of attack and defense groups, the game is carried
out between the two groups to maximize their own utility through strategy adjustment. Therefore, the op-
timization goal for attack group and defense group is to find the optimal control strategies {W ∗

1 (t), S
∗
1 (t)}
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Table 1 Summary of symbols

Symbol Description

A(t)/D(t) Strength of attack/defense group

W1(t)/W2(t) Wake-up strategy of attack/defense group

S1(t)/S2(t) Retreat strategy of attack/defense group

X(t,m)/Y (t, n) Paralysis of attack/defense group

m/n Paralysis threshold of attack/defense group

a/b Wake-up coefficient of attack/defense group

c/d Retreat coefficient of attack/defense group

h/f Paralysis coefficient of attack/defense group

γ/ϕ Profit-loss coefficient of attack/defense group

α/η Wake-up cost coefficient of attack/defense group

β/ξ Retreat cost coefficient of attack/defense group

and {W ∗
2 (t), S

∗
2 (t)} to satisfy (5a) and (5b), respectively. Table 1 summarizes the commonly used symbols.

max
W1(t),S1(t)

UA (W1(t), S1(t),W
∗
2 (t), S

∗
2 (t)) , (5a)

max
W2(t),S2(t)

UD (W ∗
1 (t), S

∗
1 (t),W2(t), S2(t)) . (5b)

4.2 Optimal strategy solving for the multi-attacker to multi-defender interaction

In this subsection, we firstly define the equilibrium strategy and prove the existence of it. Then, we
derive the closed-form expressions for the equilibrium based on the optimal control method. Finally, an
optimal strategy selection algorithm is proposed to obtain the optimal attack and defense strategies.

Definition 2. Equilibrium strategy. If the strategy pair (C∗
A(t), C

∗
D(t)) satisfies (6a) and (6b), then

(C∗
A(t), C

∗
D(t)) is defined as the equilibrium strategy.

∀CA(t), UA (C∗
A(t), C

∗
D(t)) > UA (CA(t), C

∗
D(t)), (6a)

∀CD(t), UD (C∗
A(t), C

∗
D(t)) > UD (C∗

A(t), CD(t)). (6b)

To obtain the equilibrium strategy, Hamilton optimal method is applied [23]. Combining (1a) and
(4a), the Hamilton function of attack group H1 is defined as (7) through the introduction of the joint
state variables λ1(t) and λ2(t).

H1(t, CA(t), CD(t), λ1(t), λ2(t),m, n)

= uA(t) + λ1(t)gA(t) + λ2(t)gD(t)

=
γ

2
[A2(t)− [D(t)−A(t)]2 · ε (D(t)−A(t)−mA(t))]−

α

2
W 2

1 (t) +
β

2
S2
1(t)

+ λ1(t)[aW1(t)− cS1(t)− h[D(t)−A(t)] · ε (D(t)−A(t)−mA(t))]

+ λ2(t)[bW2(t)− dS2(t)− f [A(t)−D(t)] · ε (A(t)−D(t)− nD(t))]. (7)

Combining (1b) and (4b), the Hamilton function of defense group H2 is defined as (8) through the
introduction of the joint state variables µ1(t) and µ2(t).

H2(t, CA(t), CD(t), µ1(t), µ2(t),m, n)

= uD(t) + µ1(t)gA(t) + µ2(t)gD(t)

=
ϕ

2
[D2(t)− [A(t)−D(t)]2 · ε(A(t)−D(t)− nD(t))]−

η

2
W 2

2 (t) +
ξ

2
S2
2(t)

+ µ1(t)[aW1(t)− cS1(t)− h[D(t)−A(t)] · ε(D(t)−A(t) −mA(t))]

+ µ2(t)[bW2(t)− dS2(t)− f [A(t)−D(t)] · ε(A(t)−D(t) − nD(t))]. (8)

Lemma 1. Equilibrium strategy (C∗
A(t), C

∗
D(t)) exists in the differential game-based multi-attacker to

multi-defender interaction model.
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Proof. By Pontryagin maximum theorem, the joint state variables λ1(t), λ2(t), µ1(t), and µ2(t) satisfy

{

H1(t, C
∗
A(t), C

∗
D(t), λ1(t), λ2(t),m, n) > H1(t, CA(t), C

∗
D(t), λ1(t), λ2(t),m, n),

H2(t, C
∗
A(t), C

∗
D(t), µ1(t), µ2(t),m, n) > H2(t, C

∗
A(t), CD(t), µ1(t), µ2(t),m, n).

(9)

Based on the strength evolution differential equations (1a), (1b) and the initial strength conditions
(2a), (2b), the differential equations for group strength can be written as







•

A∗(t) = aW ∗
1 (t)− cS∗

1 (t)− hX∗(t,m), A∗(0) = A0,

•

D∗(t) = bW ∗
2 (t)− dS∗

2 (t)− fY ∗(t, n), D∗(0) = D0.

(10)

And according to the characteristics of Hamilton functions, the joint state variables are solved by



















































•

λ1(t,m, n) = −
∂H1 (t, C

∗
A(t), C

∗
D(t), λ1(t), λ2(t),m, n)

∂A∗(t)
,

•

λ2(t,m, n) = −
∂H1 (t, C

∗
A(t), C

∗
D(t), λ1(t), λ2(t),m, n)

∂D∗(t)
,

•
µ1(t,m, n) = −

∂H2 (t, C
∗
A(t), C

∗
D(t), µ1(t), µ2(t),m, n)

∂A∗(t)
,

•
µ2(t,m, n) = −

∂H2 (t, C
∗
A(t), C

∗
D(t), µ1(t), µ2(t),m, n)

∂D∗(t)
.

(11)

Therefore, from (9)–(11), it can be proven that our multi-attacker to multi-defender interaction game
model has equilibrium strategy according to Theorem 1 in [17]. With the definition in (11), the joint
state variables λ1, λ2, µ1, and µ2 can be deduced as Lemma 2.

Lemma 2. The joint state variables are deduced in (12) and (13) for different attack and defense results,
where the terminal state conditions are λ1(T ) = 0, λ2(T ) = 0, µ1(T ) = 0, and µ2(T ) = 0.

When D(t)−A(t) > mA(t), i.e., the attack group is paralyzed and X (t,m) > 0,

•

λ1(t,m, n) = −γD(t)− hλ1(t,m, n),
•

λ2(t,m, n) = γD(t)− γA(t) + hλ1(t,m, n),
•
µ1(t,m, n) = −hµ1(t,m, n),
•
µ2(t,m, n) = −ϕD(t) + hµ1(t,m, n).

(12)

When A(t)−D(t) > nD(t), i.e., the defense group is paralyzed and Y (t, n) > 0,

•

λ1(t,m, n) = −γA(t) + fλ2(t,m, n),
•

λ2(t,m, n) = −fλ2(t,m, n),
•
µ1(t,m, n) = ϕA(t)− ϕD(t) + fµ2(t,m, n),
•
µ2(t,m, n) = −ϕA(t)− fµ2(t,m, n).

(13)

Proof. Please refer to Appendix A.
Based on the joint state variables, the optimal strategies of the attack group and defense group are

given by Theorem 1.

Theorem 1. The equilibrium strategies of the differential game-based multi-attacker to multi-defender
interaction model are given by

W ∗
1 (t) =

a

α
λ1(t,m, n), S∗

1 (t) =
c

β
λ1(t,m, n),

W ∗
2 (t) =

b

η
µ2(t,m, n), S∗

2 (t) =
d

ξ
µ2(t,m, n).

(14)
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Proof. According to the Hamilton functions of attack and defense groups in (7) and (8), calculate
Hamiltonian partial derivations for attack and defense strategies and make them zero like (15a)–(15d).

∂H1

∂W1(t) |W1(t)=W∗

1
(t)

= −αW ∗
1 (t) + aλ1(t,m, n) = 0, (15a)

∂H1

∂S1(t) |S1(t)=S∗

1
(t)

= βS∗
1 (t)− cλ1(t,m, n) = 0, (15b)

∂H2

∂W2(t) |W2(t)=W∗

2
(t)

= −ηW ∗
2 (t) + bµ2(t,m, n) = 0, (15c)

∂H2

∂S2(t) |S2(t)=S∗

2
(t)

= ξS∗
2 (t)− dµ2(t,m, n) = 0. (15d)

The optimal equilibrium strategies of the differential game-based model are attained through shifting
terms, which are bound up with λ1(t,m, n), λ2(t,m, n), µ1(t,m, n), and µ2(t,m, n).

The above analysis demonstrates that the attack and defense strategies, states, and results are all
functions with respect to time. The selection of attack and defense strategies has an impact on the
network states and ulteriorly affects the interaction results. Conversely, the attackers and defenders will
select the strategies in the light of attack and defense results. The indivisible connection among these
elements results in the difficulty of obtaining the equilibrium strategy. As a result, Algorithm 1 provides
the method to select the optimal strategies for attack and defense groups.

Firstly, at any time t ∈ [0, T ], compute the current attack group and defense group strength A(t)
and D(t) based on the dynamic equations (1a), (1b), the initial conditions of group strength (2a), (2b)
and the paralysis results (3a), (3b). Then, λ1(t,m, n), λ2(t,m, n), µ1(t,m, n), and µ2(t,m, n) are solved
according to the calculation of group strength as Lemma 2. Finally, on the basic of Theorem 1, the
optimal strategies for attack and defense groups W ∗

1 (t), S
∗
1 (t), W

∗
2 (t), and S∗

2 (t) can be obtained from
λ1(t,m, n) and µ2(t,m, n). More details are shown in Algorithm 1.

Algorithm 1 Optimal strategy selection for attack and defense groups

Input: Differential game model (P,B, t, F, C, g, U). Initial group strength: A(0), D(0). Initial strategies: W1(0), S1(0), W2(0),

S2(0). Paralysis thresholds: m, n. Coefficients of differential game model: α, β, γ, η, ϕ, ξ, a, c, b, d, f , h. Joint state variables:

λ1(T ), λ2(T ), µ1(T ), µ2(T ).

Output: Optimal control strategies for attack and defense groups: W∗

1
(t), S∗

1
(t), W∗

2
(t), S∗

2
(t).

For t ∈ [0, T ]

1. Compute the strength of attacker group and defender group A(t) and D(t) via (1a), (1b), (2a), (2b), (3a), and (3b);

2. Substitute the group strength A(t) and D(t) into (12) and (13);

3. Solve the joint state variables λ1(t,m, n), λ2(t,m, n), µ1(t,m, n), and µ2(t,m, n) via (12) and (13);

4. Substitute the joint state variables λ1(t,m, n), λ2(t,m, n), µ1(t,m, n), and µ2(t,m, n) into (14);

5. Obtain and return the optimal strategies W∗

1
(t), S∗

1
(t), W∗

2
(t), and S∗

2
(t) via (14).

5 Numerical results

Numerical results evaluate the differential game-based multi-attacker to multi-defender interaction model.
Firstly, we discuss the effect of equilibrium strategies on the strength evolution. Moreover, the relationship
between the paralysis threshold and strength evolution results is demonstrated.

In the numerical analysis, the change of parameter setting has little effect on the analysis of attack and
defense results, as shown in Figure 3. Therefore, we choose the parameter configurations with obvious
line characteristics in the following analysis for convenience’s sake. The wake-up coefficients are set as
a = b = 0.04. The paralysis coefficients are set as f = h = 0.025. The retreat coefficients are set as
c = d = 0.039. The wake-up strategy cost coefficients are set as α = η = 1. The retreat strategy cost
coefficients are set as β = ξ = 1.2. The profit-loss coefficients are set as γ = ϕ = 5. In addition, the model
in this paper is an initial-state-fixed and final-state-free model, so the choice of strategies and evolution
process will vary with the end of time. 40 time units are taken as an example of the time duration in
the following analysis for that there is no longer a turning point worth analyzing after 40, during which
both groups reduce their strength until reaching 0.
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Figure 3 (Color online) The evolution trajectory of attack-defense states. (a) With wake-up coefficient 0.04; (b) with wake-up

coefficient 0.05.
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Figure 4 (Color online) The evolution trajectory of attack and defense strategies.

5.1 Evolution trajectory of attack and defense states

The initial strength of attack group is set as A(0) = 0.9, and the initial strength of defense group is set
as D(0) = 0.5. Since the group strength is a mathematical variable concept in our model, the unit of it is
not specified and can be detailed and defined in specific scenarios, such as the total number of terminals
and the total computation resources occupied. Given the same paralysis thresholds m = n = 0.1, the
evolution trajectory of attack and defense states and optimal strategies are demonstrated as Figures 3
and 4, respectively. The detailed analysis of the attack and defense interaction process is as follows.

0–1 s: At the beginning, neither group has implemented their strategies yet, and the strength of the att-
ack group has reached the level to paralyze the defense group. Thus the strength of the attack group re-
mains unchanged while the defense group sustains a certain degree of paralysis and its strength decreases.

1–14 s: The defense group starts increasing strength to catch up with the attack group with a higher
rate, reaching a level of no paralysis in about 14 s. During this period, the attackers strengthen the
attack group with a lower rate than the defenders to keep the dominant position and obtain benefits.

14–33 s: Starting from around 14 s, the defense group gradually reduces the growth rate of strength. At
around 22 s, the attack group and defense group are equal in strength. During this phase, neither group
is paralyzed, and the changes in strength are slightly smooth. But as time goes on and cost accumulates,
at about 25 and 31 s, the retreat rate of attack group and defense group begins to surpass the wake-up
rate, respectively. Both groups convert strategies so as to cut down the strategy cost and guarantee the
effectiveness, resulting in a slight reduction of their strength.

33–40 s: The defense group strength has reached the level that can paralyze the attack group, causing
the strength of the attack group to decrease at a high speed at around 33 s. And the defense group also
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Figure 5 (Color online) The evolution trajectory of attack and defense states when (a) n = 0.3, (b) n = 0.5, and (c) n > 0.8.

begins to decrease the strength for a high cost-benefit ratio.

As shown in Figure 3, most of the time in the attack and defense interaction process, attackers and
defenders prefer to strengthen their groups with varying intensities no matter at an advantage or disad-
vantage. The behaviours taken by the predominant group can be interpreted as continuing the triumphant
pursuit. And the inferior one will strengthen its group with a higher rate to reduce the disparity between
groups. However, both players tend to decrease their strength for cost-saving during the later attack
and defense period. Therefore, it is suggested that the attackers and defenders should enforce effectual
strategies as early as possible to occupy dominant positions. Otherwise, with the accumulation of cost,
the loss may not be remedied in the later period.

As shown in Figure 4, at any time in the attack and defense interaction process, both groups implement
the combination of wake-up strategy and retreat strategy with different intensities. From a more practical
perspective, in the attack and defense interaction with large-scale nodes, the identities of nodes are
predicted to transform frequently. The nodes have the probability of attacking opponents and have the
capability of self-protection at the same time. And the continual transformations may lead to tremendous
high-frequency and short-term attack-defense actions.

5.2 Paralysis threshold

In Subsection 5.1, all the parameters are constant, but the real parameters could be changeable, e.g., the
paralysis threshold. Therefore, the paralysis threshold is considered to be controllable in this subsection,
and its impact on the node state evolution results is analyzed. The results with defense paralysis threshold
n set as 0.3, 0.5, 0.8 and beyond are provided in Figure 5, respectively.

Comparing Figures 3 and 5, it can be intuitively noticed that as the paralysis threshold of the defense
group increases, the trends of the two curves of group strength become more and more polarized. Specif-
ically, as Table 2 shows, the larger the paralysis threshold value within a certain range, the faster the
strength growth rate of the defense group, the greater the peak value of the defense group strength, the
earlier the time point when the two groups have the same strength, and the earlier the time when the
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Table 2 Comparison of key data points

Item n = 0.1 n = 0.3 n = 0.5 n > 0.8

Defense group being paralyzed (s) 0–14 0–7 0–4 –

Strategy switching point 1 (s) 14 7 4 0

Same strength point (s) 22 16 14 10

Strategy switching point 2 (s) 33 22 18 13

Attack group being paralyzed (s) 33–40 22–40 18–40 13–40

Difference in peak strength 0.118 0.42 0.644 1.032

attack group becomes paralyzed. Therefore, appropriately increasing the paralysis threshold can keep
the strength at a higher growth level on its own, and can make the opponent’s strength shrink faster.

However, when the paralysis threshold exceeds a certain critical value, no matter how it changes,
the attack and defense process will no longer change. This is because neither group is paralyzed at the
beginning. Only when there exists paralysis will the change of the paralysis threshold have a direct impact
on up and down of the strength. And there is no doubt that the implementation of the strategy is another
factor influencing the group strength. It is the synergy between the interaction results and strategies that
makes the change of the paralysis threshold differently affect the attack and defense process. But when
there is no paralysis, the change of the paralysis threshold will not affect the variety of group strength.
Only the implementation of the strategy affects the increase and decrease of the group strength, and the
unilateral role of the strategy makes the attack and defense process no longer generate differences.

In summary, within the critical range, the larger the paralysis threshold, the more conducive to widen-
ing the gap between groups. However, once the paralysis threshold exceeds a certain value, the interaction
process will no longer change. Therefore, improving the paralysis threshold conduces to quickly expanding
the gap with the opponent.

6 Conclusion

The interaction among cooperative attackers and cooperative defenders has been investigated considering
the attacker group and defender group. We have formulated a differential game-based multi-attacker to
multi-defender interaction model in which both groups implement optimal strategies to maximize their
own utility functions. By introducing optimal control theory, an optimal strategy selection algorithm for
multi-attacker to multi-defender interaction is proposed with Hamilton functions to obtain the equilibrium
strategy. Finally, numerical results have evaluated how the interaction strategies and results are mutually
restricted. It has shown that both the attack group and defense group are aggressive to strengthen
their groups at the beginning but gradually decrease their strength afterward to guarantee the optimal
utility. Moreover, the results have also verified that the paralysis threshold has a profound impact on the
interaction results. Raising the paralysis threshold within a certain range is more conducive to launching
a short-term but high-intensity interaction.

Future work can focus on the multi-attacker and multi-defender interaction model with long-term and
multi-stage for that most of the parameters in this paper are fixed and can only satisfy the attack and
defense requirements in a short time. Therefore, our model may be extended to a multi-stage model in
order to fit the time-varying characteristic of long-term attack and defense interaction. In addition, the
diverse attributes of heterogeneous devices existing in the networks and the accessibility of communication
links can be considered so as to improve the genuineness of the differential game model.
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Appendix A Proof of Lemma 2

When D(t) − A(t) > mA(t), the Hamiltonian of attack group can be represented as

H1(t, CA(t), CD(t), λ1(t), λ2(t),m, n)

=
γ

2
{A2(t) − [D(t) − A(t)]2} −

α

2
W

2

1
(t) +

β

2
S

2

1
(t) + λ2(t)[bW2(t) − dS2(t)] + λ1(t)[aW1(t) − cS1(t) − hD(t) + hA(t)]

= −
γ

2
D

2(t)+γA(t)D(t)−λ1(t)hD(t)+λ1(t)hA(t)−
α

2
W

2

1
(t)+

β

2
S

2

1
(t)+λ2(t)[bW2(t)−dS2(t)]+λ1(t)[aW1(t)−cS1(t)]. (A1)

The Hamiltonian of defense group can be represented as

H2(t, CA(t), CD(t), µ1(t), µ2(t),m, n)

=
ϕ

2
D

2(t) −
η

2
W

2

2
(t) +

ξ

2
S

2

2
(t) + µ1(t)[aW1(t) − cS1(t) − hD(t) + hA(t)] + µ2(t)[bW2(t) − dS2(t)]

=
ϕ

2
D

2(t) − µ1(t)hD(t) + µ1(t)hA(t) −
η

2
W

2

2
(t) +

ξ

2
S

2

2
(t) + µ1(t)[aW1(t) − cS1(t)] + µ2(t)[bW2(t) − dS2(t)]. (A2)

Combining (A1) and (A2), Eq. (12) can be obtained by solving the partial derivative for group strength.

When A(t) − D(t) > nD(t), the Hamiltonian of attack group can be represented as

H1(t, CA(t), CD(t), λ1(t), λ2(t),m, n)

=
γ

2
A

2(t) −
α

2
W

2

1
(t) +

β

2
S

2

1
(t) + λ1(t)[aW1(t) − cS1(t)] + λ2(t)[bW2(t) − dS2(t) − fA(t) + fD(t)]

=
γ

2
A

2(t) − λ2(t)fA(t) + λ2(t)fD(t) −
α

2
W

2

1
(t) +

β

2
S

2

1
(t) + λ1(t)[aW1(t) − cS1(t)] + λ2(t)[bW2(t) − dS2(t)]. (A3)

The Hamiltonian of defense group can be represented as

H2(t, CA(t), CD(t), µ1(t), µ2(t),m, n)

=
ϕ

2
{D2(t) − [A(t) − D(t)]2} −

η

2
W

2

2
(t) +

ξ

2
S

2

2
(t) + µ1(t)[aW1(t) − cS1(t)] + µ2(t)[bW2(t) − dS2(t) − fA(t) + fD(t)]

= ϕA(t)D(t)−
ϕ

2
A

2(t)−µ2(t)fA(t)+µ2(t)fD(t)−
η

2
W

2

2
(t)+

ξ

2
S

2

2
(t)+µ1(t)[aW1(t)−cS1(t)]+µ2(t)[bW2(t)−dS2(t)]. (A4)

Combining (A3) and (A4), Eq. (13) can also be obtained by solving the partial derivative for group strength.

With initial boundary conditions A(0) = A0, D(0) = D0, the joint state variables need to be fixed in the final states. Thus, the

boundary conditions λ1(T ) = 0, λ2(T ) = 0, µ1(T ) = 0, µ2(T ) = 0 should be satisfied.
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