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Abstract Functional signatures (FS) enable a master authority to delegate its signing privilege to an

assistant. Concretely, the master authority uses its secret key skF to issue a signing key skf for a designated

function f ∈ FFS and sends both f and skf to the assistant E, which is then able to compute a signature σf

with respect to pkF for a message y in the range of f . In this paper, we modify the syntax of FS slightly

to support the application scenario where a certificate of authorization is necessary. Compared with the

original FS, our definition requires that FFS is an injective function family and for any f0, f1 ∈ FFS there

does not exist an intersection between range(f0) and range(f1). Accordingly, we redefine the security of FS

and introduce two additional security notions, called unlinkability and accountability. Signatures σf in our

definition do not expose the intention of the master authority. We propose two constructions of FS. The

first one is a generic construction based on signatures with perfectly re-randomizable keys, non-interactive

zero-knowledge proof (NIZK) and traditional digital signatures, and the other is based on RSA (Rivest-

Shamir-Adleman) signatures with full domain hash and NIZK. We prove that both schemes are secure under

the given security models.
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1 Introduction

Nowadays cloud computing is profoundly influencing the development of modern economy and society.
However, the cloud is not a completely reliable service platform and we should take into consideration
cloud storage security and cloud computation security [1]. In this paper, we merely focus on how to
achieve cloud computation security and try to provide an alternative approach to prevent a cloud server
from performing infected computations.

Boyle et al. [2] have proposed a novel notion called functional signature (FS). FS enables a master
authority to delegate the signing process to its assistant E if E honestly carries out the specified actions.
Therefore, FS can be well applied to scenarios where authorization letters are necessary. Take the scenario
shown in Figure 1 as an example. Assume that Alice asks E (e.g., Bob) for help to sell her fruits. Since
the last-sale price may fluctuate according to the order quantity, Alice sets a price range in advance, and
issues an authorization letter for E (e.g., Figure 2). Then E is able to show the latest price information
to the customers on behalf of Alice. Concretely, in FS the master authority issues a signing key skf for a
designated function f with the master secret key skF (with respect to pkF ), i.e., skf ← FS.KGen(skF , f)
and sends (skf , f) to E . If the cloud E honestly performs the f on an input x (which satisfies the appointed
complex policy), E can compute a desirable signature σf ← FS.Sign(skf , f, x) on the output y = f(x).
Finally, a receiver checks whether y is admitted by the master authority, i.e., b ← FS.Vrfy(pkF , y, σf ).
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Figure 1 (Color online) An application scenario of FS. Figure 2 An example of authorization letter.

Unlike [2], this paper assumes that range(f0) ∩ range(f1) = ∅ for any f0, f1 ∈ FFS and f(x0) 6= f(x1) for
any x0, x1 ∈ Df since an authorization letter should be unambiguous. Accordingly, we redefine FS and
modify its security models slightly.

A secure FS scheme requires unforgeability and privacy. Unforgeability guarantees that without the
knowledge of skf (with respect to f) the cloud server cannot deceive the verifier into accepting a forged
message y∗ ∈ range(f). Regarding privacy, Boyle et al. [2] introduced a notion named function privacy,
which guarantees that an eavesdropper cannot judge whether (y, σf ) comes from FS.Sign(skf0 , f0, x0) or
FS.Sign(skf1 , f1, x1) if f0(x0) = f1(x1). Unfortunately, this privacy notion no longer works in the scenario
above because there does not exist a tuple (f0, x0, f1, x1) in FFS such that f0(x0) = f1(x1). Hence, we
introduce another privacy notion called unlinkability to close this gap. Informally, unlinkability ensures
that a probabilistic polynomial-time (PPT) adversary cannot determine if σf is a real signature from
the signer (i.e., the assistant) or a simulated one output by the simulation algorithm FS.Sim(pkF , f, x).
Therefore, (y = f(x), σf ) does not expose the cooperation intention of the master authority to others
except the verifier. A potential application of unlinkable FS is business negotiation. Suppose that E is
an agency and B is a potential business partner of the master authority. The master authority issues
an authorization letter (skf , f) to E and asks E to enter into a contract with B on its behalf. E draws
up a draft contract y = f(x) in accordance with specific conditions and produces σf on y to show the
cooperation intention of the master authority with B. If B accepts the draft contract, then they run a
fair exchange protocol [3–5] to sign the final cooperation intention agreement. Otherwise, E and B obtain
nothing from each other. Notice that in the above process the master authority cannot deny the fact
that it did issue an authorization letter to E when E submits (skf , f) to the judge if there is any dispute.
So the output of the fair exchange protocol and the (skf , f) can be used to constitute an undeniable
contract between the master authority and B.

Our contributions. In this work, we make the following contributions.

(1) We modify the definition of FS [2] slightly in order to support the application scenarios where
authorization letters are necessary. Preciously, in our paper FFS is a special function family such that
there does not exist a pair (f0, x0, f1, x1) in FFS with f0(x0) = f1(x1) since authorization letters are
unambiguous. Accordingly, we revise the security of FS and introduce two security notions: unlinkability
and accountability. The unlinkability guarantees that an adversary cannot identify the source of (m̂, σf ),
and the accountability guarantees that the master authority cannot deny the fact that it did delegate its
signing privilege to E (c.f. Definitions 6 and 7).

(2) Inspired by the constructions in [2], we provide two constructions with respect to our definition
of FS. The first one takes advantage of signatures with perfectly re-randomizable keys (c.f. [6]), non-
interactive zero-knowledge proof and digital signatures, and the second one is based on the RSA-FDH
signature scheme [7] and zero-knowledge proof [8]. We prove them to be secure under the proposed
security models.

Organization. Section 2 reviews some related studies in the literature. Section 3 recalls some cryp-
tographic primitives that are important in our constructions. Section 4 gives the revised definition of FS
as well as the corresponding security models. Section 5 gives a generic construction of FS, and Section 6
gives our second construction of FS. Finally, we conclude this work in Section 7.
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2 Related work

Taking into account the cloud computation security, researchers have proposed homomorphic signa-
tures [9–12], redactable signatures [13, 14], sanitizable signatures [6, 15], and proxy signatures [16, 17].
These primitives are closely related to FS, and in this part we discuss the relations among them.

Homomorphic signature (HS) is a cryptographic primitive which allows any entity to verify the origin
of the calculation result m̂. Suppose that a data owner H wants to outsource its data m = {m1, . . . ,mk}
to a cloud server E , and it runs σi ← HS.Sign(skH ,mi) to generate a vector of signatures σ which can be
used to authenticate m. After that E is able to compute a homomorphic signature σh on m̂ = f(m) by
running σh ← HS.Eval(pkH , f, ·,σ) without knowing skH . Specially, only if the input of f is m from H
and the output is m̂, does it hold that HS.Vrfy(pkH , f, ·, m̂, σh) = 1. Since the context-hiding property of
HS guarantees that σh does not leak information about the input m to the verifier, linearly HS [9,11,12]
enjoys wide application prospects (e.g., f(weith, age) = 0.2 · weight − 0.2 · age can be used to calculate
the bone density). Though σh enables the third party to believe that E did perform computations on H’s
data, it does not authenticate the function f and the inputs are fixed.

Redactable signature (RS) is another primitive which can be seen as a special type of HS. In RS, a data
owner R executes the signing algorithm to produce a malleable signature σ̈ on a designated document m̈
(e.g., an electronic medical record) and uploads (m̈, σ̈) to E . Then E (i.e., the redactor) removes sensitive
portions of m̈ to get a disclosed data ṁ and computes a redactable signature σ̇ on behalf ofR accordingly.
Ma et al. [13] made a survey on RS and summarized the existing works: RS based on commit vector,
RS based on Merkle hash, RS based on bilinear pairing, and RS based on the accumulator. There is no
doubt that RS is useful. However, RS cannot stop a signature holder from modifying ṁ. In other words,
an eavesdropper can further delete some portions of ṁ to get m̂ and compute a valid redactable signature
σ̂ on m̂ (c.f. [14]). Therefore, RS is not suitable for our application scenario.

The functionality of sanitizable signature (SS) is analogous to RS. But unlike RS, the system of
SS should maintain a key pair (skS , pkS) (of data owner S) and a key pair (skE , pkE) (of sanitizer
E) simultaneously. Fleischhacker et al. [6] proposed an unlinkable SS scheme using signature with re-
randomizable keys, CCA-secure public-key encryption and non-interactive zero-knowledge proof. Their
instantiation is concrete and efficient. Camenisch et al. [15] proposed another invisible SS scheme based
on an interesting primitive dubbed chameleon-hash functions with ephemeral trapdoors. FS can be
considered as a variant of SS, but there is no need for FS to maintain the key pair (skE , pkE). Meanwhile,
FS does not require the transparency property [6].

Boyle et al. [2] formalized the definition of FS, and showed an application of FS in verifiable computation
(VC, c.f. [18]). Afterwards, Backes et al. [19] introduced a more malleable primitive named delegatable
functional signature (DFS). In DFS, a master authority can outsource the computation F to E and E
can further delegate the computation F ′ ⊆ F to its sub-contractor. To enhance the security of FS, Li et
al. [20] proposed private FS where the master authority can transform an input x into a ciphertext cx
in order to keep E away from the firsthand data. Recently, Guo et al. [21] introduced a new primitive,
called authorized function homomorphic signature (AFHS), which can be used to check whether the cloud
server E honestly performs a specified function on user’s data. Their black-box construction is based on
FS.

FS also shares similarity with proxy signature (PS) [16] which allows the delegation of signing rights.
In PS, the master authority signs on a warrant w, which is composed of a message part and a freshly
generated public key pk′P , and gives w and the private key sk′P (with respect to pk′R) to E . In fact, the
idea of the first trivial FS construction in [2] is similar to PS.

3 Preliminaries

3.1 Signatures with perfectly re-randomizable keys

A signature scheme with re-randomizable keys allows a signer to re-randomize a key pair (skR, pkR) to
a fresh key pair (sk′R, pk

′
R) and then prove the origin of (sk′R, pk

′
R) (using zero-knowledge proof). In

addition, the signer can sign on a message m and generate a signature σr with respect to pkR as well as
another signature σ̃r with respect to pk′R.
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Definition 1 (Signature with perfectly re-randomizable keys, RRS [6]). An RRS scheme consists of a
tuple of PPT algorithms (Setup, Sign,Vrfy,RrSk,RrPk), as follows.

Setup(1λ) → (skR, pkR). The setup algorithm takes as input a security parameter 1λ, and outputs a
secret key skR and a public key pkR for the signer.

Sign(skR,m) → σr. The signing algorithm takes as input skR and a designated message m ∈ MRRS

(whereMRRS is the message space), and outputs a signature σr.
Vrfy(pkR,m, σr)→ b. The verification algorithm takes as input pkR and the alleged pair (m,σr), and

outputs a bit b (i.e., boolean variable).
RrSk(skR, δ)→ sk′R. The secret key re-randomization algorithm takes as input skR and a randomness

δ ∈ ∆RRS (where ∆RRS is the randomness space), and outputs a fresh secret key sk′R.
RrPk(pkR, δ) → pk′R. The public key re-randomization algorithm takes as input pkR and δ, and

outputs a fresh public key pk′R (with respect to sk′R).

Correctness. A necessary property of RRS is correctness [6]. Formally,
(1) For any (skR, pkR) ∈ {RRS.Setup(1

λ)} and any m ∈ MRRS, it holds that

Pr [σr ← RRS.Sign(skR,m) : RRS.Vrfy(pkR,m, σr)→ 0] 6 negl(λ);

(2) For any (skR, pkR) ∈ {RRS.Setup(1
λ)}, any m ∈MRRS and any δ ∈ ∆RRS, it holds that

Pr
[
sk′R ← RRS.RrSk(skR, δ) ∧ σr ← RRS.Sign(sk′R,m)

∧ pk′R ← RRS.RrPk(pkR, δ) : RRS.Vrfy(pk
′
R,m, σr)→ 0

]
6 negl(λ);

(3) If (skR, pkR) and (sk′′R, pk
′′
R) are honestly generated by algorithm RRS.Setup, for a δ ← ∆RRS it

holds that (sk′′R, pk
′′
R)

c
≈ (sk′R, pk

′
R) where sk′R ← RRS.RrSk(skR, δ) and pk′R ← RRS.RrPk(pkR, δ).

Unforgeability. Consider the following game where CRRS is a challenger and ARRS is a PPT adversary.
(1) CRRS runs (skR, pkR)← RRS.Setup(1λ), gives pkR to ARRS and initializes an empty set QRRS.
(2) ARRS has access to two signing oracles RRS.O1

Sign and RRS.O2
Sign. More precisely, ARRS adaptively

makes signature queries on messages of its choices, and CRRS responds to these queries as follows:
• RRS.O1

Sign: Given m as input, compute σr ← RRS.Sign(skR,m), output σr and set QRRS := QRRS ∪
{m}.
• RRS.O2

Sign: Given (m, δ) as input, compute sk′R ← RRS.RrSk(skR, δ), output σr ← RRS.Sign(sk′R,m)
and set QRRS := QRRS ∪ {m}.

(3) ARRS outputs a forgery (m∗, σ∗
r , δ

∗) and wins the game if m∗ /∈ QRRS and either of the following
holds:
• RRS.Vrfy(pkR,m

∗, σ∗
r ) = 1; or

• RRS.Vrfy
(
RRS.RrPk(pkR, δ

∗),m∗, σ∗
r

)
= 1.

The advantage AdvufRRS(λ) of ARRS is defined as the probability of winning the game.

Definition 2 (Unforgeability of RRS [6]). An RRS scheme RRS = (Setup, Sign,Vrfy,RrSk,RrPk) is
unforgeable if AdvufRRS(λ) is negligible.

3.2 Non-interactive zero-knowledge proof

With a non-interactive zero-knowledge proof system with respect to language L
def
= {ι : ∃ωs.t.Check(ι, ω) =

1}, a prover P holding a witness ω is able to convince the verifier V that the claimed statement ι is true.
The zero-knowledge property guarantees that a malicious verifier V∗ cannot learn information about
ω from the transcript during the process, and the argument of knowledge property guarantees that a
malicious prover P∗ without the corresponding witness cannot offer a correct proof π∗.

Definition 3 (Non-interactive zero-knowledge argument of knowledge, NIZK [22]). An NIZK system
for a language L ∈ NP consists of six PPT algorithms (Setup,Prove,Vrfy,Check, Sim,Ext) and satisfies
completeness, adaptive soundness, adaptive zero-knowledge and argument of knowledge.

Setup(1λ)→ crs. The setup algorithm takes as input a security parameter 1λ, and outputs a common
reference string crs.

Prove(crs, ι, ω)→ π. The proving algorithm takes as input crs, a statement ι ∈ L and a witness ω for
which Check(ι, ω) = 1, and outputs a proof π.

Vrfy(crs, ι,π) → b. The verification algorithm takes as input crs, the claimed pair (ι,π), and outputs
a bit b.
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Check(ι, ω)→ b. The checking algorithm takes as input ι and ω, and output a bit b.
Sim. The simulator is divided into two parts: (1) Sim1(1λ) → (crs, td) and (2) Sim2(crs, td, ι) → πs.

Algorithm Sim1 takes as input 1λ, and outputs a simulated crs and a trapdoor td. Algorithm Sim2 takes
as input crs, td and ι, and outputs a simulated proof πs.

Ext. The extractor is divided into two parts: (1) Ext1(1λ) → (crs, td) and (2) Ext2(crs, td, ι,π) → ω.
Algorithm Ext1 takes as input 1λ, and outputs a crs and a relevant trapdoor td. Algorithm Ext2 takes as
input crs, td, a claim statement ι and a corresponding proof π, and outputs a witness ω.

Completeness. It requires that

Pr
[
crs← NIZK.Setup(1λ) ∧ NIZK.Check(ι, ω) = 1 ∧ π← NIZK.Prove(crs, ι, ω) :

NIZK.Vrfy(crs, ι,π)→ 0
]
6 negl(λ).

Adaptive soundness. It requires that

Pr
[
crs← NIZK.Setup(1λ) ∧ AP∗(crs)→ (ι∗,π∗) ∧ ι∗ /∈ L : NIZK.Vrfy(crs, ι∗,π∗)→ 1

]
6 negl(λ).

Adaptive zero-knowledge. It requires that
∣∣Pr

[
crs← NIZK.Setup(1λ) : AV∗

NIZK.Prove(crs,ι,ω)(crs)→ 1
]

− Pr
[
(crs, td)← NIZK.Sim1(1λ) : A

NIZK.Sim2(crs,td,ι)
V∗ (crs)→ 1

]∣∣ 6 negl(λ).

Argument of knowledge. It requires that
∣∣Pr

[
crs← NIZK.Setup(1λ) : AP∗(crs)→ 1

]
− Pr

[
(crs, td)← NIZK.Ext1(1λ) : AP∗(crs)→ 1

]∣∣ 6 negl(λ),

and

Pr
[
(crs, td)← NIZK.Ext1(1λ) ∧AP∗(crs)→ (ι∗,π∗) ∧ NIZK.Vrfy(crs, ι∗,π∗)→ 1

∧ NIZK.Ext2(crs, td, ι∗,π∗)→ ω∗ : NIZK.Check(ι∗, ω∗) = 0
]
6 negl(λ).

4 Functional signature

4.1 Formal definition

Below we present a revised definition of FS.

Definition 4 (Functional signature, FS). An FS scheme consists of the following five PPT algorithms
(Setup,KGen,RfPk, Sign,Vrfy).

Setup(1λ) → (skF , pkF ). The setup algorithm is run by the master authority. It takes as input a
security parameter 1λ and outputs a pair of keys (skF , pkF ).

KGen(skF , f) → skf . The signing key generation algorithm is executed by the master authority. It
takes as input skF and a function f from the function space FFS, and outputs a signing key skf (with
respect to f) for the assistant.

RfPk(pkF )→ p̃kF . The public key refreshment algorithm is executed by the verifier. It takes as input

pkF , and outputs a refreshing public key p̃kF with respect to pkF . It requires the verifier to maintain a

stateful list Lpk
F
= {(pkF , p̃kF )}.

Sign(p̃kF , skf , f, x) → (y, σf ). The signing algorithm is run by the assistant. It takes as input p̃kF ,
skf , f and an input x from the domain Df of f , and outputs y = f(x) as well as a functional signature

σf on y. Particularly, the algorithm directly outputs ⊥ if the origin of p̃kF is not pkF .

Vrfy(pkF , p̃kF , y, σf ) → b. The verification algorithm is executed by the verifier. It takes as input

(pkF , p̃kF ) in LpkF
, y and σf , and outputs a bit b, which is 1 for acceptance and 0 for rejection.

Remark 1. In our definition of FS, σf can only be verified by a designated verifier who is chosen by
the assistant. The verifier runs algorithm RfPk only once for each session and then the assistant can sign

on the function output y according to p̃kF from the verifier. Since algorithm RfPk does not require any

secret parameters, the verifier should additionally maintain a list Lpk
F
= (pkF , p̃kF ) to check whether

the assistant has executed algorithm Sign honestly, i.e., using the session-related p̃kF .
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Correctness. An FS scheme FS = (Setup,KGen,RfPk, Sign,Vrfy) is correct if it holds that

Pr
[
(skF , pkF )← FS.Setup(1λ) ∧ f ∈ FFS ∧ skf ← FS.KGen(skF , f) ∧ p̃kF ← FS.RfPk(pkF )

∧ x ∈ Df ∧ (y, σf )← FS.Sign(p̃kF , skf , f, x) : FS.Vrfy(pkF , p̃kF , y, σf )→ 0
]
6 negl(λ).

Succinctness. It guarantees that the size of σf is independent of the size of (f, x) and demands that

(skF ,pkF )← FS.Setup(1λ) ∧ f ∈ FFS ∧ skf ← FS.KGen(skF , f) ∧ p̃kF ← FS.RfPk(pkF )

∧ x ∈ Df ∧ (y, σf )← FS.Sign(p̃kF , skf , f, x) ∧ |σf | = poly(λ),

where poly(·) is a polynomial.

4.2 Security models

Unforgeability. Consider the following game where AFS is a PPT adversary and CFS is a challenger.
Due to the unlinkability (Definition 6), the adversary here models an outsider rather than the agency
and the (designated) verifier.

(1) CFS runs algorithm FS.Setup to obtain (skF , pkF ). The pkF is published while the skF is kept
secret by CFS.

(2) CFS initializes an empty table TFS = (·, ·) and AFS has access to two oracles FS.OKGen and FS.OSign

which are defined as follows. For simplicity, we assume that the oracles return the same answer if AFS

issues a repeated query.
• FS.OKGen: It takes as input f , generates a fresh skf by running algorithm FS.KGen, inserts an item

(f, skf ) into TFS and returns skf as the answer.

• FS.OSign: It takes as input (f, x), and outputs a σf and the corresponding p̃kF . Concretely, it works
as follows:

(a) If there is (f, skf ) in TFS, generate p̃kF ← RfPk(pkF ), compute (y, σf ) ← FS.Sign(p̃kF , skf , f, x),

and insert (pkF , p̃kF ) into a list Lpk
F
;

(b) Otherwise, generate a fresh skf honestly, add (f, skf ) into TFS, and compute p̃kF and σf using skf
as above.

(3) Finally, AFS submits a forgery (p̃k∗F , y
∗, σ∗

f ) to CFS and wins the game if it holds that

• (pkF , p̃k
∗
F ) ∈ LpkF

; and

• FS.Vrfy(pkF , p̃k
∗
F , y

∗, σ∗) = 1; and
• there is no KGen query f such that y∗ ∈ range(f); and
• a signature on y∗ has not been queried before.
The advantage AdvufFS(λ) of AFS is defined as the probability of winning the game.

Definition 5 (Unforgeability of FS). An FS scheme FS = (Setup,KGen,RfPk, Sign,Vrfy) is unforgeable
if AdvufFS(λ) is negligible.

Unlinkability. Let FS.Sim denote a simulator. Consider the following game played between a chal-
lenger CFS and a PPT adversary AFS.

(1) CFS runs (skF , pkF )← FS.Setup(1λ) and gives (skF , pkF ) to AFS.
(2) AFS adaptively chooses a function f and an input x ∈ Df and then submits them to CFS.
(3) CFS flips a coin b← {0, 1} and proceeds as follows:

(a) If b = 0, run p̃kF ← FS.RfPk(pkF );

(b) Otherwise, compute (p̃kF , td)← FS.Sim1(pkF ) where td denotes a trapdoor.

Next, CFS returns (p̃kF , y, σf ) with the following function:

(y, σf ) :=

{
FS.Sign

(
p̃kF ,FS.KGen(skF , f), f, x

)
, if b = 0,

FS.Sim2(p̃kF , td, f, x), otherwise.

(4) Finally, AFS outputs a bit b′.
The advantage AdvunlinkFS (λ) of AFS is defined as |Pr[b = b′]− 1/2|.

Definition 6 (Unlinkability of FS). We say that an FS scheme FS = (Setup,KGen,RfPk, Sign,Vrfy) is
unlinkable if AdvunlinkFS (λ) is negligible.
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Remark 2. Our model of unforgeability is a little different from that in [2]. In our model, CFS executes

algorithm FS.RfPk honestly and “updates” the key p̃kF dynamically along with each session so that
AFS cannot fool the verifier. This operation can be done with NIZK. In each session the verifier runs
crs ← NIZK.Setup(1λ) correctly and appends crs to pkF to “refresh” the public key. Without td with
respect to crs, AFS cannot make a valid forgery. In contrast with Definition 5, CFS in Definition 6 is

not required to produce p̃kF honestly. The main purpose of Definition 6 is to prevent the verifier from
disclosing the cooperation intention of Alice to anyone else. In an unlinkable FS scheme no one can decide
if the verifier “refreshed” the public key pkF (w.r.t Alice) in the right way and got the real signature or
not.

Below we introduce another security notion called accountability, taking inspiration from [6]. Infor-
mally, the accountability requires that the origin of the signing key skf should be undeniable when the
master authority tries to frame an innocent assistant.

Accountability. Only when skf is a valid signing key for f under pkF will algorithm FS.Judge(pkF , f,
skf ) output 1. Consider the following game in which CFS is a challenger and AFS is a PPT adversary.

(1) CFS calls algorithm FS.Setup to get (skF , pkF ) and sends pkF to AFS.
(2) AFS adaptively chooses f and submits it to oracle FS.OKGen to obtain skf .
• FS.OKGen: It takes as input a function f , and works as follows:
(a) If there is an entry (f, skf ) in the history list, return skf directly;
(b) Otherwise, output a fresh skf ← FS.KGen(skF , f) and store (f, skf ).
(3) Finally, AFS produces a pair (f∗, skf∗) and wins the game if it holds that
• FS.Judge(pkF , f

∗, skf∗) = 1; and
• there is no item (f∗, skf∗) in the history list.
The advantage AdvaccFS (λ) of AFS is defined as the probability of winning the game.

Definition 7 (Accountability of FS). An FS scheme FS = (Setup,KGen,RfPk, Sign,Vrfy) is accountable
if AdvaccFS (λ) is negligible.

Remark 3. The accountability guarantees that a PPT adversary cannot produce a valid signing key
skf∗ with respect to f∗ without knowing skF . Actually, an unforgeable FS scheme is also accountable.

Otherwise, one can use Aacc
FS (with respect to Definition 7) as a subroutine to obtain a forgery (p̃k∗F , y

∗, σ∗
f )

against the unforgeability of FS. Precisely, Auf
FS (with respect to Definition 5) uses Aacc

FS to obtain skf∗

and then uses skf∗ to sign on y∗ = f∗(x).

5 Our first construction

In this section we propose a construction of FS employing RRS as a building block. The idea is as follows.
To issue skf for f ∈ FFS, the master authority calls algorithms RRS.RrSk and RRS.RrPk with δ to obtain
a fresh (sk′R, pk

′
R), computes σr on f with respect to pk′R, and sets skf := (pk′R, δ, σr). Only with the

knowledge of δ can one prove that the function f is admitted.

5.1 The construction

Let RRS = (Setup, Sign,Vrfy,RrSk, RrPk) be an RRS scheme and NIZK = (Setup,Prove,Vrfy,Check, Sim,
Ext) be an NIZK system for the following NP language:

L =
{
(pkR, pk

′
R) : ∃δ s.t. pk′R = RRS.RrPk(pkR, δ)

}
.

Let DS = (Setup, Sign,Vrfy) be a signature scheme and Hash : {0, 1}∗ →MRRS be a hash function. Our
FS construction works as below.

FS.Setup. It takes as input 1λ, executes (skR, pkR)← RRS.Setup(1λ) and outputs (skF = skR, pkF =
pkR). For brevity, the following algorithms implicitly get pkF as input.

FS.KGen. It takes as input (skF , f), executes (skD, pkD) ← DS.Setup(1λ), picks δ ← ∆RRS, produces
sk′R ← RRS.RrSk(skR, δ) and pk′R ← RRS.RrPk(pkR, δ), computes σr ← RRS.Sign(sk′R,Hash(f‖pkD))
and outputs skf := (pk′R, σr, δ, skD, pkD).

FS.RfPk. It takes as input pkF , executes crs← NIZK.Setup(1λ) and outputs p̃kF := (pkF , crs). It adds
the tuple (pkF , crs) into a list Lpk

F
.

FS.Sign. It takes as input (p̃kF , skf , f, x) and works as follows:
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• Parse p̃kF as (pkR, crs), and output ⊥ directly if pkR 6= pkF ;
• Parse skf as (pk′R, σr, δ, skD, pkD), set ι := (pkR, pk

′
R) and ω := δ, compute π← NIZK.Prove(crs, ι, ω),

generate σd ← DS.Sign(skD, x), compute y := f(x) and output σf := (pk′R, f‖pkD, σr,π, x, σd).

FS.Vrfy. It takes as input (pkF , p̃kF = (pkR, crs), y, σf ) and works as follows:
• Output 1 if

(pkF ,crs) ∈ LpkF
∧ pkR = pkF ∧ NIZK.Vrfy

(
crs, (pkR, pk

′
R),π

)
= 1 ∧ y = f(x)

∧ DS.Vrfy(pkD, x, σd) = 1 ∧ x ∈ Df ∧ RRS.Vrfy
(
pk′R,Hash(f‖pkD), σr

)
= 1;

• Otherwise, output 0.
Here we demonstrate how to instantiate the black-box construction with compatible modules. Fleis-

chhacker et al. [6] showed that a slightly modified version of Schnorr’s signature scheme satisfies the
unforgeability of RRS in the random oracle model. Besides, it holds that pk′R/pkR = gδ for this modified
version. We can implement the NIZK system with Schnorr’s protocol and Fiat-Shamir transform under
the assumption that the discrete logarithm problem is hard.

The verifier can recover (f, x) from y if y = f(x) is regarded as an unambiguous document (i.e., “Alice
agrees to sell her fruit at a price of x/kg” where ‘ ’ is a special identifier). Thanks to this key point, our
first construction enjoys succinctness. A signature σf = (pk′R, f‖pkD, σr,π, x, σd) can be compressed into
σf = (pk′R, pkD, σr ,π, σd). If DS is a conventional signature scheme, e.g., [23], and RRS is the modified
Schnorr’s signature scheme [6], it holds that |(pk′R‖pkD‖σr‖σd)| = poly(λ). We can further replace NIZK
with zk-SNARK [2] to make π succinct. Then the size of σf is independent of that of (f, x).

5.2 Security analysis

Theorem 1. If DS = (Setup, Sign,Vrfy) is unforgeable, RRS = (Setup, Sign,Vrfy,RrSk,RrPk) is un-
forgeable, Hash is collision-resistant and NIZK = (Setup,Prove,Vrfy, Check, Sim,Ext) is an adaptive NIZK
system, our first construction of FS is unforgeable.
Proof. Denote AFS’s final forgery by (y∗, σ∗

f ) and suppose that y∗ = f∗(x∗). Consider the following
two cases for AFS’s attack.

Forgef : AFS did not send a query f∗ to oracle FS.OKGen nor a query (f∗, ·) to oracle FS.OSign. In
other words, there does not exist a record (f, ·, ·) in the history list of oracle FS.OSign such that f = f∗.

Forgex: AFS did not send a query f∗ to oracle FS.OKGen, and it did send a query (f, x) to oracle
FS.OSign such that f = f∗ and x 6= x∗. In another word, there is at least one record (f, ·, ·) in the history
list of oracle FS.OSign such that f = f∗.

Below we show that AFS wins the game with negligible probability in both cases above.
Forgef : If AFS is able to produce a valid forgery in this case, we can build an efficient algorithm ARRS

to “break” the security of RRS.
(1) ARRS is given pkR and access to oracles RRS.O1

Sign and RRS.O2
Sign and sets pkF := pkR.

(2) Then ARRS answers AFS’s queries to oracles FS.OKGen and FS.OSign as follows:
• FS.OKGen(f): Given f , it runs (skD, pkD) ← DS.Setup(1λ), samples δ ← ∆RRS uniformly at

random, and submits
(
Hash(f‖pkD), δ

)
to oracle RRS.O2

Sign to get σr. Finally, it computes pk′R ←

RRS.RrPk(pkR, δ) and returns skf = (pk′R, σr, δ, skD, pkD).
• FS.OSign(f, x): If there is no item (f, skf ) in TFS, it generates skf = (pk′R, σr, δ, skD, pkD) for f in

the same way as in FS.OKGen. It runs (crs, td) ← NIZK.Ext1(1λ) to generate p̃kF = (pkF = pkR, crs)
and computes π ← NIZK.Prove(crs, (pkR, pk

′
R), δ) and σd ← DS.Sign(skD, x). Finally, it outputs σf =

(pk′R, f‖pkD, σr,π, x, σd) on y = f(x) and p̃kF , and inserts (pkF , crs, td) into LpkF
.

(3) Given (p̃k∗F = (pkR, crs
∗), y∗, σ∗

f = (pk∗R, f
∗‖pk∗D, σ∗

r ,π
∗, x∗, σ∗

d)) from AFS, ARRS computes δ∗ ←

NIZK.Ext2(crs∗, td∗, (pkR, pk
∗
R),π

∗) where (pkF , crs
∗, td∗) is in Lpk

F
and submits the tuple (m∗ = Hash(f∗

‖pk∗D), δ∗, σ∗
r ) to its own challenger CRRS.

Note that for any f0, f1 ∈ FFS it holds that range(f0)∩ range(f1) = ∅ and there does not exist (f, skf )
in TFS such that y∗ ∈ range(f). We can deduce that ARRS did not issue skf∗ for f∗ and m∗ /∈ QRRS.
Moreover, guaranteed by the argument of knowledge of NIZK, it holds that δ∗ is valid. If AFS wins the
game with non-negligible probability, ARRS “breaks” the security of RRS with non-negligible probability
as well, contradicting the assumption that scheme RRS is unforgeable. Therefore, AFS outputs a valid
forgery with negligible probability in this case.
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Forgex: If AFS can produce a valid forgery in this case, we can build another efficient algorithm ADS

to “break” the security of DS.
(1) ADS is given pkD and access to oracle DS.OSign. Let poly(λ) be a polynomial upper-bound on

the number of signature queries made by AFS. Then ADS picks i ← [poly(λ)] guessing that the i-
th FS.Sign query is the first one that is related to f∗. ADS runs (skR, pkR) ← RRS.Setup(1λ) and

crs← NIZK.Setup(1λ), and sets pkF := pkR and p̃kF := (pkR, crs).

(2) ADS answers AFS’s queries to oracles FS.OKGen and FS.OSign as follows.

• FS.OKGen(f): ADS calls algorithm DS.Setup(1λ) to obtain (s̃kD, p̃kD) and picks δ ← ∆RRS. Then
ADS runs sk′R ← RRS.RrSk(skR, δ) and pk′R ← RRS.RrPk(pkR, δ) respectively, and computes σr ←

RRS.Sign(sk′R,Hash(f‖p̃kD)). Finally, ADS outputs skf = (pk′R, σr, δ, s̃kD, p̃kD) for f .
• FS.OSign(f, x): If the oracle has never been accessed before, ADS initializes j := 1; otherwise, ADS

sets j := j + 1. ADS runs crs← NIZK.Setup(1λ) to get p̃kF and inserts (pkF , crs) into LpkF
.

(a) If j 6= i and there is (f, skf = (pk′R, σr , δ, s̃kD, p̃kD)) in TFS, ADS produces σf on y = f(x) using
this skf .

(b) If j 6= i and there is (f, skf = (pk′R, σr, δ,⊥, pkD)) in TFS, ADS runs π ← NIZK.Prove(crs, (pkR,
pk′R), δ) and submits x to its own oracle DS.OSign to obtain σd on x. Finally, ADS outputs σf =
(pk′R, f‖pkD, σr,π, x, σd).

(c) If j 6= i and there does not exist (f, skf ) in TFS, ADS gains skf = (pk′R, σr, δ, s̃kD, p̃kD) for f

through oracle FS.OKGen, runs π ← NIZK.Prove(crs, (pkR, pk
′
R), δ) and σd ← DS.Sign(s̃kD, x), returns

σf = (pk′R, f‖p̃kD, σr,π, x, σd) as the answer and inserts (f, skf ) into TFS.

(d) If j = i and there exists (f, skf = (pk′R, σr, δ, s̃kD, p̃kD)) in TFS, ADS aborts the game. This event
will not happen if ADS guesses i correctly. (ADS guessed that the i-th FS.Sign query is the first one related
to f∗. If there is an item (f, skf ) in TFS, it means that ADS guessed wrong.)

(e) If j = i and there is no (f, skf = (pk′R, σr , δ, s̃kD, p̃kD)) in TFS, ADS chooses δ uniformly at random
to generate sk′R and pk′R, computes σr ← RRS.Sign(sk′R,Hash(f‖pkD)) and adds (f, skf = (pk′R, σr, δ,⊥,
pkD)) to TFS, and produces σf on y = f(x) as step 2(b).

(3) Given a forgery (p̃k∗F = (pkR, crs
∗), y∗, σ∗

f = (pk∗R, f
∗‖pk∗D, σ∗

r ,π
∗, x∗, σ∗

d)) from AFS, ADS sends
(x∗, σ∗

d) to its own challenger CDS.
Notice that for any f0, f1 ∈ FFS it holds that range(f0)∩range(f1) = ∅ and for any f ∈ FFS it holds that

f is an injective function. We can deduce that CDS did not produce σd on x∗ = f∗−1(y∗). If AFS wins the
game with non-negligible probability, ADS “breaks” the security of DS with non-negligible probability as
well, contradicting the assumption that scheme DS is unforgeable. Therefore, AFS outputs a valid forgery
with negligible probability in this case.

Theorem 2. If NIZK = (Setup,Prove,Vrfy,Check, Sim,Ext) is an adaptive NIZK system capturing zero-
knowledge property, our first construction of FS is unlinkable.
Proof. Here we describe how the simulator FS.Sim = (Sim1, Sim2) works in detail.

FS.Sim1. This algorithm gets as input pkF , works as below and outputs (p̃kF , td):

• Compute (crss, tds)← NIZK.Sim1(1λ);

• Set p̃kF := (pkR, crss) and td := tds.

FS.Sim2. This algorithm gets as input (p̃kF , td, f, x), works as below and outputs (y, σf ):

• Run (skD, pkD)←DS.Setup(1λ) and compute σd←DS.Sign(skD, x), run (sk′′R, pk
′′
R)← RRS.Setup(1λ)

and compute σr ← RRS.Sign(sk′′R, f‖pkD);

• Produce πs ← NIZK.Sim2(crss, tds, (pkR, pk
′′
R));

• Compute y := f(x) and set σf := (pk′′R, f‖pkD, σr ,πs, x, σd).

Guaranteed by the correctness of RRS, we have pk′′R
c
≈ pk′R. Furthermore, guaranteed by the zero-

knowledge property of NIZK, we have crss
c
≈ crs (which implies that the simulated refreshing public key

is indistinguishable from the real refreshing public key) and πs

c
≈ π. It is obvious that the simulated

functional signature and the real functional signature are computationally indistinguishable.

Theorem 3. If RRS = (Setup, Sign,Vrfy,RrSk,RrPk) is unforgeable and Hash is collision-resistant, our
first construction of FS is accountable.

Proof. Here we only demonstrate how to construct the algorithm FS.Judge (c.f. Remark 3).
FS.Judge. This algorithm takes (pkF = (pkR, crs), f, skf = (pk′R, σr, δ, skD, pkD)) and outputs a bit b.
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• Set b = 1 if it holds that RRS.RrPk(pkR, δ) = pk′R ∧ RRS.Vrfy
(
pk′R,Hash(f‖pkD), σr

)
= 1;

• Set b = 0 otherwise.

6 Our second construction

Below we introduce another construction of FS taking inspiration from Guillou-Quisquater protocol [8].
The idea is as follows. The master authority uses its private key to produce an RSA signature σ1 on f
and passes it to the assistant. Then the assistant generates a proof π (which is viewed as σf ) to persuade
the verifier to believe that it does know a valid RSA signature on f . Guaranteed by the argument of
knowledge (c.f. Definition 3) of NIZK, a PPT adversary cannot produce a valid forgery.

6.1 The construction

Let Hash1 : {0, 1}∗ → Ze and Hash2,Hash3 : {0, 1}∗ → Z
∗
N be three hash functions. Denote the setup

algorithm of the RSA assumption [7] by RSA.Setup(1λ)→ (N, e, d). Our second construction of FS works
as below.

FS.Setup. It takes as input 1λ, runs (N, e, d) ← RSA.Setup(1λ) and outputs skF = d and pkF =
(N, e,Hash2,Hash3).

FS.KGen. It takes as input (skF , f), runs (Ñ , ẽ, d̃)← RSA.Setup(1λ), sets σ1 := Hash2(Ñ‖ẽ‖f)
d modN ,

and outputs skf = (Ñ , ẽ, d̃, σ1).

FS.RfPk. It takes as input pkF and outputs p̃kF = (N, e,Hash
(s)
1 ) where Hash

(s)
1 is the hash function

programmed by the verifier in the session s. It adds (pkF , p̃kF ) into a list Lpk
F
.

FS.Sign. It takes as input (p̃kF = (N, e,Hash
(s)
1 ), skf = (Ñ , ẽ, d̃, σ1), f, x), runs σ2 := Hash3(x)

d̃ mod Ñ ,

chooses π̃1 ← Z
∗
N uniformly at random, sets π1 := π̃1

e
mod N and π2 := Hash

(s)
1 (N‖e‖π1‖Ñ‖ẽ‖f‖x)

and π3 := σπ2
1 · π̃1 mod N , and outputs σf := (x, σ2, Ñ , ẽ, f,π1,π3).

FS.Vrfy. It takes as input (pkF , p̃kF , y, σf ), computes π2 := Hash
(s)
1 (N‖e‖π1‖Ñ‖ẽ‖f‖x), and

• outputs b = 1 if it holds that Hash3(x) = σẽ
2 mod Ñ ∧ π

e
3 = Hash2(Ñ‖ẽ‖f)π2 · π1;

• outputs b = 0 otherwise.
Similar to the first construction, σf = (x, σ2, Ñ , ẽ, f,π1,π3) in the second construction can be com-

pressed into σf = (σ2, Ñ , ẽ,π1,π3) and it holds that |σf | = poly(λ).

6.2 Security analysis

Theorem 4. If the RSA problem is hard relative to algorithm RSA.Setup(1λ), our second construction
of FS is unforgeable in the random oracle model.
Proof. Assume that y∗ = f∗(x∗) and σ∗

f = (x∗, σ∗
2 , Ñ

∗, ẽ∗, f∗,π∗
1,π

∗
3). There are two cases for AFS’s

attack.
Forgef : AFS outputs a forgery with respect to f∗. In another word, AFS did not send sent a query of

the form (f∗, ·) to oracle FS.OSign where the notation “·” denotes a wildcard.
Forgex: AFS outputs a forgery with respect to x∗. In other words, AFS did not send a query (f∗, x∗)

to oracle FS.OSign, and there exists at least one record (f, x, σf ) in the history list of FS.OSign such that
f = f∗ and x 6= x∗.

The proof is similar to the proof of Theorem 1. Below we only show that in both cases AFS wins the
game with negligible probability.

Forgef : If AFS outputs a valid forgery with overwhelming probability, we can build an efficient algo-

rithm ARSA to solve the RSA problem with respect to RSA.Setup(1λ).
(1) ARSA is given (NRSA, eRSA, YRSA), and sets pkF := (NRSA, eRSA,Hash2,Hash3). Suppose that there

are poly0(λ) records in the history list of OHash2 . ARSA picks i0 ← [poly0(λ)] uniformly at random guessing

that the i0-th Hash2 record is about Ñ∗‖ẽ∗‖f∗.
(2)ARSA answersAFS’s queries to the oraclesOHash

(s)
1
, OHash2 , OHash3 , FS.OKGen, and FS.OSign as follows.

To simplify the matters, here we suppose that AFS never submits the same query twice.
• O

Hash
(s)
1
(NRSA‖eRSA‖π1‖Ñ‖ẽ‖f‖x): ARSA samples π2 ← ZeRSA and returns π2 directly.

• OHash2(Ñ‖ẽ‖f): If this oracle has not been accessed before, ARSA initializes j0 := 1; otherwise, ARSA

sets j0 := j0 + 1.
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(a) If j0 = i0, ARSA stores an item (Ñ‖ẽ‖f,⊥, YRSA) and returns YRSA.

(b) Otherwise, ARSA picks σ1 ← Z
∗
N uniformly at random, computes Y := σeRSA

1 mod NRSA, adds an

item (Ñ‖ẽ‖f, σ1, Y ) to the history list, and returns Y .

• OHash3(x, Ñ‖ẽ): ARSA directly outputs hx ← Z
∗
Ñ
.

• FS.OKGen(f): ARSA computes (Ñ , ẽ, d̃) ← RSA.Setup(1λ), submits Ñ‖ẽ‖f to oracle OHash2 to get

(Ñ‖ẽ‖f, σ1, Y ), and outputs skf = (Ñ , ẽ, d̃, σ1).

• FS.OSign(f, x): ARSA sets p̃kF := (NRSA, eRSA,Hash
(s)
1 ) and inserts it into Lpk

F
. ARSA submits

f to oracle FS.OKGen to obtain skf = (Ñ , ẽ, d̃, σ1), computes σ2 := OHash3(x, Ñ‖ẽ)
d̃ mod Ñ , chooses

π̃1 ← Z
∗
NRSA

, computes π1 := π̃1
eRSA mod NRSA, submits NRSA‖eRSA‖π1‖Ñ‖ẽ‖f‖x to oracle O

Hash
(s)
1

to

obtain π2, computes π3 := σπ2

1 · π̃1 mod NRSA, and outputs y = f(x) and σf = (x, σ2, Ñ , ẽ, f,π1,π3).

(3) AFS outputs a forgery (p̃k∗F = (NRSA, eRSA,Hash
∗
1), y

∗, σ∗
f = (x∗, σ∗

2 , Ñ
∗, ẽ∗, f∗,π∗

1,π
∗
3)) where it

holds that (NRSA, eRSA,Hash
∗
1) is in Lpk

F
and Hash∗1(NRSA‖eRSA‖π∗

1‖Ñ
∗‖ẽ∗‖f∗‖x∗) = π

∗
2. Then ARSA

reprogramsHash∗1(NRSA‖eRSA‖π
∗
1‖Ñ

∗‖ẽ∗‖f∗‖x∗) = π
∗∗
2 and rewindsAFS to get (p̃k

∗
F , y

∗, σ∗
f = (x∗, σ∗

2 , Ñ
∗,

ẽ∗, f∗,π∗∗
1 ,π∗∗

3 )). It holds that (π∗
3/π

∗∗
3 )eRSA = (YRSA)

π
∗

2−π
∗∗

2 . ARSA computes XRSA = Y U
RSA · (π

∗
3/π

∗∗
3 )V

where U · eRSA + V · (π∗
2 − π

∗∗
2 ) = gcd(eRSA,π

∗
2 − π

∗∗
2 ) = 11).

Guaranteed by the RSA assumption, it holds that

Pr[Forgef : AFS wins]/poly0(λ) 6 Pr[ARSA wins] 6 negl(λ),

and we can further deduce that Pr[Forgef : AFS wins] 6 negl(λ).

Forgex: If AFS outputs a valid forgery with non-negligible probability, we can build an efficient
algorithm ARSA to solve the RSA problem with respect to RSA.Setup(1λ).

(1) ARSA is given (NRSA, eRSA, YRSA), runs (N, e, d) ← RSA.Setup(1λ), and sets skF := d and pkF :=
(N, e,Hash2,Hash3). Assume that the oracle OHash3 can be accessed at most poly1(λ) times. ARSA picks
i1 ← [poly1(λ)] guessing that the i1-th Hash3 query is the first Hash3 query related to x∗. Assume that
the oracle FS.OSign can be accessed at most poly2(λ) times. ARSA picks i2 ← [poly2(λ)] guessing that the
i2-th FS.Sign query is the first FS.Sign query related to f∗.

(2)ARSA answersAFS’s queries to the oraclesOHash
(s)
1
, OHash2 , OHash3 , FS.OKGen, and FS.OSign as follows.

• O
Hash

(s)
1
(N‖e‖π1‖Ñ‖ẽ‖f‖x): ARSA picks π2 ← Ze uniformly at random and outputs π2.

• OHash2(Ñ‖ẽ‖f): ARSA picks hf ← Z
∗
N uniformly at random and outputs hf .

• OHash3(x, Ñ‖ẽ): If this oracle has not been accessed, ARSA initializes j1 := 1; otherwise, ARSA sets
j1 := j1 + 1.

(a) If j1 = i1 and (Ñ , ẽ) 6= (NRSA, eRSA), ARSA aborts the game. If ARSA gets the right i1, this event
will not happen and it implies that x = x∗ and Hash3(x) = YRSA.

(b) If j1 = i1 and (Ñ , ẽ) = (NRSA, eRSA), ARSA inserts an item ((x,NRSA‖eRSA),⊥, YRSA) into the history
list and outputs YRSA.

(c) Otherwise, ARSA chooses σ2 ← Z
∗
Ñ
, computes Y := σẽ

2 mod Ñ , outputs Y and inserts an item

((x, Ñ‖ẽ), σ2, Y ) into the history list.

• FS.OKGen(f): If there is (f,⊥) in TFS, ARSA aborts the game; otherwise, ARSA runs (Ñ , ẽ, d̃) ←

RSA.Setup(1λ), computes hf := OHash2(Ñ‖ẽ‖f) and σ1 := hd
f mod N , adds (f, skf ) to TFS and outputs

skf = (Ñ , ẽ, d̃, σ1).

• FS.OSign(f, x): If this oracle has not been accessed before, ARSA initializes j2 := 1; otherwise, ARSA

sets j2 := j2 + 1. ARSA sets p̃kF := (N, e,Hash
(s)
1 ) and inserts it into Lpk

F
.

(a) If j2 = i2 and there is (f, skf ) in TFS, ARSA aborts the game. This event will not happen if ARSA

gets the right i2.

(b) If j2 = i2 and there is no (f, skf ) in TFS, ARSA submits (x,NRSA‖eRSA) to oracle OHash3 to get
((x,NRSA‖eRSA), σ2, Y ), submits NRSA‖eRSA‖f to oracle OHash2 to get hf , computes σ1 := hd

f mod N ,

picks π̃1 ← Z
∗
N , computes π1 := π̃1

e
mod N , submits N‖e‖π1‖NRSA‖eRSA‖f‖x to oracle O

Hash
(s)
1

to get

1) Lemma. Given N , elements y′, y ∈ Z
∗

N
and integers e, e′ for which it holds that gcd(|e|, |e′|) = 1 and y′e = ye

′

, an eth root

of y can be computed in polynomial time [23].
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π2, computes π3 := σπ2
1 · π̃1 mod N , outputs σf = (x, σ2, NRSA, eRSA, f,π1,π3) and adds (f,⊥) to the

history list of FS.OKGen.

(c) If j2 > i2 and there is (f,⊥) in the history list, ARSA submits (x,NRSA‖eRSA) to oracle OHash3

to get ((x,NRSA‖eRSA), σ2, Y ). Then ARSA picks π̃1 ← Z
∗
N , computes π1 := π̃1

e
mod N , submits

N‖e‖π1‖NRSA‖eRSA‖f‖x to oracle O
Hash

(s)
1

to get π2, and sets π3 := σπ2
1 · π̃1 mod N where σ1 =

(OHash2(NRSA‖eRSA‖f))d. ARSA outputs σf = (x, σ2, NRSA, eRSA, f,π1,π3).

(d) Otherwise, ARSA submits f to oracle FS.OKGen to get skf = (Ñ , ẽ, d̃, σ1), submits (x, Ñ‖ẽ) to

OHash3 to get ((x, Ñ‖ẽ), σ2, Y ). Then ARSA chooses π̃1 ← Z
∗
N , computes π1 := π̃1

e
mod N , submits

N‖e‖π1‖NRSA‖eRSA‖f‖x to oracle O
Hash

(s)
1

to get π2, and sets π3 := σπ2
1 · π̃1 mod N . Finally, ARSA

outputs σf = (x, σ2, Ñ , ẽ, f,π1,π3).

(3) Given (p̃k∗F , y
∗, σ∗

f = (x∗, σ∗
2 , NRSA, eRSA, f

∗,π∗
1,π

∗
3)), ARSA sends XRSA = σ∗

2 to its own challenger.

Guaranteed by the RSA assumption, it holds that

Pr[Forgex : AFS wins]/(poly1(λ) · poly2(λ)) 6 Pr[ARSA wins] 6 negl(λ),

and we can further deduce that Pr[Forgex : AFS wins] 6 negl(λ).

Theorem 5. If the RSA problem is hard relative to algorithm RSA.Setup(1λ), our second construction
of FS is unlinkable in the random oracle model.

Proof. Here we show how to construct the simulator FS.Sim = (Sim1, Sim2) in details.

FS.Sim1. This algorithm takes as input pkF and returns (p̃kF , td) as follows:

• Parse pkF as (N, e);

• Set the reprogrammability of Hash
(s)
1 as the trapdoor td;

• Set p̃kF := (N, e,Hash
(s)
1 ).

Specially, the verifier enjoys the reprogrammability of Hash
(s)
1 since Hash

(s)
1 is appointed by the verifier.

FS.Sim2. This algorithm takes as input (p̃kF , td, f, x) and returns (y, σf ) as follows:

• Compute (Ñ , ẽ, d̃)← RSA.Setup(1λ);

• Compute σ2 := Hash3(x)
d̃ mod Ñ , choose π3 ← Z

∗
N and π2 ← Ze and compute π1 := π

e
3 ·

Hash2(Ñ‖ẽ‖f)−π2;

• Reprogram Hash
(s)
1 such that Hash

(s)
1 (N‖e‖π1‖Ñ‖ẽ‖f‖x) = π2;

• y := f(x) and σf := (x, σ2, Ñ , ẽ, f,π1,π3).

It is obvious that FS.Vrfy(pkF , p̃kF , y, σf ) = 1. The distribution of π3 is uniform over Z∗
N in both the

real transcript and the simulated transcript. Furthermore, the distribution of π1 is uniform over Z∗
N in

both the real transcript and the simulated transcript. We can conclude that the simulated transcript and
the real transcript are computationally indistinguishable.

Theorem 6. If the RSA problem is hard relative to the algorithm RSA.Setup(1λ), our second construc-
tion of FS is accountable in the random oracle model.

Proof. Here we demonstrate how to build the algorithm FS.Judge.

FS.Judge. This algorithm, on input (pkF = (N, e), f, skf = (Ñ , ẽ, d̃, σ1)), outputs a bit b as follows:

• Output 1 if it holds that σe
1 = Hash2(Ñ‖ẽ‖f) mod N ;

• Output 0 otherwise.

7 Conclusion

In this paper, we modified the definition of FS [2] slightly to support applications where an authorization
letter is necessary. Specifically, we focus on a function family FFS for which there is no such a pair
(f0, x0, f1, x1) that f0(x0) = f1(x1). We revised the security models of FS accordingly and introduced
two additional security notions called unlinkability and accountability. Compared with the original FS,
signatures σf in our definition do not expose the intention of the master authority. Therefore, with our
revised primitive an agency is able to negotiate with the verifier on behalf of the master authority and
simultaneously guarantees the benefit of the master authority. We proposed two constructions of FS and
proved them to be secure.
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In our schemes, the verifier must maintain a stateful list Lpk
F
and the assistant cannot sign on messages

until the verifier runs the algorithm RfPk once. In the future work, we will explore how to use designated-
verifier signature (DVS) [24] to enhance our scheme. Besides, we will explore how to combine FS with
the fair exchange protocols/concurrent signatures [3–5] exactly to build a powerful e-commerce system.
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