
SCIENCE CHINA
Information Sciences

December 2021, Vol. 64 222105:1–222105:15

https://doi.org/10.1007/s11432-019-2889-x

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Accelerated value iteration via Anderson mixing

Yujun LI

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received 18 August 2019/Revised 9 November 2019/Accepted 21 December 2019/Published online 19 November 2021

Abstract In this paper, we introduce the Anderson acceleration technique developed to be applied to

reinforcement learning tasks. We develop an accelerated value iteration algorithm referred as Anderson

accelerated value iteration (A2VI) and an accelerated deep Q-learning algorithm denoted as deep Anderson

accelerated Q-learning (DA2Q) algorithm. The proposed approach allows improving the performance of

value iteration by interpolating historical data. We perform a theoretical analysis on linear convergence and

conduct performance evaluation of the proposed algorithms, including synthetic experiments and classical

control tasks. We conclude that both theoretical and empirical results confirm the effectiveness of the

proposed algorithm.

Keywords reinforcement learning, Q-learning, value iteration, Anderson acceleration, deep neural networks

Citation Li Y J. Accelerated value iteration via Anderson mixing. Sci China Inf Sci, 2021, 64(12): 222105,

https://doi.org/10.1007/s11432-019-2889-x

1 Introduction

Reinforcement learning (RL) [1] is used to identify an optimal policy regarding a sequential decision-
making problem. Several related algorithms have been proposed over time, including Q-learning [2],
SARSA [1, 3], HQ-learning [4, 5], and policy gradient methods [6]. To handle complex state spaces and
achieve better generalization performance, researchers have proposed the concept of function approxima-
tors [1, 6, 7]. Inspired by the success of deep learning, researchers have applied deep neural networks to
the reinforcement learning algorithms [8–12] and achieved impressive results in a wide range of fields such
as Atari 2600 [12], non-zero-sum games [13], missile aerodynamic design [14], and music generation [15].

Value iteration (VI) [16] and policy iteration (PI) [17] are the two widely used approaches employed
in RL. The main difference between them is that PI seeks to evaluate a current policy accurately during
training iterations, which requires a significantly smaller number of policy improvement steps to converge
to an optimal value, compared with VI. Although PI has a faster convergence rate than that of VI, most
of the existing methods employ VI-based procedures as PI is much more computational costly or even
intractable under complex environments.

To retain the fast convergence property of PI, while reducing its computational costs, researchers have
proposed several modifications to the original PI approach [18, 19]. The modified PI method [19] is
intended to deal with this problem by approximating the solution. It is used to evaluate a policy using
the truncated Neumann expansion of an inverse matrix. However, this approximation requires additional
iterative steps, which still makes it computationally inefficient in the case of complex decision problems
in which sampling is costly.

In recent years, acceleration techniques have attracted increasing attention with respect to both VI
and PI. Classical methods for accelerating VI include Gauss-Seidel value iteration [19] and Jacobi value
iteration (JAC) [19]. More recently, Alla et al. [18] proposed an acceleration method that switches
between a coarse-mesh VI and fine-mesh PI at different stages. Laurini et al. [20] implemented a Jacobi-
like acceleration method and applied it to dynamic programming problems. In the recent study [21], the
VI procedure was accelerated by only updating a part of the values. However, acceleration techniques in
reinforcement learning have not been fully exploited.

Email: liyujun145@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2889-x&domain=pdf&date_stamp=2021-11-19
https://doi.org/10.1007/s11432-019-2889-x
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2889-x
https://doi.org/10.1007/s11432-019-2889-x

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:2

In turn, interpolation methods have been widely used in the first-order optimization algorithms [22–25].
These methods allow extracting information from the historical data and are proven to converge faster
than the vanilla gradient methods. In the literature, few attempts have been made to apply interpolation
techniques to RL. Averaged-DQN [26] was used to calculate the average Q-value based on the historical
data and demonstrate that such operation could be successfully applied to variance reduction, which
has been widely studied in a variety of studies [27, 28]. Zhang et al. [29] proposed a type-I Anderson
acceleration (AA) method for non-smooth fixed-point iterations using convergence analysis; however, rate
analysis was not considered. Present study is focused on the type-II AA method, and we conduct the
convergence rate analysis in local and global cases.

In this paper, to solve the policy evaluation problem more efficiently, we propose an algorithm based on
multi-step interpolation. More specifically, the solution to the policy evaluation problem is approximately
represented using a weighted combination of historical values. The weights are adaptively updated by
solving the constrained optimization problem comprising historical values. To reduce the computational
complexity, we rely on the Anderson mixing method [30–32] to perform the approximation with only a
limited amount of historical data. The proposed approach can be used to fill the gap between VI and PI
as it allows updating a policy without adding much extra computational complexity to the original VI
procedure. Further, we extend this approach to a deep reinforcement learning algorithm.

2 Preliminaries

In this study, we consider a finite-state and finite-action scenario in reinforcement learning. A Markov
decision process (MDP) system is defined by a 5-tuple (S,A, P, r, γ), where S is a finite state space, A
is a finite action space, P ∈ R

(|S|×|A|)×|S| denotes a collection of state-to-state transition probabilities,
r ∈ R

|S|×|A| denotes a reward matrix, γ denotes a discount factor. A policy π is a mapping from S
to A, which produces an action for each state. The transition matrix Pπ ∈ R

|S|×|S| and reward vector
rπ ∈ R

|S| under policy π are defined as Pπ(i, j) = P ((i, π(i)), j), rπ(i) = r(i, π(i)), respectively. Given a
policy π, the value vπ ∈ R

|S| and the Q-value Qπ ∈ R
|S|×|A| are defined as

vπ(s) , Es0=s,st+1∼Pπ(st,·)

∞
∑

t=0

γtrπ(st),

Qπ(s, a) , r(s, a) + Es1∼Pa(s,·),st+1∼Pπ(st,·)

∞
∑

t=1

γtrπ(st),

where Pa(s, ·) means the probability distribution of states transited from state s by action a, Pπ(s, ·)
means the probability distribution of states transited from state s by policy π. vπ satisfies the following
Bellman equation:

vπ = Γπ(v
π) , rπ + γPπv

π .

A policy π∗ = argmaxπ v
π is called the optimal policy if vπ∗

(s) > vπ(s) for any policy π and state s.
Its value or Q-value is defined as v∗ or Q∗. Note that v∗ satisfies the Bellman optimality equation:

v∗ = Γ(v∗) , max
π

(rπ + γPπv
∗).

We use v > v′ to represent v(s) > v′(s) for any s. Finding an optimal policy is equivalent to finding a
fixed point of the operator Γ(·). We say v is monotonic improving if Γ(v) > v and define the set of such
values by VB.

2.1 Fixed-point iteration methods

Value iteration is the most widely used and best-understood algorithm for solving Markov decision prob-
lems. It solves the fixed-point problem by repeating the following step:

v(t+1) = Γ(v(t)) = max
π

(rπ + γPπv
(t)).

An alternative solution is policy iteration, which updates both the value v(t) and the policy π(t) during
each iteration. Policy iteration comprises the following two steps.

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:3

• (Policy evaluation) Find a v(t) such that

v(t) = Γπ(t)(v(t)) = rπ(t) + γPπ(t)v(t), (1)

which can be directly computed by

v(t) = (I − γPπ(t))−1rπ(t) , (2)

or repeating to update v(t) to Γπ(t)(v(t)) [1].
• (Policy improvement) Improve the current policy by

π(t+1) = argmax
π

(rπ + γPπv
(t)).

Theoretical analysis has shown that VI enjoys a γ-linear convergence rate (i.e., ‖v(t) − v∗‖∞ 6
γ‖v(t−1) − v∗‖∞), while PI converges much faster with ‖v(t) − v∗‖∞ 6 K‖v(t−1) − v∗‖2∞, where K
is a constant related with γ and the given MDP [19]. Both VI and PI are model-based algorithms be-
cause the greedy policy cannot be determined when r and P are unknown. VI can be reformulated in
the formulation of Q(s, a), and it is referred to as Q-learning [2]. We will analyze the proposed method
under v-notation, but the analysis also works under the corresponding Q-notation.

The main difference between VI and PI is whether the current policy is fully evaluated. Though PI
converges faster than VI, this advantage diminishes in the case where the number of states is large. In this
case, the calculation of (2) is quite time-consuming. In the implementation, an alternative approach to
(2) is to repeat updating v(t) to Γπ(t)(v(t)) until the error ‖v(t) − Γπ(t)(v(t))‖ is tolerated [1]. To provide
sufficient accuracy, this procedure still requires a quite number of inner repeating iterations. Therefore,
most of deep reinforcement learning algorithms employ a value iteration procedure [9, 11, 12].

2.2 Anderson acceleration

Anderson acceleration is an iterative method for solving fixed-point problems:

g(x) = x,

where g : Rn → R
n and x ∈ R

n [31]. When g is a contraction, a conventional method is to iteratively
update x(t) = g(x(t−1)) from an arbitrary value x(0). The iterative value x(t) converges to the optimal
value as t tends to infinity.

Anderson acceleration method maintains a history of k residuals f(x(i)) = g(x(i))−x(i), i ∈ {t− 1, t−
2, . . . , t− k}. To update the value x(t) (t > k), we compute a weighted parameter α ∈ R

k by solving the
following optimization problem:

α = argmin
α

∥

∥

∥

∥

∥

k
∑

i=1

αif(x
(t−i))

∥

∥

∥

∥

∥

s.t.
∑

i

αi = 1.

One could use any norm in the minimization step. Then the updated value x(t) is a weighted sum
x(t) =

∑k
i=1 αig(x

(t−i)). Inspired by this technique, we utilize a history of values in value iteration and
propose an improved value iteration algorithm.

3 Anderson accelerated value iteration

In this section, we demonstrate the Anderson accelerated value iteration (A2VI) algorithm. The algo-
rithm aims to approximately solve the policy evaluation problem, circumventing the matrix inversion and
iterative procedures mentioned above.

We introduce the motivation of the proposed algorithm as follows. We utilize the linear property of
(1), define Bπ(v) = Γπ(v) − v and convert the problem into an equivalent form of solving the equation
Bπ(v) = 0. Directly solving the equation is computationally complex and can be implemented by the
following process instead. Suppose we have obtained a set of values Bπ(t)(v(1)), Bπ(t)(v(2)), . . . , Bπ(t)(v(t))

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:4

with respect to v(1),v(2), . . . ,v(t) and a set of weights α = (α1, α2, . . . , αt)
T, subject to

∑t
i=1 αi = 1 and

αi ∈ R, which satisfies that
t
∑

i=1

αiBπ(t)(v(i)) = 0.

Consequently, the combination ṽ =
∑t

i=1 αiv
(i) will satisfy the following relationship:

Bπ(ṽ) = rπ(t) + γPπ(t) ṽ − ṽ =

t
∑

i=1

αi(Γπ(t)(v(i))− v(i))

=

t
∑

i=1

αiBπ(t)(v(i)) = 0. (3)

This relation implies ṽ =
∑t

i=1 αiv
(i) can be viewed as a solution to (1). However, this procedure

needs to keep track of the previous values and recompute Γπ(t) for each v(i). To reduce the huge memory
usage and computing requirements, we keep the most recent values, i.e., {v(t−i) | i = 1, 2, . . . , k}, and
for each v(t−i) we replace Bπ(t)(v(t−i)) with the previously computed values Bπ(t−i)(v(t−i)). This modi-
fication is based on the fact that the recent successive policies do not change dramatically and therefore
Bπ(t−i)(v(t−i)) ≈ Bπ(t)(v(t−i)). In conclusion, this approach is used to approximately solve the policy
evaluation problem.

Another critical issue is that there is no guarantee of the existence of α given that k is small, since the
dimension of Bπ(v) is usually much higher than k, and thereby it is not guaranteed that there is an α to
make the weighted sum to zero. Inspired by the Anderson acceleration technique [30, 31, 33], we instead
look for a weighted combination of {Bπ(t−i)(v(t−i))}ki=1 with the weight α(t), where

α(t) = argmin
α∈Ω∩Λ

‖B(t)α‖ (4)

and B(t) = (Bπ(t−1)(v(t−1)), Bπ(t−2)(v(t−2)), . . . , Bπ(t−k)(v(t−k))). α(t) is a vector that takes values in the
space of Ω ∩ Λ where Ω = {α | 1Tα = 1}, and Λ is an extra constraint on the values attainable by α.
Typically, Λ can be chosen from the following forms:

• Total space, Λtot = R
k;

• Boxing constraint, Λbox = {α | −m1 6 α 6 m1};
• Convex combination constraint, Λcvx = {α | 0 6 α 6 1};
• Extrapolation constraint, Λexp = {α | α1 > 1, αi 6 0, i = 2, 3, . . . , k}.

An ad-hoc solution is that v(t) =
∑k

i=1 α
(t)
i v(t−i) where α

(t)
i is the i-th element of α(t). It will

result in that the weighted combination always locates in the subspace expanded by historical values
v(t−1),v(t−2), . . . ,v(t−k). However, the solution of (1) may be not in such a subspace. To address this
problem, we perform an additional value iteration step to the combination. Then we will get the updated
value,

v(t) = max
π

(

rπ + γPπ

[

k
∑

i=1

α
(t)
i v(t−i)

])

.

In the case of L2-norm and total space, i.e., Λ = Λtot, Eq. (4) has a closed-form solution. With an
application of Lagrange multiplier method, we have the following equivalent minimax problem:

min
α

max
λ>0

L(α, λ) = αT(B(t))TB(t)α+ λ(1Tα− 1),

where λ is the Lagrange multiplier. Using the KKT conditions, the stationarity of L(α, λ) suggests that
∂L/∂α = 0, which leads to α = −λ[(B(t))TB(t)]−11/2. Then by the primal feasibility, we can get that
λ = −2/(1T[(B(t))TB(t)]−11). Therefore, the solution of α(t) is [(B(t))TB(t)]−11/1T[(B(t))TB(t)]−11.

3.1 The algorithm

Based on the previous discussion, we demonstrate the k-step Anderson accelerated value iteration in
Algorithm 1. In the first k steps, the value is updated according to the original VI. After k steps, we

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:5
B

(v
)

B
(v

)

B
(v

)
v1 v2 v*

v*

v

v

v

v3 v4

v1 v2 v3 v4

v1 v2 v3 v4=v*v5

r1+(P1−I)vγ

r2+(P2−I)vγ

r3+(P3−I)vγ

r1+(P1−I)vγ

r2+(P2−I)vγ

r3+(P3−I)vγ

r1+(P1−I)vγ

r2+(P2−I)vγ

r3+(P3−I)vγ

(a)

(c)

(b)

Figure 1 Geometric interpolation of (a) value iteration (VI), (b) policy iteration (PI) and (c) Anderson accelerated value iteration

(A2VI).

perform an interpolation procedure, where the weights are attained from solving the problem (4). The
original value iteration algorithm is considered as a special case of the proposed algorithm with k = 1.

Algorithm 1 Anderson accelerated value iteration (A2VI)

1: Input: v
(0), P, r, γ, k, T .

2: for t = 1, 2, . . . , T do

3: B
π(t−1) (v

(t−1)) = max
π

(rπ + γPπv
(t−1)) − v

(t−1);

4: if t < k then

5: v
(t) = max

π
(rπ + γPπv

(t−1));

6: else

7: Calculate (α
(t)
1 , α

(t)
2 , . . . , α

(t)
k

) by solving the optimization problem (4);

8: v
(t) = max

π
(rπ + γPπ[

∑k
i=1 α

(t)
i v

(t−i)]);

9: end if

10: end for

11: π(T) = argmaxπ(rπ + γPπv
(T));

12: Return: v
(T), π(T).

Both AA and A2VI have the same spirit of interpolating on historical data. However, A2VI is not a triv-

ial generalization of AA on value iteration. Note that AA has the updating rule v(t) =
∑k

i=1 α
(t)
i Γ(v(t−i)),

while A2VI exchanges the order of the operator sum and Γ(·), i.e., v(t) = Γ(
∑k

i=1 α
(t)
i v(t−i)). This ex-

change puts the nonsmooth operator max in Γ(·) out of the affine combination and thereby facilitates
the theoretical analysis.

3.2 Compare A2VI with VI and PI

A2VI is a compromise between VI and PI, and we present a geometric explanation on the iterative steps
of VI, PI and A2VI in Figure 1. In what follows, we demonstrate an explanation similar to the study
of Puterman [19]. In each subfigure, the horizontal axis indicates vector space V where the value v is
located. The vertical axis indicates the Bellman residual B(v) which is defined as B(v) = Γ(v) − v for
each value v. The three lines ri + (γPi − I)v for i ∈ {1, 2, 3} represent the linear relationship between
the bellman residual and the value under three policies. Note that the solid polygonal lines indicate the
maximum of the three lines for i ∈ {1, 2, 3}.

Figure 1 demonstrates the three approaches as follows. In VI, v2 = Γ(v1) = Γ(v1)−v1+v1. Therefore,
v2 is attained by making a vertical line at (v1, 0), finding its intersection with the solid polygonal line
at (v1, B(v1)), then drawing a line with slope −1 through (v1, B(v1)) and finding its intersection with
the horizon axis at (v2, 0). Repeat this step in the following values. In PI, we start from the policy

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:6

improvement and find the optimal policy corresponding to the current value. Then we compute the value
corresponding to the optimal policy by solving (2) and get v2 = (I − γP1)

−1r1. Therefore, v2 is attained
by first getting (v1, B(v1)) in the same way as value iteration, then calculating the tangent line through
(v1, B(v1)) and finding its intersection with the horizon axis. In A2VI with k = 2, we first get vi for
i 6 2 through value iteration. When i = 3, we use A2VI to get v3. First, we compute the weight α

by solving (4). Assume that the minimum value of (4) is 0. Thus, the weighted value
∑2

i=1 αiv3−i is
the intersection of the straight line passing through (v1, B(v1)) and (v2, B(v2)) with the horizontal axis.
Then, we perform one step of value iteration. Therefore, v3 is attained by first performing in a similar
style to policy iteration except that the tangent line is replaced with a secant line. Then a value iteration
step is performed to get v3. The successive values are obtained by repeating this step.

Figure 1 demonstrates that VI only uses the current value of the Bellman residual, while PI is similar to
Newton’s method [34], using the gradient information to achieve a faster convergence rate. The proposed
method serves as an intermediate between them, each step of which is composed of an ordinary value
iteration step and a secant step. In specific, the replacement of the tangent line to a secant line can be
viewed as a quasi-Newton’s method, which is shown computationally more efficient while keeping a fast
convergence rate in several particular settings. Both PI and A2VI converge to the fixed point in a smaller
number of steps than VI. Compared with PI, A2VI is more practical because it approximates the tangent
line by a secant line, which circumvents the costly policy evaluation step.

4 Theoretical analysis

In this section, we conduct theoretical analysis for the proposed algorithm. Before the analysis, a lemma
shows the local linearity of the Bellman operator in MDPs with a unique optimal policy.

Lemma 1. For any MDP whose optimal policy is unique, there exists a δ > 0, an optimal value v∗ and
an optimal policy π∗ such that for any v ∈ Uδ(v

∗) = {v|‖v − v∗‖∞ 6 δ},

Γ(v) = rπ∗ + γPπ∗v.

Proof. Because the optimal policy is unique, for any nonoptimal policy π, for any state s such that
π(s) 6= π∗(s) we have that [Γπ∗(v∗)]s > [Γπ(v

∗)]s, where [·]s means executing operations on state s. Let
A(π) = {s|π(s) 6= π∗(s)}.

Suppose the optimal policy is π∗, and then there exists ε such that

min
π 6=π∗

min
s∈A(π)

[Γ(v∗)− Γπ(v
∗)]s > ε > 0,

since the optimal policy is unique and the state space and the action space are finite.

Consider a value vector v ∈ Uδ(v
∗), where we choose δ = ε

3γ . Then for any policy π, we have that

‖Γπ(v
∗)− Γπ(v)‖∞ = ‖γPπ(v

∗ − v)‖∞ 6 γ‖v∗ − v‖∞ 6
ε

3
.

For any policy π and any state s ∈ A(π), we have that

[Γπ∗(v)− Γπ(v)]s = [(Γπ∗(v)− Γπ∗(v∗)) + (Γπ∗(v∗)− Γπ(v
∗)) + (Γπ(v

∗)− Γπ(v))]s

> ε− ‖Γπ∗(v)− Γπ∗(v∗)‖∞ − ‖Γπ(v
∗)− Γπ(v)‖∞

> ε−
ε

3
−

ε

3

=
ε

3
,

which means π does not choose the optimal action in state s. Therefore, if π selects the optimal action
in every state s ∈ S, then we must have πs = π∗

s , ∀s ∈ S, which implies π∗ = argmaxπ Γπ(v), i.e.,
Γ(v) = rπ∗ + γPπ∗v.

With the above lemma, we present a local convergence analysis of the proposed algorithm under the
boxing constraint.

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:7

Theorem 1. For any MDP with a unique optimal policy, there exists a δ > 0 and an optimal value v∗,
such that for any initial value v(0) ∈ Uδ(v

∗) = {v|‖v−v∗‖∞ 6 δ}, the A2VI algorithm under the boxing
constraint (−m1 6 α 6 m1) maintains the following properties:

(i) ‖Γ(v(t))− v(t)‖∞ 6 γ‖Γ(v(t−1))− v(t−1)‖∞, ∀t = 1, 2, . . .;

(ii) γ-linear convergence rate, ‖v(t) − v∗‖∞ 6 γt

1−γ
‖Γ(v(0))− v(0)‖∞, ∀t = 1, 2,

Proof. From Lemma 1, we know there exists an optimal value v∗ and a δ̃ > 0 such that the optimal
Bellman operator is a linear function on Uδ̃(v

∗). We now set δ sufficiently small such that

km(1 + γ)

1− γ
‖v(0) − v∗‖∞ <

km(1 + γ)

1− γ
δ < δ̃.

The property (i) is trivial for the first k − 1 steps, which are performed exactly by standard value
iteration. To see the property (ii) for the first k − 1 steps, note that for any value v,

‖v − v∗‖∞ = ‖v − Γ(v) + Γ(v)− Γ(v∗)‖∞

6 ‖v − Γ(v)‖∞ + ‖Γ(v)− Γ(v∗)‖∞

6 ‖Γ(v)− v‖∞ + γ‖v − v∗‖∞. (5)

Therefore, we have that ‖v(t) − v∗‖∞ 6 1
1−γ

‖Γ(v(t)) − v(t)‖∞. Combining the property (i) in the first

k − 1 steps, it is easy to see that the property (ii) also holds in the first k − 1 steps.
When t > k, we prove the result by induction. Given t, suppose the conclusion is correct for previous

steps {0, 1, . . . , t− 1}, and then we have that

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i v(t−i) − v∗

∥

∥

∥

∥

∥

∞

6

k
∑

i=1

|α
(t)
i |‖v(t−i) − v∗‖∞ 6

k
∑

i=1

|α
(t)
i |

1

1− γ
‖Γ(v(t−i))− v(t−i)‖∞

6

k
∑

i=1

|α
(t)
i |

1

1− γ
‖Γ(v(0))− v(0)‖∞ 6

km

1− γ
‖Γ(v(0))− v(0)‖∞. (6)

Note that for any value v, we have that

‖v − v∗‖∞ = ‖v − Γ(v) + Γ(v)− Γ(v∗)‖∞

> ‖v − Γ(v)‖∞ − ‖Γ(v)− Γ(v∗)‖∞

> ‖Γ(v)− v‖∞ − γ‖v − v∗‖∞.

Therefore, we have that ‖v(t) − v∗‖∞ > 1
1+γ

‖Γ(v(t))− v(t)‖∞. Eq. (6) implies that

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i v(t−i) − v∗

∥

∥

∥

∥

∥

∞

6
km(1 + γ)

1− γ
‖v(0) − v∗‖∞ <

km(1 + γ)

1− γ
δ < δ̃.

It follows that

‖v(t) − v∗‖∞ =

∥

∥

∥

∥

∥

Γ

(

k
∑

i=1

α
(t)
i v(t−i)

)

− Γ(v∗)

∥

∥

∥

∥

∥

∞

6 γ

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i v(t−i) − v∗

∥

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i v(t−i) − v∗

∥

∥

∥

∥

∥

∞

< δ̃.

Therefore, we have that
∑k

i=1 α
(t)
i v(t−i) ∈ Uδ̃(v

∗),v(t) ∈ Uδ̃(v
∗), which implies that

Γ

(

k
∑

i=1

α
(t)
i v(t−i)

)

= rπ∗ + γPπ∗

k
∑

i=1

α
(t)
i v(t−i), Γ(v(t)) = rπ∗ + γPπ∗v(t).

Then we can get that

Γ(v(t))− v(t) = rπ∗ + (γPπ∗ − I)v(t)

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:8

= rπ∗ + (γPπ∗ − I)

(

rπ∗ + γPπ∗

k
∑

i=1

α
(t)
i v(t−i)

)

=

k
∑

i=1

α
(t)
i (rπ∗ + (γPπ∗ − I)(rπ∗ + γPπ∗v(t−i)))

=

k
∑

i=1

α
(t)
i γPπ∗(rπ∗ + γPπ∗v(t−i) − v(t−i))

= γPπ∗

k
∑

i=1

α
(t)
i (Γ(v(t−i))− v(t−i)).

Taking the infinity norm on both sides of the equation and utilizing the definition of α
(t)
i , i = 1, 2, . . . , k,

which minimizes (4), we get that

‖Γ(v(t))− v(t)‖∞ 6 γ‖Pπ∗‖∞

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i (Γ(v(t−i))− v(t−i))

∥

∥

∥

∥

∥

∞

6 γ‖Γ(v(t−1))− v(t−1)‖∞ = γ‖Γ(v(t−1))− v(t−1)‖∞.

Therefore, we justify property (i). Next, combining (5) and property (i), we have that

‖v(t) − v∗‖∞ 6
1

1− γ
‖Γ(v(t))− v(t)‖∞ 6

γt

1− γ
‖Γ(v(0))− v(0)‖∞,

which obtains property (ii) which indicates a γ-linear convergence rate [35].
Generally, it is difficult to obtain the global convergence rate analysis of A2VI, since the operator max

is nonsmooth. To guarantee the convergence, we introduce a rejection step to the original algorithm. We
propose the A2VI algorithm with the rejection step, which only differs with Algorithm 1 at lines 9–14.

After calculating α(t), we test whether the affine combination
∑k

i=1 α
(t)
i v(t−i) lies in VB = {v | Γ(v) > v}.

If the answer is negative, the interpolation step will be replaced with an ordinary value iteration step.
We put the pseudocode of A2VI with the rejection step in Algorithm 3 in the experiment. With this
modification, we can have the following convergence properties.

Theorem 2. For the A2VI algorithm with the rejection step and the convex combination constraint
Λ = Λcvx = {α | 0 6 α 6 1}, if v(0) ∈ VB = {v | Γ(v) > v}, then we have that

(i) v(t) ∈ VB, ‖Γ(v(t))− v(t)‖∞ 6 γ‖Γ(v(t−1))− v(t−1)‖∞, ∀t = 1, 2, . . .;

(ii) γ-linear convergence rate, ‖v(t) − v∗‖∞ 6 γt

1−γ
‖Γ(v(0))− v(0)‖∞, ∀t = 1, 2,

Proof. First, we show that if u > v, then Γ(u) > Γ(v). As stated in Section 2, u > v means that
u(s) > v(s) for any state s. Suppose π̃ = argmaxπ rπ + γPπv, therefore for any s we have that

Γ(u)(s) > Γπ̃(u)(s) > Γπ̃(v)(s) = Γ(v)(s), (7)

which obtains Γ(u) > Γ(v).
Now, consider the difference between Γ(v(t)) and v(t),

Γ(v(t))− v(t) = max
π

(rπ + γPπv
(t))−max

π

(

rπ + γPπ

k
∑

i=1

α
(t)
i v(t−i)

)

6 rπ(t) + γPπ(t)v(t) − rπ(t) − γPπ(t)

k
∑

i=1

α
(t)
i v(t−i)

= γPπ(t)

(

max
π

(

rπ + γPπ

k
∑

i=1

α
(t)
i v(t−i)

)

−
k
∑

i=1

α
(t)
i v(t−i)

)

6 γPπ(t)

k
∑

i=1

α
(t)
i

(

max
π

(rπ + γPπv
(t−i))− v(t−i)

)

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:9

= γPπ(t)

k
∑

i=1

α
(t)
i (Γ(v(t−i))− v(t−i)).

Combining with the rejection step, we will get that Γ(v(t))− v(t) > 0. First, we show that if v ∈ VB,
then Γ(v) ∈ VB. If v ∈ VB, then Γ(v) > v. Thus, Eq. (7) suggests that Γ(Γ(v)) > Γ(v), i.e., Γ(v) ∈ VB.

Then, we show that if v(i) ∈ VB for i < t, then v(t) ∈ VB . According to the rejection algorithm, we will

get a set of α
(t)
i by solving (4). If Γ(

∑k
i=1 α

(t)
i v(t−i)) >

∑k
i=1 α

(t)
i v(t−i), then

∑k
i=1 α

(t)
i v(t−i) ∈ VB and

v(t) = Γ(
∑k

i=1 α
(t)
i v(t−i)) ∈ VB. If Γ(

∑k
i=1 α

(t)
i v(t−i)) <

∑k
i=1 α

(t)
i v(t−i), then v(t) = Γ(v(t−1)) owing to

the rejection step. Then v(t−1) ∈ VB suggests that v(t) ∈ VB. Therefore, we have that Γ(v
(t))− v(t) > 0.

Further, we can get that

‖Γ(v(t))− v(t)‖∞ 6 γ‖∞Pπ(t)‖∞

∥

∥

∥

∥

∥

k
∑

i=1

α
(t)
i (Γ(v(t−i))− v(t−i))

∥

∥

∥

∥

∥

∞

6 γ‖Γ(v(t−1))− v(t−1)‖∞.

The second inequality is owing to the definition of α
(t)
i , i = 1, 2, . . . , k.

Next, we demonstrate the property (ii) in the following. According to the triangle inequality of norm
and Γ(π∗) = π∗, we have that

‖v(t) − v∗‖∞ = ‖v(t) − Γ(v(t)) + Γ(v(t))− v∗‖∞

6 ‖v(t) − Γ(v(t))‖∞ + ‖Γ(v(t))− Γ(v∗)‖∞

6 γ‖v(t−1) − Γ(v(t−1))‖∞ + γ‖v(t) − v∗‖∞.

The last inequality is established owing to the property (i) and the contraction of the operator Γ. Thus,
we can get that (1 − γ)‖v(t) − v∗‖∞ 6 γ‖Γ(v(t−1)) − v(t−1)‖∞. Substituting the property (i) into this
inequation, we can obtain the property (ii) that indicates a γ-linear convergence rate [35].

Theorem 3. For the A2VI algorithm with the rejection step and the extrapolation constraint Λ =
Λexp = {α | α1 > 1, αi 6 0, i = 2, 3, . . . , k}, if v(0) > 0 and v(0) ∈ VB , then we have

(i) monotone improving values, v(t−1) 6 v(t) 6 v∗,v(t) ∈ VB , ∀t = 1, 2, . . .;
(ii) γ-linear convergence rate, ‖v∗ − v(t)‖∞ 6 γ‖v∗ − v(t−1)‖∞.

Proof. First, we consider t ∈ {1, 2, . . . , k− 1}. A2VI performs the value iteration step v(t) = Γ(v(t−1)).
Eq. (7) suggests that v(t−1) 6 v(t). The property (ii) is evident when taking value iteration step.

Then, we consider the case when t > k. We give a proof by induction. Suppose the conclusion holds
for the first t− 1 steps, and then

v(t) = max
π

(

rπ + γPπ

k
∑

i=1

α
(t)
i v(t−i)

)

> rπ̃ + γPπ̃

(

k
∑

i=1

α
(t)
i v(t−i)

)

> rπ̃ + γPπ̃v
(t−1)

> v(t−1),

where π̃ = argmaxπ rπ+γPπv
(t−1). The second inequality comes from the extrapolation restriction. The

third inequality is owing to that v(t−1) ∈ VB, which is shown in Theorem 2. Note that v(t) monotonously
converges to v∗, thus v(t) 6 v∗. Consider the difference between v∗ and v(t), we have that

v∗ − v(t) = v∗ −max
π

(

rπ + γPπ

k
∑

i=1

α
(t)
i v(t−i)

)

6 v∗ −

(

rπ∗ + γPπ∗

k
∑

i=1

α
(t)
i v(t−i)

)

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:10

= γPπ∗

k
∑

i=1

α
(t)
i (v∗ − v(t−i))

6 γPπ∗(v∗ − v(t−1)).

Taking the infinite norm on both sides, we get that

‖v∗ − v(t)‖∞ 6 γ‖Pπ∗‖∞‖v∗ − v(t−1)‖∞ 6 γ‖v∗ − v(t−1)‖∞.

This is exactly property (ii). Thus, we can get that ‖v(t) − v∗‖∞ 6 γt‖v(0) − v∗‖∞, which indicates a
linear convergence rate [35].

5 Deep Anderson accelerated Q-learning

Combined with the technique of deep learning, the proposed method can be applied to the DQN algo-
rithm [12], resulting in the deep Anderson accelerated Q-learning (DA2Q) algorithm (Algorithm 2).

Algorithm 2 Deep Anderson accelerated Q-learning (DA2Q)

1: Input: M,N,T, γ, b, B, ε, η,K,C.

2: Initialize replay memory D to capacity N , initialize Q-value function Q with random weights θ;

3: θ−k = θ, α1 = 1, αk = 0 for k = 2, . . . ,K;

4: s = 0;

5: for episode = 1, 2, . . . ,M do

6: Get an initial state s1;

7: for t = 1, 2, . . . , T do

8: With probability ε select a random action at, otherwise select at = argmaxa Q(st, a; θ);

9: Execute action at, observe reward rt and state st+1;

10: Store transition (st, at, rt, st+1) in D;

11: Sample a random minibatch of transitions {(sj , aj , rj , s
′

j)}
b
j=1 from D;

12: for j = 1, 2, . . . , b do

13: yj =







rj , for terminal state,

rj + γ maxa(
∑K

k=1 αkQ(s′j , a; θ−k)), for non-terminal state,

14: end for

15: L(θ) = 1
b

∑b
j=1(yj − Q(sj , aj ; θ))

2;

16: θ = θ − η ∂L
∂θ

;

17: s = s + 1;

18: if s mod C = 0 then

19: Assign θ−k = θ−(k−1) for k = K,K − 1, . . . , 2. Assign θ−1 = θ.

20: if s > K(C − 1) then

21: Sample a random minibatch of transitions {(sj , aj , rj , s
′

j)}
B
j=1 from D;

22: for j = 1, 2, . . . , B do

23: for k = 1, 2, . . . ,K do

24: dk
j =







rj − Q(sj , aj ; θ−k), for terminal state,

rj + γ maxa Q(s′j , a; θ−k) − Q(sj , aj ; θ−k), for non-terminal state,

25: end for

26: end for

27: end if

28: Get parameters α1, α2, . . . , αK by solving (4).

29: end if

30: end for

31: end for

Considering a state-action value matrix Q ∈ R
|S|×|A|, we can get a fixed-point equation:

Q = Γ(Q),

where Q(s, a) is given by the Bellman equation Q(s, a) = r(s, a) + γmaxa′ Q(s, a′). Here we use the
same notation Γ(·) in Section 2 for consistency. Let us define the residual value of Q as

F (Q) = Γ(Q)−Q,

which must vanish since the operator Γ(·) is a contraction. For a state-action pair (s, a), we have that
F (Q(s, a)) = Γ(Q(s, a)) −Q(s, a). Given the latest iterative value Q(t−1) and the previous k − 1 ones

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:11

Q(t−2),Q(t−3), . . . ,Q(t−k), the new one Q(t) is calculated by solving the following problem:

min
α

∥

∥

∥

∥

∥

k
∑

i=1

αiF (Q(t−i))

∥

∥

∥

∥

∥

F

, s.t.
∑

i

αi = 1,

where α = (α1, α2, . . . , αk) is its affine coordinates, and ‖ · ‖F is the Frobenius norm. Then we can get

Q(t) = Γ(
∑k

i=1 αiQ
(t−i)) by the following method in Section 3.

In practice, we cannot access the whole state space and action space. We use the technique of re-
play memory and collect previous state-action pairs [12]. We randomly sample state-action pairs to
update iterative values. Let B denote a minibatch of sampled pairs, QB denote a vector by stacking
{Q(s, a)}(s,a)∈B. Then we can get the following optimization problem:

min
α

∥

∥

∥

∥

∥

k
∑

i=1

αiF (Q
(t−i)
B)

∥

∥

∥

∥

∥

2

, s.t.
∑

i

αi = 1.

The state-action value Q(s, a) is parameterized by a neural network Q(s, a) = Q(s, a; θ) where θ is the
weights of the neural network. We update the affine coordinates every C time steps and therefore get
the deep Anderson accelerated Q-learning algorithm. Please see Algorithm 2 for the details.

6 Experiments

To validate the applicability of the proposed method, we conduct several experiments.

6.1 Synthetic experiments

We consider decision problems on random MDP. Suppose that there are M states and N actions. The
transition probabilities of MDP are generated from a uniform distribution within [0, 1] and are normalized

to guarantee that
∑M

j=1 P (a, si, sj) = 1 for all a and si. Rewards are generated from a standard normal
distribution. The discount factor γ is set equal to 0.9. We compare the proposed algorithm with the
several alternative approaches, as presented in Figure 2.

0

0

10080604020

(a)

VI
PI
A2VI-2
A2VI-5
A2VI-10
AVE-2
A2VI-2, Rej
A2VI-5, Rej
A2VI-10, Rej

VI
PI
A2VI-2
A2VI-5
A2VI-10
AVE-2
A2VI-2, Rej
A2VI-5, Rej
A2VI-10, Rej

VI
PI
A2VI-2
A2VI-5
A2VI-10
AVE-2
A2VI-2, Rej
A2VI-5, Rej
A2VI-10, Rej

(c)

(b)

Time steps

−2

2

−4

−6

−8

−10

D
is

ta
n
ce

 t
o
 o

p
ti

m
al

 v
al

u
e

0

0

10080604020

Time steps

−2

2

4

−4

−6

−8

−10

D
is

ta
n
ce

 t
o
 o

p
ti

m
al

 v
al

u
e

0

0

10080604020

Time steps

−2

2

4

−4

−6

−8

−10

D
is

ta
n
ce

 t
o
 o

p
ti

m
al

 v
al

u
e

Figure 2 (Color online) Experimental results on synthetic Markov decision processes. The distance to optimal value is expressed

in logarithmic scale. The number after the algorithm name represents the number of historical values.

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:12

Table 1 Convergence rates of different algorithms in the problem of random MDP

VI PI A2VI-2 A2VI-5 A2VI-10 AVE-2 A2VI-2, Rej A2VI-5, Rej A2VI-10, Rej

10 states, 3 actions 0.7857 0.0001 0.0314 0.0033 0.0013 0.8527 0.0008 0.0007 0.0005

20 states, 5 actions 0.7861 0.0001 0.0266 0.0041 0.0017 0.8530 0.0008 0.0005 0.0006

20 states, 10 actions 0.7862 0.0001 0.0268 0.0074 0.0021 0.8532 0.0009 0.0006 0.0006

• VI: value iteration,
• PI: policy iteration,
• AVE: averaged value iteration,
• A2VI: Anderson accelerated value iteration, and
• A2VI, Rej: Anderson accelerated value iteration with the rejection step (see Algorithm 3 for details).

With regard to the above methods, we compare the distance from the values provided by them to the
optimal value during the iterative training process. The optimal value is obtained by successive iterations
using PI 1000 times. AVE is implemented by setting equal weights in A2VI. Figure 2 demonstrates the
three experimental results with different numbers of states and actions, from left to right: (1) 10 states
and three actions, (2) 20 states and five actions, and (3) 20 states and 10 actions, respectively. Each curve
represents an average of the distances in the training processes with 10 random initializations. Figure 2
demonstrates the logarithmic value of ‖v(t) − v∗‖2 corresponding to time step t.

Algorithm 3 Anderson accelerated value iteration with the rejection step

1: Input: v
(0), P, r, γ, k, T .

2: for t = 1, 2, . . . , T do

3: B
π(t−1) (v

(t−1)) = max
π

(rπ + γPπv
(t−1)) − v

(t−1);

4: if t < k then

5: v
(t) = max

π
(rπ + γPπv

(t−1));

6: else

7: Calculate (α
(t)
1 , α

(t)
2 , . . . , α

(t)
k

) by solving the optimization problem (4);

8: ṽ =
∑k

i=1 α
(t)
i v

(t−i);

9: if max
π

(rπ + γPπṽ) > ṽ then

10: v
(t) = max

π
(rπ + γPπṽ);

11: else

12: α
(t)
1 = 1, α

(t)
i = 0 for i 6= 1;

13: v
(t) = max

π
(rπ + γPπv

(t−1));

14: end if

15: end if

16: end for

17: π(T) = argmaxπ(rπ + γPπv
(T));

18: Return: v
(T), π(T).

From the results presented in Figure 2, it can be seen that PI has the fastest convergence among
all other methods. However, each step of PI includes 100 extra inner iterations to evaluate the policy.
Among the considered VI methods, A2VI is observed to be much faster than others. At the early
training stage, A2VI with the rejection step shows the same convergence speed as VI and demonstrates
the faster convergence speed at subsequent stages. This is owing to the fact that the condition in line
9 of Algorithm 3 is not satisfied at the early training stage, but is satisfied later. Table 1 demonstrates
the convergence rates of the considered algorithms in practice. It can be seen that PI has the fastest
convergence rate. We can observe that the convergence rate of A2VI in practice is consistent with that
in theoretical analysis by not exceeding the uppper bound.

Next, we investigate the influence of the historical data length in A2VI; specifically, we consider the
length of k of 2, 5, and 10. We can see that increasing k leads to a decrease in the number of iteration
steps. However, we do not observe this phenomenon in the case of A2VI with the rejection step. This is
because a larger k requires more time steps to satisfy the condition in line 9 of Algorithm 3.

6.2 Experiments with deep learning based techniques

To evaluate the performance of the proposed method in complex environments, we apply it to the classical
control tasks in Gym [36]. Herein, we compare DA2Q with DQN [12] and Averaged-DQN (AVE) [26].
As the transition probability is unknown in these model-free tasks, we do not test the performance of
DA2Q with the rejection step.

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:13

0

DA2Q, k=2
DA2Q, k=5
AVE, k=2
AVE, k=5
DQN

DA2Q, k=2
DA2Q, k=5
AVE, k=2
AVE, k=5
DQN

DA2Q, k=2
DA2Q, k=5
AVE, k=2
AVE, k=5
DQN

20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

0 50000 100000 150000 200000

(a)

(c)

(b)

Time steps Time steps

Time steps

−500

−400

−300

−200

−200

−180

−160

−140

−120

−100
S

co
re

S
co

re

S
co

re

250

200

150

100

400

350

300

50

Figure 3 (Color online) Training performance on control tasks. The dashed line is the mean score. The shaded area is the 0.25

standard deviation. DA2Q is the proposed algorithm. AVE is averaged-DQN [26]. DQN is deep Q-learning [12]. (a) Acrobot;

(b) CartPole; (c) MountainCar.

In the experimental setups of control tasks, we consider the neural architecture in DQN [12] in which
the Q-value network is composed of the three fully connected hidden layers and one fully connected
output one. Each layer except the final one is followed by a rectified linear unit (ReLU). The first fully
connected layer has 128 units; the second has 128 units; the third has 64 units; and the final layer outputs
the state-action values. We use the Adam optimizer [37] with the learning rate of 0.0001. The discount
factor is set equal to γ = 0.99. The exploration policy is an ε-greedy policy with a linearly decayed
rate ε.

Figure 3 shows the result of the experiments on the classical control tasks. In the Acrobot task,
all considered methods demonstrate the similar performance. In the CartPole and MountainCar tasks,
DA2Q shows the distinct performance of acceleration compared with the other algorithms. Thereafter,
we compare the performance of DA2Q with k = 2 and k = 5. Unlike A2VI, DA2Q does not show that a
larger k leads to better performance. This is owing to the fact that the neural network is employed for
value function approximation in the model-free environment, and the policy evaluation is estimated from
a batch of samples, which cannot provide the sufficient accuracy. In the CartPole task, DA2Q with k = 5
attains a higher final score, while DA2Q with k = 2 demonstrates faster acceleration at the early stage
of the training process. In the MountainCar task, DA2Q with k = 2 and with k = 5 have the similar
performance in terms of acceleration at the early stage. However, the performance of DA2Q with k = 5
deteriorates after it attains a high score. In total, DA2Q with k = 2 achieves the most stable performance
in terms of the control tasks.

Compared with DQN, additional computational cost of DA2Q is relatively low, as α is updated every C
steps, which only involves an inversion on a small matrix of the size k×k. The k target values are computed
in parallel in TensorFlow [38], which costs the same time as in DQN. Moreover, additional runtime can
be ignored when compared with the costly backpropagation and interaction with the environment.

7 Related work

The most relevant related work is related to averaged Q-learning [26], which is used to average the most
recent values. In fact, it is a special case of the proposed algorithm with regularization. Specifically, we
add a regularization term to (4) and obtain the optimization problem α(t) = argmin

α
‖B(t)α‖22 + β‖α‖22

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:14

where α ∈ {α | αT1 = 1} and β is a coefficient. Similarly, using the Lagrange multiplier method, we
can derive the solution α(t) = [(B(t))TB(t) + βI]−11/1T[(B(t))TB(t) + βI]−11. Moreover, when β tends
to infinity, the value of α(t) goes to 1/k. This implies exactly the same update method of averaged Q-
learning [26]. Therefore, the averaged Q-learning is considered as a special case of the proposed method.
We compare it with the proposed method in the conducted experiments.

The present research work is focused on the reinforcement learning field. Moreover, we notice that
there are several studies in the field of optimization related to the present study. Scieur et al. [23]
proposed RMPE to extrapolate the parameters produced by an iterative gradient algorithm to achieve
a faster convergence rate. Then, Scieur et al. [24] proposed RNA by extending RMPE to the stochastic
case. It may deem that their updating rules are close to those of the proposed algorithm; however, A2VI
has an entirely different spirit with regard to them. Both RMPE and RNA do not change the updating
rules of the original algorithms; while A2VI utilizes the last k parameters to update the new one, RMPE
and RNA extrapolate the whole parameter history and thereby require time-consuming computation on
a large matrix. The nonlinear term in RMPE and RNA is induced by high-order noise, which can be
neglected in the convergence analysis. However, nonlinearity in A2VI is induced by the non-smooth
operator max on a set of non-negligible terms, which means that we cannot rely to their analysis in
the linear case. RMPE and RNA correspond to the general optimization problems, while the proposed
method is focused on the reinforcement learning problems.

Zhang et al. [29] also conducted the convergence analysis on the AA method. They focused on the
convergence analysis on the type-I AA, while the proposed approach is more related to the type-II AA.
Moreover, the proposed algorithm is not a straightforward application of AA to VI. AA employs the
updating rule v(t) =

∑

i αiΓ(v
(t−i)), while A2VI implies including the weighted sum into the fixed-point

iteration v(t) = Γ(
∑

i αiv
(t−i)). In this way, the proposed approach has the two advantages: (1) obtaining

geometric interpretation of the algorithm; (2) making the convergence analysis tractable. Furthermore,
Zhang et al. [29] applied the type-I AA to the general non-smooth optimization problem. They provided
the convergence analysis as the iteration step n goes to infinity, but without the convergence rate analysis.
In the present study, we conduct the local linear convergence rate analysis without the rejection step in
Theorem 1, as well as the global one with the rejection step in Theorems 2 and 3.

8 Conclusion

In the present paper, we have proposed the Anderson accelerated value iteration algorithm, which is a
novel acceleration approach for reinforcement learning. We have demonstrated the convergence property
of the proposed method under certain conditions. The proposed algorithm empirically achieves the
superior performance with regard to the conducted synthetic experiments and several control tasks.
Despite the success of the proposed algorithm, the convergence analysis for the general case is absent in
the present study, and thereby is left for the future work.

Acknowledgements We would like to thank Chengzhuo NI, Guangzeng XIE, Wenhao YANG, Luo LUO, Zhihua ZHANG for

their discussion in this work.

References

1 Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998

2 Watkins C J, Dayan P. Q-learning. Mach Learn, 1992, 8: 279–292

3 Rummery G A, Niranjan M. On-line Q-learning using connectionist systems. Cambridge: University of Cambridge, Depart-

ment of Engineering, 1994, 37: 20

4 Wiering M, Schmidhuber J. HQ-learning. Adaptive Behav, 1997, 6: 219–246

5 Chen C L, Dong D Y, Li H-X, et al. Hybrid MDP based integrated hierarchical Q-learning. Sci China Inf Sci, 2011, 54:

2279–2294

6 Sutton R S, McAllester D, Singh S, et al. Policy gradient methods for reinforcement learning with function approximation.

In: Proceedings of Conference on Neural Information Processing Systems, 2000

7 Kaelbling L P, Littman M L, Moore A W. Reinforcement learning: a survey. J Artif Intell Res, 1996, 4: 237–285

8 Bellemare M G, Dabney W, Munos R. A distributional perspective on reinforcement learning. In: Proceedings of International

Conference on Machine Learning, 2017

9 Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay. In: Proceedings of International Conference on Learning

Representations, 2016

10 Van H H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of AAAI Conference on

Artificial Intelligence, 2016

11 Wang Z Y, Schaul T, Hessel M, et al. Dueling network architectures for deep reinforcement learning. In: Proceedings of

International Conference on Machine Learning, 2015

12 Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning. 2013. ArXiv:1312.5602

https://doi.org/10.1177/105971239700600202
https://doi.org/10.1007/s11432-011-4332-6
https://doi.org/10.1613/jair.301
https://arxiv.org/abs/1312.5602

Li Y J Sci China Inf Sci December 2021 Vol. 64 222105:15

13 Li X X, Peng Z H, Liang L, et al. Policy iteration based Q-learning for linear nonzero-sum quadratic differential games. Sci

China Inf Sci, 2019, 62: 052204

14 Yan X H, Zhu J H, Kuang M C, et al. Missile aerodynamic design using reinforcement learning and transfer learning. Sci

China Inf Sci, 2018, 61: 119204

15 Dieleman S, Aaron V D O, Karen S. The challenge of realistic music generation: modelling raw audio at scale. In: Proceedings

of Conference on Neural Information Processing Systems, 2018

16 Bellman R. A Markovian decision process. J Math Mech, 1957, 6: 679–684

17 Howard R A. Dynamic Programming and Markov Processes. Hoboken: John Wiley & Sons, 1964

18 Alla A, Falcone M, Kalise D. An efficient policy iteration algorithm for dynamic programming equations. SIAM J Sci Comput,

2015, 37: 181–200

19 Puterman M L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Hoboken: John Wiley & Sons, 2014

20 Laurini M, Micelli P, Consolini L, et al. A Jacobi-like acceleration for dynamic programming. In: Proceedings of Conference

on Decision and Control, 2016. 7371–7376

21 Laurini M, Consolini L, Locatelli M. A consensus approach to dynamic programming. IFAC-PapersOnLine, 2017, 50: 8435–

8440

22 Bubeck S. Convex optimization: algorithms and complexity. FNT Mach Learn, 2015, 8: 231–357

23 Scieur D, D’Aspremont A, Bach F. Regularized nonlinear acceleration. In: Proceedings of Conference on Neural Information

Processing Systems, 2016

24 Scieur D, Bach F, D’Aspremont A. Nonlinear acceleration of stochastic algorithms. In: Proceedings of Conference on Neural

Information Processing Systems, 2017

25 Xie G Z, Wang Y T, Zhou S C, et al. Interpolatron: interpolation or extrapolation schemes to accelerate optimization for

deep neural networks. 2018. ArXiv: 1805.06753

26 Anschel O, Baram N, Shimkin N. Averaged-DQN: variance reduction and stabilization for deep reinforcement learning. In:

Proceedings of International Conference on Machine Learning, 2017

27 Johnson R, Zhang T. Accelerating stochastic gradient descent using predictive variance reduction. In: Proceedings of Confer-

ence on Neural Information Processing Systems, 2013

28 Chen C Y, Wang W L, Zhang Y Z, et al. A convergence analysis for a class of practical variance-reduction stochastic gradient

MCMC. Sci China Inf Sci, 2019, 62: 012101

29 Zhang J, O’Donoghue B, Boyd S. Globally convergent type-I anderson acceleration for non-smooth fixed-point iterations.

2018. ArXiv: 1808.03971

30 Anderson D G. Iterative procedures for nonlinear integral equations. J ACM, 1965, 12: 547–560

31 Walker H F, Ni P. Anderson acceleration for fixed-point iterations. SIAM J Numer Anal, 2011, 49: 1715–1735

32 Toth A, Kelley C T. Convergence analysis for anderson acceleration. SIAM J Numer Anal, 2015, 53: 805–819

33 Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables. 1970

34 Puterman M L, Brumelle S L. The analytic theory of policy iteration. In: Proceedings of Conference on Dynamic Programming

and Its Applications, 1978. 91–113

35 Nesterov Y. Introductory lectures on convex programming volume I: Basic course. 1998

36 Brockman G, Cheung V, Pettersson L, et al. OpenAI Gym. 2016. ArXiv: 1606.01540

37 Kingma D P, Ba L J. Adam: a method for stochastic optimization. 2014. ArXiv: 1412.6980

38 Abadi M, Barham P, Chen J M, et al. Tensorflow: a system for large-scale machine learning. In: Proceedings of Conference

on Operating Systems Design and Implementation, 2016. 265–283

https://doi.org/10.1007/s11432-018-9602-1
https://doi.org/10.1007/s11432-018-9463-x
https://doi.org/10.1137/130932284
https://doi.org/10.1016/j.ifacol.2017.08.735
https://doi.org/10.1561/2200000050
https://arxiv.org/abs/1805.06753
https://doi.org/10.1007/s11432-018-9656-y
https://arxiv.org/abs/1808.03971
https://doi.org/10.1145/321296.321305
https://doi.org/10.1137/10078356X
https://doi.org/10.1137/130919398
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1412.6980

	Introduction
	Preliminaries
	Fixed-point iteration methods
	Anderson acceleration

	Anderson accelerated value iteration
	The algorithm
	Compare A2VI with VI and PI

	Theoretical analysis
	Deep Anderson accelerated Q-learning
	Experiments
	Synthetic experiments
	Experiments with deep learning based techniques

	Related work
	Conclusion

