
SCIENCE CHINA
Information Sciences

December 2021, Vol. 64 222101:1–222101:11

https://doi.org/10.1007/s11432-019-2739-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

A clustering-based flexible weighting method in
AdaBoost and its application to transaction fraud

detection

Chaofan YANG1,2, Guanjun LIU1,2*, Chungang YAN1,2 & Changjun JIANG1,2*

1Department of Computer Science, Tongji University, Shanghai 201804, China;
2Shanghai Electronic Transactions and Information Service Collaborative Innovation Center,

Tongji University, Shanghai 201804, China

Received 26 April 2019/Revised 4 August 2019/Accepted 26 December 2019/Published online 25 November 2021

Abstract AdaBoost is a famous ensemble learning method and has achieved successful applications in many

fields. The existing studies illustrate that AdaBoost easily suffers from noisy points, resulting in a decline

of classification performance. The main reason is that it increases the weights of all misclassified samples

(especially noisy points) in the same way so that the influence of noisy points can hardly be weakened. In

this paper, the clustering algorithm is used to dynamically decide noisy points in the process of iterations.

More precisely, we compute a misclassification degree for every cluster in every iteration that is used to

decide if a misclassified sample is a noisy point or not in the current iteration. Furthermore, we propose a

flexible method to update the weights of the misclassified samples. The experimental results on 22 public

datasets show that our method achieves better results than the state-of-the-art methods including AdaBoost,

AdaCoast, LogitBoost, and SPLBoost. We also apply our method to the transactions fraud detection, and

the experiments on our real big dataset of transactions also illustrate its good performance.

Keywords ensemble learning, AdaBoost, clustering, misclassification degree, transaction fraud detection

Citation Yang C F, Liu G J, Yan C G, et al. A clustering-based flexible weighting method in AdaBoost and

its application to transaction fraud detection. Sci China Inf Sci, 2021, 64(12): 222101, https://doi.org/10.1007/

s11432-019-2739-2

1 Introduction

Machine learning technology has been widely used in practice. For example, the method of pattern
classification has achieved good results in the fields of spam classification and processing [1], network
intrusion detection [2], face recognition [3], and financial fraud detection [4]. As the application scenarios
increase and data are continuously enriched, a single machine learning method (such as decision tree [5],
support vector machine [6] or naive Bayes [7]) can hardly achieve an ideal classification effect. Thus,
the combination of classifiers which is named ensemble learning [8, 9] becomes a new research direction.
Ensemble learning obtains a higher classification accuracy by combining multiple weak classifiers.

At present, the ideas of ensemble learning mainly include Boosting [10] and Bagging [11]. We focus on
the Adaboost algorithm in boosting learning [12]. AdaBoost is a classic classification algorithm whose
main advantage lies in its adaptability. The kernel of AdaBoost is that if a sample is misclassified in an
iteration, then its weight will be increased in the next iteration; if a sample is correctly classified, then the
weight of the sample will be reduced in the next iteration. By repeating the training on the same dataset
with different weight distributions, a series of weak classifiers are produced and then linearly combined
to form a strong classifier with a low classification error rate.

A traditional AdaBoost algorithm [12] does not consider distribution of the dataset in the feature
space and deals with all misclassified samples in the same way. This easily makes the outlier misclassified
samples’ weights be over-diffused after multiple iterations, i.e., the classifier pays more attention to those
outlier misclassified samples and thus affects the classification performance. Some methods have been

*Corresponding author (email: liuguanjun@tongji.edu.cn, cjjiang@tongji.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2739-2&domain=pdf&date_stamp=2021-12-17
https://doi.org/10.1007/s11432-019-2739-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2739-2
https://doi.org/10.1007/s11432-019-2739-2
https://doi.org/10.1007/s11432-019-2739-2

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:2

proposed to deal with the problem. Wei et al. [13] used cost-sensitive learning to improve the AdaBoost
algorithm named AdaCost. Friedman et al. [14] proposed LogitBoost which applied the Newton step to
fit an additive symmetric logistic replica by maximizing the likelihood and minimizing the logistic loss.
Wang et al. [15] proposed SPLBoost algorithm based on Self-paced learning, which integrated the robust
Self-paced learning idea into the learning framework. These algorithms have achieved better experimental
results than AdaBoost and their idea is mainly to reduce the influence of noisy points. However, they
do not explicitly identify the noisy points in the training process. In this paper, we propose a method to
dynamically identify noisy points in the training process and then present a strategy to flexibly update
the weights of misclassified samples in view of the noisy points.

Our algorithm is called as CAdaBoost (clustering-based AdaBoost) because we first use a clustering
method to divide the training set. In every iteration, we calculate a misclassification degree for each clus-
ter. Then, we utilize the misclassification degree of a cluster to decide the possibility that a misclassified
sample in the cluster is a noisy point. In each iteration, a flexible strategy of updating the weight of a
misclassified sample is taken based on the decision of noisy points. Lots of experiments illustrate that
our CAdaBoost which dynamically decides noisy points and flexibly updates the weights of misclassified
samples can enhance the classification performance compared to the state-of-the-art improved AdaBoost.
We also apply our method to solve the problem of checking transaction fraud in a financial company and
obtain a good result.

The rest of this article is organized as follows. Section 2 introduces CAdaBoost in details. Section 3
introduces the to-be-compared methods and experimental results on 22 public datasets. Section 4 applies
our CAdaBoost to the problem of transaction fraud detection. Section 5 summarizes the paper briefly.

2 CAdaBoost

This section first reviews Adaboost and clustering methods, and then describes our method CAdaBoost.

2.1 AdaBoost algorithm

The purpose of AdaBoost is to learn a series of weak classifiers from the training data and then combines
them into a strong classifier. X = R

d represents the d-dimensional sample space and Y = {−1,+1}
represents the label set, where y = +1 represents a positive sample and y = −1 represents a negative
sample. D = {(x1, y1) , (x2, y2) , . . . , (xN , yN)} denotes a training set where xi ∈ X represents one
sample and yi ∈ Y represents the label corresponding to xi. The AdaBoost algorithm mainly includes
three steps [12].

Step 1. Initialize the weight distribution of the training data such that all training samples have the
same weight at the beginning,

D1 = (ω1,1, ω1,2, . . . , ω1,N) , ω1,i =
1

N
. (1)

Step 2. Perform M iterations (m = 1, 2, . . . ,M) as follows.
(i) Use the training set with the weight distribution Dm to learn a basic classifier:

Gm (x) : X → Y. (2)

(ii) Calculate the classification error rate of Gm(x) on the training set,

em =
N
∑

i=1

ωm,iI(Gm(xi) 6= yi). (3)

From this formula, we know that the error rate em of Gm(x) on the training set is the sum of the
weights of the misclassified samples by Gm(x).

(iii) Calculate the coefficient αm of Gm(x) where αm indicates the importance of Gm(x) in the final
classifier. The smaller the classification error rate, the greater the role of the basic classifier in the final
classifier.

αm =
1

2
log

1− em

em
. (4)

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:3

(iv) Update the weight distribution of the training set and then get a new weight distribution for the
next iteration:

Dm+1 = (ωm+1,1, ωm+1,2, . . . , ωm+1,N) , (5)

ωm+1,i =
ωm,i

Zm

exp (−αmyiGm (xi)), (6)

Zm =

N
∑

i=1

wm,i exp(−αmyiGm(xi)). (7)

Zm is the normalization factor that makes Dm+1 become a probability distribution. AdaBoost can
focus on those samples that are more difficult to distinguish.

Step 3. Combine all weak classifiers to get the final classifier:

G (x) =

M
∑

m=1

αmGm(x). (8)

Obviously, if some samples are misclassified, their weights will be increased in the next iteration. The
weights of the correctly classified samples will be reduced in the next iteration and the error rate em is
continuously reduced.

2.2 Clustering analysis

Clustering is an important method of data mining and can be used to discover the overall distribution
pattern of samples in the feature space. A high-dimensional dataset can be divided into a plurality of
separated connected regions containing similar point sets according to the information of samples and
their features. The goal of clustering is that samples in the same cluster have high similarity and the
similarity of samples in different clusters is low.

The k-means method is a commonly used partition-based clustering algorithm that divides samples
in a dataset into k clusters and makes the selected partitioning standard function reach the optimal
solution. It has many advantages including a fast convergence rate, a great clustering effect and strong
interpretability. Therefore, we use k-means to cluster our datasets in the experiments. The main idea
of k-means algorithm [16] is shown as follows. First, select k initial centroids. Then, each sample point
is assigned to the nearest centroid and all sample points assigned to the same centroid form a cluster.
Finally, the centroid of each cluster is updated according to the point set of each cluster. It repeats the
assignment and updates steps until each cluster does not change or the centroid does not change.

2.3 CAdaBoost algorithm

Figure 1 shows the overall flow of our CAdaBoost algorithm. A training set is first divided into k clusters
by the clustering algorithm. Then, in every iteration of training a weak classifier, we first calculate a
misclassification degree for every cluster and then decide if a misclassified sample of a cluster is a noisy
point according to the misclassification degree of the cluster. We will flexibly update the weight of a
misclassified sample according to its decision. Note that we still use the strategy of AdaBoost to update
the weight of a correctly-classified sample.

Specifically, after each iteration, the number Cj of the misclassified samples in the j-th cluster is
counted where j = 1, 2, . . . , k, and the misclassification degree of the j-th cluster is calculated as follows:

Rj =
Cj

∑k

t=1 Ct

. (9)

In view of the misclassification degree of a cluster, the cluster is considered as one of the following
three cases.

(1) If the misclassification degree of a cluster is very low, we believe that the current classifier learns
the characteristics of the samples in the cluster sufficiently and a misclassified sample in the cluster has a
relatively high probability of being a noisy point. Therefore, we should limit the magnitude of increasing
the weight of such a misclassified sample in order to reduce its impact on the classifier in the next round
of training.

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:4

(10)

’

’

Figure 1 The flow of the CAdaBoost.

(2) If the misclassification degree of a cluster is high, it means that the current classifier does not
adequately extract the sample features in the cluster. Therefore, the misclassified samples of this cluster
should be paid more attention in the next round of training, i.e., the magnitude of increasing the weights
of the misclassified samples in such a cluster should be relatively high.

(3) The third case is that the misclassification degree of a cluster is between the above two cases. In
other words, the magnitude of increasing the weight of a misclassified sample in such a cluster should be
between the above two cases.

Based on the above idea, we use the following formula to flexibly adjust the weight of the misclassified
sample xi in the cluster Dj in the (m+ 1)-th iteration:

ω′
m+1,i =















ωm+1,i, θ2 6 Rj ,

c× ωm+1,i, θ1 6 Rj < θ2,
1

N
, Rj < θ1,

(10)

where θ1 and θ2 = 1
k
are two thresholds, θ1 < θ2, and

wm,i

wm+1,i
6 c < 1. In practice, we choose appropriate

θ1 and k by cross-validation. When we use (10) to calculate the weight of a misclassified sample in the
(m + 1)-th iteration, we still need to calculate its weight by (6). When the misclassification degree of
a cluster is less than θ1, we believe that those misclassified samples in the cluster are probably outliers
and their weights are reset to the initial value 1

N
. This can limit the spread of increasing their weights

and then avoid a big impact on the training of the next classifier. When the misclassification degree of
a cluster is greater than or equal to θ2, we believe that the characteristics of the misclassified samples in
this cluster are not fully obtained and thus their weights are set by a relative high value. Here we set
them as the same as that in AdaBoost (i.e., w′

m+1,i = wm+1,i). When the misclassification degree of a
cluster is less than θ2 but greater than or equal to θ1, the weight of the misclassified samples in the cluster
is assigned by a value that is greater than 1

N
but less than wm+1,i. Therefore, wm+1,i is multiplied by a

coefficient c such that
wm,i

wm+1,i
6 c < 1. Algorithm 1 shows CAdaBoost.

2.4 Rationality of CAdaBoost

We use E = E1 ∪ E2 ∪ E3 to represent the set of misclassified samples, where E1 represents the set of
misclassified samples whose misclassification degree is greater than or equal to θ2, E2 represents the set
of misclassified samples whose misclassification degree is less than θ2 but greater than or equal to θ1, and
E3 represents a set of misclassified samples whose misclassification degree is less than θ1. We divide the
misclassified samples into three cases: one (i.e., E1) is that they are not thought of as noises, one (i.e.,

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:5

Algorithm 1 Clustering based AdaBoost

Input: dataset D = {(x1, y1), . . . , (xN , yN)}, iteration count M , parameter θ1, k and c.

Output: G (x) = sign(
∑M

m=1 αmGm(x))

1: Initialize: ω1,i = 1
N

, i = 1, 2, . . . , N ;

2: Divided D into k clusters by a clustering algorithm as D1, D2, . . . , Dk;

3: while m 6= M and em > 0 do

4: Training a basic classifier Gm (x) : X → Y ;

5: For each j ∈ {1, 2, . . . , k}, count the number of misclassified samples in the j-th cluster: Cj ;

6: Calculate the misclassification degree Rj by (9) for each cluster;

7: m = m + 1;

8: Calculate em and αm by (3) and (4), respectively;

9: Calculate the sample weights ω′
m+1,i by (10);

10: ω′
m+1 = (ω′

m+1,1, ω
′
m+1,2, . . . , ω

′
m+1,N);

11: end while

E3) is that they are though of as noises, and one (i.e., E2) is that we are not sure whether they are noises
or not. According to (3) and (10), the formula of computing error rate becomes

em =
∑

xi∈E1

ωm,i +
∑

xi∈E2

c · ωm,i +
∑

xi∈E3

1

N
. (11)

Obviously when E2 = ∅ and E3 = ∅, our method degenerates into the traditional AdaBoost algorithm
(i.e., Eq. (11) is the same with (3)). But E2 and E3 are rarely both empty according to our observations
on experiments. Hence, when E2 and/or E3 are not empty, the error rate computed by (11) is less than
the error rate computed by (3), i.e., Eq. (11) is more accurate than (3). Therefore, this guarantees that
the next training and the obtained classifier are more accurate.

3 Experiments

In this section, we first recall three state-of-the-art improvements of AdaBoost, and then illustrate our
comparison experiments.

3.1 Improvemed versions of AdaBoost

3.1.1 AdaCost algorithm

A classifier has two kinds of misclassifications: predicting positive samples as negative samples and
predicting negative samples as positive samples. AdaCost algorithm [13] uses the cost of misclassification
to update the distribution of training samples, which has different costs for the two misclassifications in
order to reduce the losses caused by misclassification. In AdaCost,

ωm+1,i = ωm,i · e
−αmyiGm(xi)βsign(Gm(xi),yi

), (12)

αm =
1

2
log

1 + rm

1− rm
, (13)

rm =
∑

i

ωm,i · e
−αmyiGm(xi)βsign(Gm(xi),yi

), (14)

where β is called as a cost adjustment function which is preset.

3.1.2 LogitBoost algorithm

LogitBoost algorithm [14] uses Newton steps for optimizing the logistic loss which is more robust than
exponential loss. LogitBoost follows the below steps.

Step 1. Initialize the weight ωi =
1
N
, F (x) = 0 and probability estimates p(xi) =

1
2 .

Step 2. Repeat for m = 1, 2, . . . ,M .
(i) Compute the working response and weight:

zi =
yi − p(xi)

p(xi)(1− p(xi))
, (15)

ωi = p(xi)(1 − p(xi)). (16)

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:6

Table 1 Balanced datasets’ information

Dataset
Number of positive

instances

Number of negative

instances

Total number of

instances
Dim

Breast-cancer 357 212 569 30

Clean 207 269 476 166

Cmc 511 333 844 9

Cylinder-bands 178 99 277 39

Ionosphere 225 126 351 34

Spambase 1813 1788 4601 57

Waveform 1655 1653 3308 40

(ii) Fit the function fm(x) by a weighted least-squares regression of zi to xi using weights ωi.
(iii) Update

F (x) = F (x) +
1

2
fm(x), (17)

p(x) =
eF (x)

eF (x) + e−F (x)
. (18)

Step 3. Output the classifier:

sign(F (x)) = sign

(M
∑

m=1

fm(x)

)

. (19)

3.1.3 SPLBoost algorithm

SPLBoost [15] assigns latent weight v to the exponential losses of training samples to overcome the
problem that the exponential loss is directly minimized and the outliers whose losses are usually very
large are easily paid more attention to AdaBoost. Algorithm 2 shows the details of SPLBoost.

Algorithm 2 SPLBoost algorithm

Input: dataset D = {(x1, y1), . . . , (xN , yN)}, iteration count M , parameter λ.

Output: Classifier sign(
∑M

m=1 αmGm(x)).

1: Initialize: ωi = 1
N

, vi = 1, i = 1, 2, . . . , N ;

2: for m = 1 to M do

3: while n not converge do

4: Fit classifier fm(x) → Y using weights
viωi∑
i viωi

on the training data;

5: Compute err =
∑

yi 6=f(xi)
viωi∑
i viωi

and αm = 1
2 log 1−err

err ;

6: Compute v;

7: end while

8: Set ωi = ωie
log

1−err
err ;

9: end for

3.2 Experimental results and analysis

We validate the effectiveness of our algorithm on 22 public datasets. C4.5 is a decision tree algorithm
and has the characteristics of flexibility and fast training. Therefore, just like [15], we choose C4.5 as the
base classifier in our comparison experiments.

The first experiment is performed on seven datasets from UCI1) that have a relatively balanced dis-
tribution of positive and negative samples. We use the traditional accuracy as the evaluation criteria.
Table 1 describes the basic information of the seven datasets and Table 2 shows the experimental results.
It can be seen that the CAdaBoost algorithm achieves the best accuracy.

To further validate the advantage of our algorithm, the second group of experiments is performed on
thirteen unbalanced datasets from the KEEL2) and two larger datasets from Library3). We use the AUC
value as the evaluation criteria because accuracy cannot evaluate the performance of a method on an
imbalanced dataset and AUC is often used for imbalanced datasets. Table 3 shows the basic information

1) http://archive.ics.uci.edu.

2) http://www.keel.es.

3) http://odds.cs.stonybrook.edu.

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:7

Table 2 Accuracy values on balanced datasets

Dataset CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost

Breast-cancer 0.9770 0.9510 0.9580 0.9603 0.9613

Clean 0.8319 0.7983 0.7863 0.8081 0.8016

Cmc 0.6872 0.6777 0.6825 0.6405 0.6755

Cylinder-bands 0.7714 0.6429 0.6571 0.6665 0.6786

Ionosphere 0.9432 0.9091 0.9205 0.9205 0.9137

Spambase 0.9407 0.9235 0.9270 0.9262 0.9255

Waveform 0.9335 0.9154 0.9262 0.8972 0.9274

Table 3 Imbalanced datasets’ information

Dataset
Number of positive

instances

Number of negative

instances

Total number of

instances
Dim

Abalone19 32 4142 4174 8

Ecoli4 20 316 336 7

Galss0 76 138 214 9

Glass2 13 201 214 9

Glass4 9 205 214 9

Glass5 29 185 214 9

Iris0 35 180 215 4

New-thyroid 35 180 215 5

Pima 329 1979 3308 8

Yeast1458vs7 51 463 514 8

Yeast2vs4 20 462 482 8

Yeast5 35 1449 1484 8

Yeast6 35 1449 1484 8

Smtp 30 95126 95156 5

Forestcover 2747 283301 286048 6

Table 4 AUC values on imbalanced datasets

Dataset CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost

Abalone19 0.7500 0.7425 0.7325 0.7047 0.7500

Ecoli4 0.8212 0.7671 0.7945 0.8307 0.8026

Galss0 0.7749 0.7542 0.7375 0.7542 0.7417

Galss2 0.8407 0.8137 0.8250 0.7454 0.8166

Galss4 1.0000 0.9245 0.9623 1.0000 1.0000

Galss5 0.9386 0.9333 0.9375 0.8905 0.9289

Iris0 1.0000 0.9878 0.9878 1.0000 1.0000

New-thyroid 0.9822 0.9444 0.9400 0.9662 0.9488

Pima 0.9923 0.9845 0.9900 0.9804 0.9890

Yeast1458vs7 0.8996 0.8832 0.8790 0.8916 0.8791

Yeast2vs4 0.8871 0.8571 0.8528 0.8706 0.8706

Yeast5 0.9098 0.8862 0.9025 0.8958 0.8403

Yeast6 0.8114 0.7857 0.7808 0.7445 0.7843

Smtp 0.8571 0.8333 0.8500 0.8500 0.8571

Forestcover 0.9705 0.9561 0.9577 0.9456 0.9652

of these imbalanced datasets and Table 4 shows the experimental results. Obviously, CAdaBoost also
achieves better performance.

Figures 2 and 3 show the variation of the accuracy/AUC scores of CAdaBoost on each dataset when
adjusting the number of clusters k and the threshold θ1. In the experiment, c = 1

2 · (1 +
wm,i

wm+1,i
), the

value range of k is {3, 4, 5, 6} and the threshold θ1 range is {0.01, 0.02, . . . , 0.09}. We can see that the
impact of θ1 and k is different to different datasets. θ1 and k change frequently on the breast-cancer,
ionoshere, glass5 and other datasets that make the experimental results have large fluctuations, but they
change little on clean, cmc, ecoli4 and other datasets that do not make the experimental results have big
fluctuations.

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:8

Breast-cancer

Clean Cmc Cylinder-bands

Ionosphere Spambase Waveform

k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

Figure 2 The change curves of accuracy values of CAdaBoost on balanced datasets with different k and θ1.

Table 5 Training set and test set

Training set Test set

1 April data May data

2 May data June data

3 April and May data June data

Table 6 Information of our transaction datasets

Number of fraudulent

transactions

Number of legal

transactions

Total number of

transactions
Dim

2017.04 13271 1229356 1242627 46

2017.05 27122 1188722 1215844 46

2017.06 24898 1017294 1042192 46

4 Application of CAdaBoost on transaction fraud detection

We apply our method in the system of detecting transaction fraud. Here we illustrate some experimental
results on a big dataset from a financial company of China. It contains more than 3.5 million transaction
records of B2C in which there are about 65300 fraud ones. Obviously, the dataset is imbalanced seriously.

Random forest [17, 18] is a classic ensemble learning method, which is often used in transaction fraud
detection. Therefore, we also compare CAdaBoost with random forest in these experiments. Tables 5
and 6 show the information of dataset, training sets and test sets. Table 7 shows the AUC scores of the
six algorithms. Obviously, our CAdaBoost achieves the best result.

We also use F1, recall and precision to evaluate our method, as shown in Tables 8–10. For the two-
category problem, samples can be divided into true positive examples (TP), false positive examples (FP),
true negative examples (TN) and false negative examples (FN) according to the combination of their
real category and the machine learning prediction category. F1 = 2×P×R

P + R
is the harmonic mean of the

precision rate P = TP
TP+FP and the recall rate R = TP

TP+FN . F1, just like AUC, is also an important measure
for the performance of a machine learning method on imbalanced datasets. CAdaBoost obtains the best

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:9

Abalone19 Ecoli4 Glass0

Glass5Glass4Glass2

Iris0 New-thyroid Pima

Yeast5

Yeast6 Smtp Forestcover

Yeast2vs4Yeast1458vs7

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

k=3 k=4 k=5 k=6k=3 k=4 k=5 k=6 k=3 k=4 k=5 k=6

Figure 3 The change curves of AUC values of CAdaBoost on imbalanced datasets with k and θ1.

Table 7 AUC scores on transaction datasets

CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost RandomForest

1 0.9446 0.8997 0.6649 0.9003 0.9027 0.8652

2 0.9481 0.9139 0.9129 0.9225 0.9187 0.8809

3 0.9432 0.9133 0.9074 0.8961 0.9149 0.8769

F1 scores. From the recall scores in Table 9, we can see that CAdaBoost can detect more fraud samples
(although its precision is a little lower than others, i.e., a little more legal transactions are intercepted as
fraud ones). Random forests achieve the best results in precision scores, but the coverage of fraud samples
is low compared to others. Financial companies usually hope to intercept more fraud transactions (i.e.,
a high recall). At the same time, we find that transaction data have an obvious clustering phenomenon
in the feature space and thus our CAdaBoost can be well applied to the transaction fraud detection.

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:10

Table 8 F1 scores on transaction datasets

CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost RandomForest

1 0.8327 0.8052 0.7641 0.7997 0.8085 0.7752

2 0.7727 0.7561 0.7641 0.7600 0.7566 0.7543

3 0.7694 0.7508 0.7609 0.7429 0.7621 0.7522

Table 9 Recall scores on transaction datasets

CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost RandomForest

1 0.8866 0.8037 0.8344 0.8054 0.8097 0.8215

2 0.8812 0.8363 0.8344 0.8463 0.8471 0.7685

3 0.8988 0.8353 0.8231 0.8009 0.8387 0.7602

Table 10 Precision scores on transaction datasets

CAdaBoost AdaBoost AdaCost LogitBoost SPLBoost RandomForest

1 0.7951 0.8068 0.7047 0.7940 0.8074 0.8215

2 0.6860 0.6968 0.7047 0.6945 0.6836 0.7406

3 0.6726 0.6886 0.7074 0.6927 0.6983 0.7443

Notice that machine-learning-based transaction fraud detection is a complex engineering that not
only requires a good classification method but also needs to deal with the feature mining [19], data
imbalance [20], and concept drift [21]. Here we focus on the improvement of the classification method.
More importantly, our improvement is not complex but its effect is very obvious.

5 Conclusion

CAdaBoost adapts a clustering-based method to dynamically predict those noisy points and flexibly
adjust the weights of misclassified samples. It obtains a good performance especially when a dataset
has an obvious clustering phenomenon. CAdaBoost can achieve a good result when we apply it to the
transaction fraud detection. In the future, we plan to consider the distribution of misclassified samples
in more detail and improve our method furthermore.

Acknowledgements This work was supported in part by National Key Research and Development Program of China (Grant

No. 2018YFB2100801), and Fundamental Research Funds for Central Universities of China (Grant No. 22120190198). Authors

would like to thank anonymous reviewers for their constructive comments.

References

1 Yu B, Xu Z B. A comparative study for content-based dynamic spam classification using four machine learning algorithms.

Know-Based Syst, 2008, 24: 355–362

2 Ju W H, Vardi Y. A hybrid high-order Markov chain model for computer intrusion detection. J Comput Graph Stat, 2001,

10: 277–295

3 Shen L, Bai L, Bardsley D, et al. Gabor feature selection for face recognition using improved adaboost learning. In: Li S Z,

Sun Z, Tan T, eds. Advances in Biometric Person Authentication. Berlin: Springer, 2005. 3781: 39–49

4 Panigrahi S, Kundu A, Sural S, et al. Credit card fraud detection: a fusion approach using Dempster-Shafer theory and

Bayesian learning. Inf Fusion, 2009, 10: 354–363

5 Salzberg S L. C4.5: programs for machine learning. Mach Learn, 1994, 16: 235–240

6 Cortes C, Vapnik V. Support vector network. Mach Learn, 1995, 20: 273–297

7 Ng A Y, Jordan M I. On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes.

In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic,

Cambridge, MIT Press, 2001. 841–848

8 Zhou Z H. Ensemble Learning. In: Encyclopedia of Biometrics. Boston: Springer, 2009

9 Dietterich T G. Ensemble methods in machine learning. In: Proceedings of International Workshgp on Multiple Classifier

Systems, 2000. 1857: 1–15

10 Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput

Syst Sci, 1997, 55: 119–139

11 Breiman L. Bagging predictors. Mach Learn, 1996, 24: 123–140

12 Freund Y, Schipare R E. Experiments with a new boosting algorithm. In: Proceedings of the 13th International Conference

on Machine Learning, 1996. 148–156

https://doi.org/10.1198/10618600152628068
https://doi.org/10.1016/j.inffus.2008.04.001
https://doi.org/10.1006/jcss.1997.1504

Yang C F, et al. Sci China Inf Sci December 2021 Vol. 64 222101:11

13 Wei F, Stolfo S J, Zhang J X, et al. AdaCost: misclassification cost-sensitive boosting. In: Proceedings of International

Conference on Machine Learning (ICML-99), Bled, 1999. 97–105

14 Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder

by the authors). Ann Statist, 2000, 28: 337–407

15 Wang K, Wang Y, Zhao Q, et al. SPLBoost: an improved robust boosting algorithm based on self-paced learning. 2017.

ArXiv: 1706.06341

16 Wong J A, Hartiganm A. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc, 1979, 28: 100–108

17 Breiman L. Random forests. Mach Learn, 2001, 45: 5–32

18 Xuan S Y, Liu G J, Li Z C, et al. Random forest for credit card fraud detection. In: Proceedings of IEEE 15th International

Conference on Networking, Sensing and Control (ICNSN), Zhuhai, 2018. 27–29

19 Jiang C, Song J, Liu G, et al. Credit card fraud detection: a novel approach using aggregation strategy and feedback

mechanism. IEEE Internet Things J, 2018, 5: 3637–3647

20 Zhang F J, Liu G J, Li Z C, et al. GMM-based undersampling and its application for credit card fraud detection.

In: Proceedings of the 32nd International Joint Conference on Neural Network (IJCNN2019), Budapest, 2019. 14–19

21 Zheng L, Liu G, Yan C, et al. Transaction fraud detection based on total order relation and behavior diversity. IEEE Trans

Comput Soc Syst, 2018, 5: 796–806

https://doi.org/10.1214/aos/1016218223
https://arxiv.org/abs/1706.06341
https://doi.org/10.1109/JIOT.2018.2816007
https://doi.org/10.1109/TCSS.2018.2856910

	Introduction
	CAdaBoost
	AdaBoost algorithm
	Clustering analysis
	CAdaBoost algorithm
	Rationality of CAdaBoost

	Experiments
	Improvemed versions of AdaBoost
	AdaCost algorithm
	LogitBoost algorithm
	SPLBoost algorithm

	Experimental results and analysis

	Application of CAdaBoost on transaction fraud detection
	Conclusion

