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Dear editor,

The acquirement of the channel state information (CSI) is

indispensable for designing efficient beamformers [1]. Un-

fortunately, estimating CSI is extremely challenging in the

mmWave/THz systems where the number of antennas is

super-large and the receive signal-to-noise ratio (SNR) is

relatively low. Most of the existing estimators are based

on the direct applications of inherent channel sparsity and

generic compressive sensing (CS) techniques, which cannot

lead to fine enough performances in channel estimation be-

cause it puts strict requirements on the channel sparsity or

the data measurements [2–7].

In the mmWave/THz systems, the channels exhibit

strong line-of-sight (LoS), hence it is reasonable to obtain

the ranges of angles of departure/arrival (AoDs/AoAs) in

advance. In this letter, we propose a super-resolution chan-

nel estimator that can incorporate the prior knowledge of

angular blocks to enhance the performance of recovering

channel with continuous-valued angles, based on weighted

atomic norm minimization.

We assume a full-dimension (FD) mmWave/THz com-

munication system, where the base station (BS) and the

receiver pack uniform planar array (UPA) with N = N1N2

transmit antennas and M = N3N4 receive antennas, re-

spectively. The downlink channel between the BS and the

receiver can be modeled according to a geometric channel

model composed of L multi-paths [5]. Then the channel

matrix H during a coherent time block of multiple time

slots can be expressed as

H =
L
∑

l=1

αlbR,lb
H
T,l ∈ C

M×N , (1)

where αl ∼ CN (0, σ2
l ) ∈ C denotes the complex gain of

the l-th multi-path, l = 1, . . . , L, and the set of vectors

{bT,l}Ll=1
denotes the steering responses of the transmit ar-

rays with half-wavelength antenna element separation along

the elevation-and-azimuth-axis. Then the UPA transmit ar-

ray response can be expressed as

bT,l = eN1
(gl1)⊗ eN2

(gl2), (2)

where gl1 = sin(θl) cos(φl), gl2 = cos(θl), θl and φl are

the elevation- and azimuth- AoDs, respectively, ⊗ denots

the Kronecker product, and the array response of an n-

dimension uniform linear array (ULA) with half-wavelength

separation between adjacent antenna elements, is in the form

with frequency g ∈ [−1, 1):

en(g) =
1√
n
[1, ejπg , . . . , ejπ(n−1)g ]T ∈ C

n, (3)

where j is the imginary unit. Here, let N1 and N2 denote

the numbers of elevation- and azimuth- transmit antennas,

respectively; i.e., the total number of transmit antennas is

N = N1N2. Owing to the strong LoS property of the chan-

nels at both the mmWave/THz bands, we assume the ranges

of the AoDs are obtained as a priori, i.e., ∀l, gl1 ∈ I1,
gl2 ∈ I2, with the angular blocks I1, I2 ⊂ [−1, 1), respec-

tively. Similarly, the antenna array response bR,l is specified

as eN3
(gl3)⊗ eN4

(gl4), gl3 ∈ I3, gl4 ∈ I4, with the angular

blocks I3, I4 ⊂ [−1, 1), respectively.

For estimating the channel matrix H, the BS should

send K beams during K successive time slots within a co-

herent time block. More concretely, during the k-th time

slot, the beamforming vector Fk ∈ CN is set as a unitary

vector which is selected from a predefined codebook, e.g.,

fk = fk,1 ⊗ fk,2 where fk,1 ∈ CN1 and fk,2 ∈ CN2 are

selected from two discrete Fourier transform (DFT) code-

books of dimensions N1 and N2, respectively [8]. Then the

k-th signal vector at the receiver can be expressed as

yk = Hfksk +wk, (4)

where wk ∼ CN (0, σ2IM ) is the additive white Gaussian

noise (AWGN) with IM denoting the M × M identity ma-

trix and σ2 being the average power gain of the AWGN,
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and sk denotes the pilot symbol transmitted during the k-

th time slot. After receiving K pilots during K time slots,

we have the signal at the receiver,

Y = HFS +W ∈ C
M×K , (5)

where Y = [y1, . . . ,yK ] ∈ CM×K , F = [f1, . . . ,fK ] ∈
CN×K , S = diag([s1, . . . , sK ]) =

√
P IK ∈ CK×K , P is the

power of the pilot symbol, IK is the K ×K identity matrix,

and W = [w1, . . . ,wK ] ∈ CM×K .

Before describing our proposed estimator, we vectorize

the measurements Y in (5) to obtain

y = vec(Y ) =
√
P (FT ⊗ IM )h+w (6)

with IM being the M×M identity matrix and the vectorized

representation of the channel matrix H, i.e.,

h = vec(H) =
L
∑

l=1

αlbT,l ⊗ bR,l

=
L
∑

l=1

αleN1
(gl1)⊗ eN2

(gl2)⊗ eN3
(gl3)⊗ eN4

(gl4),

(7)

where FT ⊗ IM ∈ CMK×MN , y ∈ CMK , h ∈ CMN and

w = vec(W ) ∈ CMK .

Sparsity enhancement via weighted atomic norm. Let

g = {gd}4d=1 and b(g) = eN1
(g1) ⊗ eN2

(g2) ⊗ eN3
(g3) ⊗

eN4
(g4). Then the set of atoms b(g), gd ∈ [−1, 1), d =

1, . . . , 4, is defined as

A = {b(g), gd ∈ [−1, 1)}. (8)

Assume the four independent intervals Id equal probable,

then the probability density function (pdf) of g in (8) is

p(g) =
4
∏

d=1

p(gd) = p(g1)× p(g2)× p(g3)× p(g4), (9)

with

p(gd) =
1

(gUd − gLd )
I(gd ∈ Id), (10)

where

I(gd ∈ Igd) =
{

1, gd ∈ Id,
0, else,

is an indicator function.

Based on p(g) in (9), we define

C = E[b(g)bH(g)] =

∫ 1

−1
b(g)bH(g)p(g)dg

= cg1 ⊗ cg2 ⊗ cg3 ⊗ cg4, (11)

where cgd is a symmetric Toeplitz matrix whose first row is

given by















c11 = 1,

c1n = j

π(n−1)(gU
d

−gL
d
)
(e−jπ(n−1)gUd − e−jπ(n−1)gLd ),

n = 2, . . . , Nd.

(12)

Using C, we define a weighting function w(g) as

w(g) = [bH(g)C−1b(g)]
−1/2

(13)

and a set of corresponding weighted atoms [9]:

Aw = {w(g)b(g) : gd ∈ Id,∀d}. (14)

Then the weighted atomic norm for h =
∑

l αlb(gl) is de-

fined as
∥

∥

∥

∥

∥

∑

l

αlb(gl)

∥

∥

∥

∥

∥

Aw

= inf
b(gl)∈Aw

{

∑

l

|αl|
w(g)

:
∑

l

αlb(gl)

}

.

(15)

On this basis, a convex format for (15) is equally formu-

lated using the following form of the weighted atomic norm:

‖h‖Aw = min
T4(V )∈CNM×NM,

h∈CNM,ε∈R

1

2
tr(C−1T 4(V )) +

1

2
ε

s.t.

[

T 4(V ) h

hH ε

]

� 0, (16)

where � 0 stands for a positive semidefinite matrix, ε =
∑

l
|αl|
w(g)

> 0, and T 4(V ) is a 4-level block Toeplitz matrix

with each block being a 3-level Toeplitz matrix.

Channel estimation using weighted atomic norm. Based

on (6) and (16), the channel estimator can be formulated as

the following optimization problem:

ĥ =arg min
T4(V )∈CNM×NM,

h∈CNM,ε∈R

1

2

∥

∥

∥
y −

√
P (FT ⊗ IM )h

∥

∥

∥

2

2

+ µ‖h‖Aw . (17)

Note that the formulation in (17) is a positive semidefi-

nite problem which can be solved by using a convex solver

in CVX packet.
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