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Abstract Several modern network embedding methods learn vector representations from sampled context

nodes. The sampling strategies are often carefully designed and controlled by specific parameters that enable

them to adapt to different networks. However, the following fundamental question remains: what is the key

factor that causes some sampling context results to yield better vectors than others on a certain network? We

attempted to answer the question from the perspective of information theory. First, we defined the weighted

entropy of the sampled context matrix, which denotes the amount of information it takes. We discovered

that context matrices with higher weighted entropy generally produce better vectors. Second, we proposed

maximum weighted entropy sampling methods for sampling more informative context nodes; thus, it can

be used to produce more informative vectors. Herein, the results of the extensive experiments on the link

prediction and node classification tasks confirm the effectiveness of the proposed methods.
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1 Introduction

Network embedding aims to learn low-dimensional node representations that preserve the property of
the original network. The learned vectors can effectively support the downstream network inference
tasks, such as node classification [1], anomaly detection [2], community detection [3], and missing link
prediction [4].

Further, recent advances in network embedding mainly originated from Deepwalk [5]. The method
comprises two phases. The first phase identifies the neighborhood (context) nodes to each source node,
where the context nodes are sampled using the random walk method. The second phase maximizes
the conditional probability of the observing context nodes to the source node. Because Deepwalk can
learn high-quality representations and scale to very large networks, the two-step learning paradigm has
become popular in various networks, including homogenous network embedding [6–9], heterogeneous
network embedding [10, 11], and attributed network embedding [12].

To capture the diversity of connectivity patterns in different networks, some studies have developed
flexible context sampling strategies and achieved promising results. Node2vec [6] proposed a biased ran-
dom walk strategy for balancing breadth-first and depth-first search of neighborhoods. Ref. [9] proposed
an attention model, which can guide the random surfer on “where to attend to” as a function of distance
from the source node. These studies biased the walks explicitly or implicitly, to better explore the struc-
ture of certain networks. However, the fundamental question remains: what is the key factor that causes
some sampling context results to yield better vectors than others on a certain network? Previously, the
context sampling procedure was indeed a black box. No indicator could help to judge the quality of the
sampling results until the optimization was finished and the vectors were evaluated on the downstream
tasks.
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Figure 1 (Color online) Node degree w.r.t. sampled frequency ratio of MWENE/Deepwalk.

To address the question, we assume that the more information the sampled context matrices takes, the
better representation will be learned. However, another important question arises: what kind of nodes
is informative? Certainly, the context nodes shared by too many source nodes are not very informative.
According to information theory, the more an item appears, the less information it takes. However, if
a context node appears few times, it does not imply being informative either. Recall the motivation of
network embedding and language modeling: entities sharing similar contexts would be similar in vector
space. If a context node is shared by a very small number of source nodes, then merely anything would
be learned.

From the foregoing, we define the information amount of a sampled context matrix as its weighted
entropy. The weighted entropy relates to both the node degree in the original networks and the frequency
distribution of the sampled context nodes. Then, we test the context matrices produced using Node2vec
and Deepwalk. The learned embeddings are evaluated on link prediction and node classification tasks.
The results obtained show that the performances have a significant positive correlation to the weighted
entropy.

Based on the findings obtained, we propose a novel neighborhood sampling method named maximum
weighted entropy for network embedding (MWENE). MWENE can gradually increase the weighted en-
tropy of the sampled context matrix, and hence can produce more informative vectors. Figure 1 shows the
sampling differences between MWENE and Deepwalk, w.r.t. node degrees. MWENE samples much less
number of low degree nodes than Deepwalk, as these nodes are less informative in our settings. MWENE
samples more nodes as the node degree increases. However, when the node degree becomes extremely
large, the speed begins to slow down. From the figure, it is clear that context nodes with middle size of
degree will be sampled more. These nodes offer good features for bridging the connection among similar
groups and discriminate features for identifying different communities.

Extensive experiments were conducted on link prediction and node classification tasks to determine
the effectiveness of the proposed MWENE.

In summary, the contributions of our work are as follows:

• We define weighted entropy to describe the amount of information of the sampled context nodes in
network embedding, and validate the fact that context matrices with higher weighted entropy generally
yield better representations.

• We present MWENE for sampling high entropy context nodes in network embedding.

• Extensive experiments show that MWENE can outperform the state-of-the-art methods on link
prediction and node classification tasks.

The remaining parts of the paper are organized as follows. Section 2 defines the weighted entropy
of the sampled context matrix and validates the fact that the indicator significantly correlates with the
performance of downstream tasks. Section 3 introduces the proposed MWENE. Section 4 presents the
experiments conducted. Section 5 briefly summarizes the related work. Finally, our conclusion of the
work is presented in Section 6.
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2 Weighted entropy

2.1 Preliminaries

The network embedding problem can be formulated as follows. Given a network G = (V,E), where V

denotes the set of nodes and E denotes the set of edges. Each vi ∈ V denotes a data object and each
eij ∈ E denotes a link from vi to vj . Each edge eij can be associated with a weight wij . For directed
networks, there must be an eji if eij ∈ E. For unweighted networks, wij is constant with the value of 1.
The goal of network embedding is to learn the embedding matrix X ∈ R

|V |×d where row Xi denotes the
embedding of vi and d denotes the dimension of the embedding.

A context matrix C ∈ N
|V |×|V | is sampled from the network, which contains the structure regularity

of the original network. Each element Cij in the matrix denotes that vj is sampled as the context node
of vi for Cij times. A couple of methods defined context matrix explicitly or implicitly. Deepwalk [5]
obtained short truncated node sequences with random walk and then applied Skip-gram [13] to learn
the node representations. Equivalently, Cij denotes the frequency of vj is within a small distance to vi
in the sequences. Node2vec [6] proposed biased random walk strategy for generating node sequences.
They defined the return parameter p and in-out parameter q to interpolate between breadth-first and
depth-first search. Ref. [9] linearly combined context distributions over different distances to the source
node, to preserve different types of relational information.

Afterward, some optimization methods can be applied to C to learn the final network embeddings such
as hierarchical softmax [5], negative sampling [6], and matrix factorization [14].

2.2 Weighted entropy of context matrix

2.2.1 Definition

The context matrix C provides all the information the following optimization algorithm can learn from.
We assume that the more information C takes, the better the node embeddings that can be learned. We
want to define an indicator that can be used to describe the amount of information in the matrix C.
First, we transfer the context matrix C to the context distribution P :

P =
C

∑|V |
i

∑|V |
j Cij

.

According to the information theory, the information of the context node vj is − log2 pj bits, where

pj =
∑|V |

i Pij denotes the probability of vj in P . However, such a measurement treats all nodes equally
and ignores the information quality associated with them. Nodes with a higher degree are generally more
important to the network’s topology and should be emphasized more. For instance, in a citation network,
highly cited papers are often more representative to a certain research area, than the less cited ones. In
most real-world networks, the distribution of degree follows the power law. Thus, a general approach is
to use a coefficient log2 dj to describe the information quality of context node vj , where dj denotes vj ’s
degree measured from the original network. The weighted information of vj can thus be represented as

WI(vj) = − log2 dj log2 pj . (1)

Note that some networks may contain nodes with degree 1. The weight information of these nodes will
be 0. A practical solution is to let di = 2di for all nodes when a network contains 1 degree nodes.

The overall weighted information of the context distribution P is the summation of weighted informa-
tion possessed by each element in the matrix:

WI(C) =

|V |
∑

i

|V |
∑

j

PijWI(vj) = −

|V |
∑

j

pj log2 dj log2 pj , (2)

where WI(C) is indeed the weighted entropy proposed in [15]. In this paper, WI(C) is used to measure
the information of C. We assume that the bigger the weighted entropy, the better the vectors may be
learned.
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Figure 2 (Color online) Weighted entropy w.r.t. the performance of classification and link prediction tasks. corr and sig denote

the correlation coefficient and the significance, respectively.

Table 1 Correlation coefficient between the information measurement and the evaluation indicators. F1 and ROC denote Macro-f1

and AUROC respectively. ∗∗ denotes that the significant value p is below 0.01

Information indicator F1 (DBLP) ROC (DBLP) F1 (CITESEER) ROC (CITESEER)

Entropy 0.132 −0.109 0.397 0.509

KL-divergence −0.534 0.216 0.163 0.274

Weighted entropy 0.670∗∗ 0.660∗∗ 0.861∗∗ 0.758∗∗

2.2.2 Validation

We validate our assumption on node classification and link prediction tasks, with 2 state-of-the-art net-
work sampling techniques: Deepwalk [5] and Node2vec [6]. We exclude [9] in the investigation because
their weighted context matrix is obtained automatically. To eliminate the effect of different optimization
methods, we use stochastic gradient descent with negative sampling in all the optimization stages. Clas-
sification and link prediction tasks are evaluated with Macro-f1 and AUROC, respectively. The datasets
used are DBLP and CITESEER. The optimization method, tasks, and datasets will be introduced in de-
tail in the subsequent sections. Particularly, in Deepwalk, window size was set to 1,2,. . . ,10, respectively.
In Node2vec, p, q were set in [0.25, 0.5, 1, 2, 4]. In total, we obtained 25 data points for Node2vec and 10
data points for Deepwalk.

The results are shown in Figure 2. Most of the results indicate that weighted entropy has a significant
positive correlation with the performance of both tasks. The results on Deepwalk-CITESEER is not
significant. This is partly because tuning context size cannot affect the weighted entropy effectively.

We also evaluated some other information measurement indicators, including: (1) entropy of the
context matrices; (2) KL-divergence between the sampled frequency distribution and the network degree
distribution. We mixed the results of Deepwalk and Node2vec, and reported the correlation existing
between the information measurement indicators and the evaluation indicators in Table 1. Weighted
entropy has a significant correlation with the evaluation indicators. The indicator of entropy and KL-
Divergence is not statistically significant.

In all, the results validate our assumption.

2.3 Discussion

It is important to understand that context matrix with high weighted information often yields better
results, though not necessarily. Suppose we sum up a matrix to a row and leave other parts all 0. Such
a matrix is of the same weighted entropy as the original one, but we can learn nothing from it. However,
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Figure 3 Block diagram of MWENE algorithm.

the context matrix is obtained from the method of random walk. Empirically, the matrices generated by
random walk follow this assumption.

A context matrix with large weighted entropy should have the following properties. First, the term
log dj requires the high-degree nodes to be sampled more than the low-degree nodes. As we discussed
earlier, the high-degree nodes are generally more representative and more important to the network.
Second, the term −pj log2 pj requires that the distribution curve of pj should not be too steep. That is,
a major part of nodes should distribute more uniformly. Thus, it is appreciated if each context node is
not sampled too much, nor too less. Refer to Figure 1 for more explanation on this, the middle-degree
nodes get more sampled opportunity.

Ref. [15] studied the analytical solution of the maximum weighted entropy problem. However, the
constrain of the random walk is difficult to model analytically. In the next section, we propose a simple
way to iteratively increase the weighted entropy of sampled context nodes.

3 Proposed method

Our learning framework follows the popular two-stage framework proposed in [5], including a context
sampling stage and an optimization stage. The context sampling stage takes a network G as input
and produces the sampled context matrix C as output. The optimization stage generates the learned
embeddings X with C.

3.1 Sampling algorithm: MWENE

For a networkG, we want to sample a context matrix that preserves the structural property of the original
network. The matrix can be obtained via random walk, while the links are weighted in a transition matrix
to enlarge the weighted entropy. The block diagram of the MWENE algorithm is shown in Figure 3.
We simulate random walks to obtain the context matrix in each iteration. Then, with the degree of the
original network and the context distribution of the context matrix, we can maintain a vector of the
weighted information of each node. After that, the weighted information vector can be used to update
the transition probability of the original network. Then, the next sampling iteration begins. After the
sampling stage, an optimization algorithm can be used to learn the embeddings.

The pseudocode of MWENE is presented in Algorithm 1. The sampling procedure is running for
n iterations over all the nodes. The nodes with large weighted information in the previous sampling
iterations will be sampled more in the next iteration and vice versa. There are two phases in each
iteration. Phase 1 is from line 3 to 13. The random walk starts from each source node in V respectively.
Let g(vj |vi) be the transition value from vi to vj :

g(vj |vi) =

{

qjwij , if eij ∈ E,

0, else,

where qj denotes the weighted information of vi and wij denotes the weight of the original edge in the
network. Then, we can save the unnormalized transition value as an array πneigh and normalize it. For
each source node, we simulate t steps of random walk to get t context nodes. Phase 2 is lines 14–16,
which updates the weight entropy vector after an iteration of sampling finishes.

Apart from the weighted entropy-based sampling, the other advantage of our method is that it can be
sued to sample an equal number of context nodes for each source node. Most of the methods proposed in
existing works, e.g., [5,6], produce node sequences first, and then use the slide window principle to obtain
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Algorithm 1 Maximum weighted entropy sampling for network embedding (MWENE)

Require: Network G = (V,E), walk length t, number of walks per node n;

Ensure: The sampled context matrix C ∈ N
|V |×|V |.

1: Initialization: context matrix C where each element is 0, weighted entropy vector q ∈ R
|V | where each element is 1;

2: for iteration = 1 to n do

3: for i = 1 to |V | do

4: s = i; //vs is the current node

5: for j = 1 to t do

6: neighbors = get neighbors(G, s);

7: πneigh = [wstqt for t in neighbors];

8: πneigh = πneigh/sum(πneigh);

9: k = AliasSample(neighbors,πneigh); //Sample the next node

10: Cik = Cik + 1;

11: s = k;

12: end for

13: end for

14: for i = 0 to |V | do

15: Update qi according to Eq. (1);

16: end for

17: end for

18: return C.

the source-context pairs. Because the random walk can merely reach the low-degree nodes, the low-
degree nodes would get much less training opportunity than the high-degree nodes. MWENE gives the
low-degree nodes a smaller transition weight than the standard random walk. Thus, such an unbalance
problem is even more severe. By fixing the number of context nodes for each source node, the proposed
method can learn more stable vectors.

3.2 Objective and optimization

Similar to [5,6], we propose to maximize the likelihood of the context nodes from a given ource node. The
underlying idea is that the source nodes sharing similar context nodes should be close in vector space.
The probability that vj is the context node of vi is defined as a softmax function over all the nodes:

p(vj |vi) =
eX

T
j Xi

∑|V |
k=1 e

XT
k
Xi

.

By assuming conditional independence of the source-context node pairs, the overall objective is as
follows:

O(X) =





|V |
∑

i

|V |
∑

j

CijX
T
i Xj − logZ



 , (3)

where partition function Z =
∑|V |

i

∑|V |
j XT

i Xj can be estimated with negative sampling [6].

We optimize the objective function in (3) using stochastic gradient descent over the model parameters
X . Specifically, we apply the adaptive moment estimation (Adam) [16], which adapts the learning rate
according to parameter frequency. In each mini-batch, a random batch of source-context pairs is removed
from C and fed to the optimization function, until C is empty.

3.3 Algorithm complexity

The complexity of MWENE is the same as that of previous works such as Deepwalk and Node2vec. The
difference is that we have to maintain the weighted information vector after every iteration of sampling,
whose complexity is linear to the number of nodes O(n|V |). The additional computation does not affect
the overall complexity. To get better parallelization, we do not update the shared weighted information
vector after each iteration. Instead, we update it after several iterations, which is encoded in a parallel
thread. In practice, it would be hard to observe a significant performance decrease.
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Table 2 Statistics of the datasets

Datasets BlogCatalog DBLP CITESEER

|V | 10312 60744 3312

|E| 333983 52914 4675

Label count 39 4 6

Label Interest Area Area

4 Experiments

4.1 Experiment setup

4.1.1 Datasets

The statistics of the datasets used in this study are shown in Table 2.
• BlogCatalog [17] is a network of social relations provided by blogger authors. The labels represent

the topic categories provided by the authors. Each node may have multiple labels in the dataset.
• DBLP1) is a citation database. Each paper is labeled with one of the research areas: DB, DM, AI,

and CV.
• CITESEER2) is a citation database where each paper is labeled with one of the research areas:

agents, AI, DB, IR, ML, and HCI.

4.1.2 Baselines

We apply the following four network embedding methods as baselines. We implement Deepwalk and
Node2vec according to their respective papers. To make a fair comparison, we alter the walk framework of
Node2vec the same way as MWENE but keep their biased transition weight strategy. Therefore, the main
performance difference between Node2vec and MWENE is purely caused by the context matrices. For
GraGep and graph attention, we use their published code. We set the dimension of network embeddings
for all methods to 128.

• Deepwalk [5]. It is a pioneering work that introduces random walk and language modeling to network
embedding. We set window size = 10, walk length = 80, and number walks = 80.

• Node2vec [6]. The work uses hyper-parameters p and q to simulate a biased random walk. We search
p, q ∈ {0.25, 0.5, 1, 2, 4} according to different datasets. Because we change their sampling framework the
same as MWENE, the rest of the parameters are similar to that of MWENE.

• GraGep [18]. The method extends high-order proximity and uses the singular value decomposition
(SVD) to train the model. The final representation is the concatenation of first-order and high-order
vectors. We set kstep = 4.

• Graph attention [9]. The method uses auto learned coefficients to weight context matrices at different
distances to the source node. We set β = 0.5, epoches = 200, γ = 0.5, and window size = 10.

4.1.3 Training details

Because our proposed biased walking strategy is guided by the predefined weighted information, MWENE
does not need to introduce special hyper-parameters such as p, q in Node2vec. Specifically, we set number
of walks per node n = 2000, walk length t = 10, and embedding size = 128. We initialized the parameters
of the matrices randomly with a uniform distribution between [−1, 1], and trained the models with mini-
batch Adam [16] with a batch size of 1024. The number of negative sampling is 64.

4.2 Link prediction

4.2.1 Task description

The link prediction task aims to predict whether two nodes are linked in the test set, even though they
are not linked in the training set. Each dataset of links is divided into a training set and a test set with
a training ratio of 0.8. We used normalized Cosine angle to measure the similarity between two vectors,
and area under the ROC curve (AUROC) [19] to evaluate the similarities. Because the datasets have
only positive edges, we added the same number of random fake links as negative samples to the test set.

1) V4 version. https://www.aminer.cn/citation.

2) http://citeseerx.ist.psu.edu/.

https://www.aminer.cn/citation
http://citeseerx.ist.psu.edu/
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Table 3 Results of link prediction task

Method BlogCatalog DBLP CITESEER

Deepwalk 0.721 0.843 0.796

Node2vec 0.890 0.872 0.815

GraGep 0.758 0.858 0.553

Graph attention – 0.904 0.831

MENE 0.838 0.854 0.802

MWENE 0.902 0.875 0.837

Training percentTraining percent Training percent

BlogCatalog

GraGep

GraGep

GraGep

GraGep

GraGep

GraGep

Figure 4 (Color online) Results on node classification task.

4.2.2 Results

The results obtained are shown in Table 3. Note that although we test quite a lot of parameter settings,
graph attention cannot converge well on Blogcatalog. Hence, we exclude the results on both tasks.

In MWENE, we maximize the entropy instead of the weighted entropy. The performance of MWENE
is not good, which gives evidence to the importance of the weighted coefficient of log2 dj in (1).

The method we proposed achieved the best results on Blogcatalog and CITESEER. On DBLP, graph
attention showed powerful performance and MWENE got the 2nd best score. We believe that on some
networks, the distance of the context-source pairs is a more dominant factor to the link prediction task
than weighted entropy. MWENE consistently outperformed Node2vec on all datasets, which indicates
the effectiveness of the sampling context matrices with larger weighted entropy.

4.3 Node classification

4.3.1 Task description

Node classification aims to predict the label of the node in the test set. Therefore, the task can assess if the
learned vectors contain sufficient useful information for the downstream tasks. We trained each network
for one epoch to get the embeddings. We randomly sampled training percent by using {0.1, 0.2, . . . , 0.9}
embeddings as the training set, and reported the Macro-f1 and Micro-f1 on the rest of the data. For all
models, we used simple logistic regression as the classifier. We repeated the experiments for 10 random
seed initializations and the results obtained are statistically significant with a p-value of less than 0.01.
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Figure 5 (Color online) Parameter sensitivity. (a) Iteration w.r.t. performance; (b) embedding size w.r.t. performance; (c) walk
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4.3.2 Results

The results are shown in Figure 4. Overall, MWENE can achieve better results than other baseline
methods. Specifically, on CITESEER with 40% training ratio, the proposed method produces 3.9% im-
provements on Macro-f1 over Node2vec. On Blogcatalog with 90% training ratio, the proposed methods
produced 1.8% improvements on Macro-f1. Although graph attention showed strong performance on link
prediction task, however, it did not give outstanding results on node classification task. We believe be
distance information may not bet critical in producing informative vectors. Again, MWENE outper-
formed the Node2vec, which shows that matrices with larger weighted entropy induce more informative
vectors.

Overall, the advantage of MWENE is more evident on the Macro-f1 value. We believe this could be
attributed to the altered walking strategy: each source node has the same number of context nodes and
hence, gets equal training opportunity. Macro-f1 is better for different categories and can benefit from
equal training opportunity more.

4.4 Parameter sensitivity

We present the number of iterations n, the walk length t, and embedding size d, against the classification
performance on CITESEER. The results are shown in Figure 5. From Figure 5(a), around 2000–2500
iterations can be seen, and the classification precisions are close to the best. From Figure 5(b), it is obvious
that the best precision was obtained when the dimension is around 128–256. Figure 5(c) indicates that at
up to length 9, 10 of walk, the performance stops increasing significantly. Generally, continuous increase
in complexity and training cost may lead to slight gains but is not economical in practice.

4.5 Property analysis

Herein, we investigate some properties of MWENE; as shown in Figure 6. Figure 6(a) shows the weighted
entropy of C w.r.t. sample iterations. The weighted entropy converges after a few iterations of sampling.
The results show that MWENE can effectively be used to obtain a context matrix with maximum weighted
entropy. Figure 6(b) shows the amount of information associated with nodes of different degrees. The
properties validate the discussion presented in Section 2. On one hand, the larger the degree, the larger
the weighted information. Conversely, the increasing speed slows down as the degree gets large.

5 Related work

Weighted entropy has long been studied since 1971 [15]. It provides a more flexible ability to measure the
amount of information than the original definition of entropy. In recent years, it has been employed in
various research areas such as evaluating feature importance in clustering [20] and low-cost quantization
of deep neural networks [21]. As a flexible and low-cost effective metric indicator, we believe it has great
potential in various fields.



Zhu D H, et al. Sci China Inf Sci November 2021 Vol. 64 212104:10

Iteration Node degree

W
e

ig
h

te
d

 i
n

fo
rm

a
ti
o

n

W
e

ig
h

te
d

 e
n

tr
o

p
y

(a) (b)

Figure 6 (Color online) Properties of MWENE. (a) Iteration w.r.t. weighted entropy; (b) node degree w.r.t. weighted information.

Deep learning methods show powerful ability in learning features [22, 23]. The most related work to
this paper is Deepwalk [5] and Node2vec [6], which we have previously discussed in detail. Another
successful embedding method is Line [7], which tried to preserve the first and second-order proximities
of networks. There have also been many successful extensions of the random walk method. Ref. [24]
used the offsets between vertices observed in a random walk to learn a series of latent representations,
each of which captures successively larger relations. Ref. [12] extended Node2vec sampling to attributed
network embedding. They modified the encoder of the source node, concatenated the attribute and the
structure vectors to obtain the source node vector. Ref. [10] proposed metapath guided random walk
strategy for heterogeneous network embedding. Further, they modified the optimization algorithm to
adapt to heterogeneous nodes.

We propose weighted entropy to evaluate the quality of different sampled matrices. It is necessary to
understand more about the sampling procedure. There may be more accurate and effective indicators to
reveal the principle of network embedding.

6 Conclusion

In this paper, we propose weighted entropy for describing the amount of information in sampled context
nodes. The results on Deepwalk and Node2vec show that the indicator can effectively represent the
quality of learned vectors. Based on the findings obtained, we propose MWENE for sampling more
informative context nodes. The sampling method, which is based on the maximum weighted entropy
principle, can achieve state-of-the-art results on the evaluation tasks.

Recently, the research interests are shifting to more complex networks such as heterogeneous networks.
The node type, link type, and distribution of degree can vary greatly in such a network. Current
state-of-the-art networks often require much engineering work such as predefined meta-path. Our future
work would focus on the employing weighted entropy idea to heterogeneous network embedding, to find
informative context nodes automatically, and reduce the manual works.
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