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Abstract Convolutional neural networks (CNNs) obtain promising results via layered kernel convolution

and pooling operations, yet the learning dynamics of the kernel remain obscure. We propose a continuous

form to describe kernel-based convolutions through integration in neural manifolds. The status of spatial

expression is proposed to analyze the stability of kernel-based CNNs. We divide CNN dynamics into the

three stages of unstable vibration, collaborative adjusting, and stabilized fluctuation. According to the

system control matrix of the kernel, the kernel-based CNN training proceeds via the unstable and stable

status and is verified by numerical experiments.
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1 Introduction

The convolutional neural network (CNN) is well applied in image recognition, voice identification, and
many industrial problems owing to its strong feature representation and high-dimensional spatial com-
puting capability. However, the dynamics of neural networks have not been extensively studied, and
could result in disaster under certain conditions. Mathematical iteration can be regarded as a control-
model-driven application, which may or may not be dynamically stable. The serious defect here is that
the status of an untrained system is defined by a predefined model structure and learning strategy, and
affected by artificial input-output transformation.

CNN-related studies are mainly result-oriented rather than theory-driven. With the advantages of
multiple parameter optimization and abstract feature representation, a CNN model combines two basic
layered structures, that is, convolution and pooling, to efficiently extract features from a large number
of high-dimensional data samples and reduce computational complexity while the dynamic mechanism
remains unrevealed.

The application of a CNN model to an engineering issue has three steps: analyzing historical data and
selecting a proper model, training parameters for the model, and applying input data to verify network
output against real values. If a model is trained with limited iterations, its stability cannot be guaranteed,
and it may not produce reasonable output free of unexpected error (or being out of bounds), which may
cause catastrophic damage in the application.

To avert potential threats to CNNs, we explain the mathematical principles for convolution in manifolds
from the control perspective.
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2 Related work

Convolution operations have been studied to improve system performance, visualize kernel values, and
analyze parameter distributions. The stability analysis of neural networks in nonlinear function approx-
imation has been studied to infer system output characteristics.

The kernel size varies in many deep learning models, with the goal to reduce the error between the
system output and real values. Google Inception uses an adaptive method to introduce kernels of various
dimensions [1–3]. Visualizing work [4] indicated that regularization preprocessing improved algorithm
efficiency, and a convolution kernel obtained abstract features hierarchically in different layers, consistent
with human recognition. A better understanding of how kernel design affects convergence speed and
output accuracy, with kernel element optimization tricks based on error backpropagation and model
structure adjustment, is restricted by limited data dimension. An effort was made [5] to understand the
flattening of such manifold-shaped data, and determine what amount of flattening a deep neural network
can achieve, by a few quantities for measuring manifold entanglement. The manifold perspective also
reveals the usefulness of a fluent structure in deep models.

The use of geometric manifolds to learn model parameters from their original versions to another
space has been studied in many neural networking models, including radial basis function neural net-
works (RBFNNs) and multilayer perceptrons (MLPs). Studies focused on the singularity areas caused
by algorithm identification parameters, and revealed that weights of a single neuron and linear summa-
tion between two neuron units affect system stability [6–8]. To transform coordinates from a standard
parameter space to a high-dimensional space enables the Taylor expansion to be meaningful in singular-
ities, and provides local influence derived from model parameters. The connection between non-convex
optimization for training deep neural networks and nonlinear partial differential equations is established
to enhance the robustness of stochastic gradient descent [9].

The spatial distribution of input data induces system instability in certain ways. In all CNN layers,
the learning from input data to a supervised target requires adjustment through all kernel settings,
including size, learning rate, weight, and bias. The route varies for linearly and nonlinearly distributed
input data [10]. Considering the input data dimension, a genetic algorithm model may produce good
simulation results with one- and two-input pole balancing problems, but may not be stable when input
shifts to an unexpected status out of the regular track or angle of a system [11]. Moreover, the accuracy of
system estimation depends on the interactions between observational data intervals and density, and it is
necessary to establish conditions to ensure asymptotic stability [12]. Arbitrary Markovian control policies
for Gaussian processing in both average and full distributions have been analyzed [13]. A closed-loop
control system has been proved to converge to a desired range in finite time.

The dynamics of the convergence of the model parameters of a neural network and how the system
output is stabilized are theoretically a control model. An analytical description of an integral form
bridges the gap between the theory and practice of deep learning of all layers [14,15]. Classical methods
are implemented by transfer functions in the time and frequency domains, where it remains popular to
introduce Lyapunov stability theory in cybernetics to study the status changing pattern. For some neural
network models with time-varying delay stages, specified Lyapunov functionals are derived in the form
of linear matrix inequalities [16]. For neutral-type neural networks including constant delay parame-
ters, a properly modified Lyapunov functional employing Lipschitz activation functions was derived [17].
However, the transfer function of convolution is not easily expressed owing to the deep layered structure
and kernel operation in matrix form, which brings the zero points and pole points of the system into
high-dimensional orders, preventing the status space expression from inferring from input data, system
parameters, and output from an analytical transfer function matrix.

Model parameters apparently affect system output stability. Transforming coordinates from standard
parameter space to a new space, to understand the influence from input data and model variables, the
series work focused on singularities area [7,18], calculating the partial derivative for each new variable, and
showing the dynamic variation near singularities affected by weights between hidden layers and output
layers.

The dynamics of model parameter convergence and system output stability are studied in the time
domain by introducing the Lyapunov stability method. For neural networks with a time-varying delay,
specified Lyapunov functionals are proposed in the form of linear matrix inequalities in [16]. For neutral-
type neural networks including constant delay parameters, a properly modified Lyapunov functional
employing Lipschitz activation functions was derived [17].
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Figure 1 (Color online) A CNN example: I0 is the input data of dimension a0 × a0; Conv.i and Avgpol.i are basic operations of

convolution and average pooling, respectively; and the final layer is given by fully connecting FC.

System stability analysis is complex owing to input variables, model structures, parameters, and train-
ing strategies. No dynamics for deep learning models based on RBFNNs in the frequency domain exists
using control theory, especially regarding the dynamical progress of system accuracy and convergence
speed.

Kernel-based convolutional computing in CNNs is generally complex owing to input variables, kernel
structures, and learning strategies. The backward method of the element multiplication operation has
few spacial properties. Our work contributes to the theory of convolution from two aspects.

(1) We propose an analytical expression of kernel-based convolution operations in CNNs, as a high-
dimensional integration throughout the manifolds with embedded input data and kernel, approximating
the discrete piecewise convolution operation in a continuous form in the manifold domain.

(2) We transform the kernel in the CNN as a status control variable, under the excitation of input
data used for learning processing. We divide learning into three stages based on training iterations and
discuss the convergence of the CNN.

The remainder of this study is organized as follows: Section 3 discusses preliminaries of the convolu-
tion operation and presents an approximation method for convolution from discrete space to continuous
manifolds. We theoretically discuss the learning process in Section 4. The dynamics of CNN kernels are
analyzed in Section 5, with examples based on experiments. We draw conclusion in Section 6.

3 Convolution operation in manifolds

3.1 Discrete kernel-based convolution

An example of CNN operation is shown in Figure 1. Through a series of convolution and pooling
operations, we map its original form to a fully connected version that satisfies the output requirements.
By introducingM kernels κ(1,·) in the first layer, the output corresponding to the m-th kernel is produced
via the convolution operation:

I(1,a1) = I0 ∗ κ(1,m), (1)

where κ(1,·) = {κ(1,1), κ(1,2), . . . , κ(1,M)}, t1 is the predefined kernel dimension, κ(1,a1) ∈ R(t1,t1), and

I0 ∈ R(a0,a0). Then we obtain the convolution result of the first layer by

I(1,·) = ΥMm=1I(1,·) =
[[

I(1,1), I(1,2), . . . , I(1,M)

]]

, (2)

where Υ represents the combination operation, [[· · · ]] is the tensor from all matrices, and I(1,·) ∈
R(a0−t1,a0−t1,M).

To reduce the data dimension of the previous convolution result, for a small block of I(1,·), we use
its maximum element or average value to cut down the feature map. For example, an average pooling
operator gE1

for all small blocks in I(1,·) is

I(2,·) = I(1,·) ∗ gE1
, (3)

where gE1
= 1

4E1, and E1 ∈ R(2,2,M) is a tensor with all elements defined as 1.
As a result, the output of the last layer before fully connecting is

I(T,·) = ΥM
′

m′=1I((T−1),·) ∗ gET . (4)

The final output is obtained through several full connecting layers,

Y = Bφ(I(T,·)), (5)
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Figure 2 (Color online) A convolution processing example in Ω′(u, v, w): the original image F represents a handwritten number

9 in RGB mode, a regularized surface π′

I of F ′ is obtained in Ω′(u, v, w) with elements restricted to the range [0, 1], and G′ is a

kernel surface π′

κ.

where φ is the full connection operator, and B is the control matrix determined by the problem require-
ment of the workspace, Y ∈ R(r,1).

The convolution output among kernels from an input instance is a feature map represented by a tensor
(R3), a latent goal of element multiply way is to reduce computing complexity by sharing weights and
pooling squares, and the layered structure is applied to reduce the computing complexity caused by
high-dimensional kernel functions.

3.2 Spacial integration of kernel convolution

Assume an input tensor xi in (M + 1)-dimensional space ΩM+1 is represented as a surface,

πI = f(xi; θ), θ = {θ1, θ2, . . . , θM+1}, (6)

where {e1, e2, . . . , eM+1} is one of the coordinate systems of Ω; note that the coordinate system is not
unique in Ω. Similarly, let another space κ in Ω be represented by

πκ = g(xi; θ), θ = {θ1, θ2, . . . , θM+1}. (7)

The convolution between input data I and operator κ in Ω can be calculated by

CΩ(I, κj) = I ∗ κj =
n
∑

i=1

Ii × κj × h(I,κ), (8)

where h(I,κ) is the distance metric between I and κj; in common convolution processing, we let h(I,κ) = 1.
n is the multiply operation times determined by the input data scale, kernel size, and convolution strategy.

Many improved CNNs apply regularization before elements multiplying from two matrix, to adjust the
original data into a more impact space, with all elements in a more closed sphere,

Ω′ : θ21 + θ22 + · · ·+ θ2M+1 6 1. (9)

We indicate the operation in Figure 2. As a result, I and κ are expanded into another bounded space
Ω′. The transformed surface is given by

{

π′
I : fI′ = F ′(u, v, w),

π′
κ : gκ′ = G′(u, v, w).

(10)

We obtain another version of κΩ as

CΩ′ (I ′, κ′j) = I ′ ∗ κ′j =
n
∑

i=1

I ′i × κ′j × h′(I′,κ′). (11)
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Remark 1. The convolution of elements multiply in discrete R2 holds. When we calculate a convolution
between a kernel and a given data matrix in R2, the surface is not smoothed, each point is a piece with
respective increments in the x and y directions predefined as dx = 1 · e1 and dy = 1 ·e2, and the surface is
seen as a divisional function at each piece as IΩxy = {I(x, y), (x, y) ∈ Rn×n}. In this case, the connection
between two patches is not smoothed, that is, I(x1, y1) 6= I(x2, y2), when (x1 − x2)

2 + (y1 − y2)
2 6= 0.

However, since the convolution operation is carried out at the edge, ∆x∆y is εxεy, while the kernel
element value is limited between gj and gi. If let it be g∆ij, then the convolution at the patch edge is
Cε = g∆ij · εxεy. As a result, because εxεy → 0, limCε = 0.

Solving the inverse function of fI′ and gκ′ into RM , we have
{

zI′ = f−1
I′ (ξ1, ξ2, . . . , ξM ),

zκ′ = g−1
κ′ (ξ1, ξ2, . . . , ξM ).

(12)

Calculate CΩ′ in RM as

CΩ′ (I ′, κ′j) =

n
∑

i=1

zI′ × zκ′ × h′(I′,κ′). (13)

The following form equals zI′ × zκ′ in square difference form:

CΩ′(I ′, κj′) = Csq + Cres

= −1

2

n
∑

i=1

(zκ′ − zI′)
2 × h′(I′,κ′) +

1

2

n
∑

i=1

(z2I′ + z2κ′)× h′(I′,κ′). (14)

By dividing the mapping of (zκ′ − zI′) into n
′ parts, we obtain

Csq(I
′, κj′) = −1

2

n′

∑

dλ

[

(

g−1(λ) − f−1(λ)
)

×
√
h′
]2

. (15)

Define λ = {ξ1, ξ2, . . . , ξM}. If the condition of the segmentation is sufficient, we have

Csq(I
′, κj′) = −1

2
lim
dλ→0

∑

λ

[

(g−1(λ)− f−1(λ))×
√
h′
]2

. (16)

Eq. (16) satisfies the definition of a multiple integration in RM . Finally, we obtain the computational
result Cij for the entire layer I, where each element is a convolution output approximated by CΩ′ .

Now we expand the convolution operation from a discrete space Ω into continuous manifolds ψS .
Differential geometry allows us to take problems from a variety of fields, including statistics, information

theory, and control theory. The idea is to find more meaningful information from their connections about
data in a high-dimensional space.

We focus on the convolution operation between a kernel and an input data sample, both represented
by matrices of different dimension (the dimension of a kernel is usually less than an input instance).

We first define the mapping from Ω(x,y,z) to ψS .

Lemma 1. Let M and N be manifolds with respective coordinate systems ψM : Mζ = [ζ1, ζ2, . . . , ζa]
and ψN : Nξ = [ξ1, ξ2, . . . , ξb]. A mapping Θ : M → N is said to be C∞ (infinitely many times
differentiable) or smooth if the mapping Θ−1 : N → M is C∞ from an open subset Rm to Rn. If a C∞

mapping Θ is a bijection (i.e., one-to-one mapping) and the inverse Θ−1 is also C∞, then Θ is called a
C∞ diffeomorphism from M to N .

Lemma 1 proposes the conditions of mapping from two manifolds [18]. Actually, applying a high-
dimensional function to approximate a given dataset is a common method to extract latent features [13].
Other methods have been proposed to deal with different sizing data, such as transfer learning [12] and
dictionary learning [9], based on a matrix to reshape diverse data into a sharing dimension, with excellent
results.

Let fΩ and κΩ in R3 be smooth curved surfaces. The transform from CΩ to CψS exists on the condition:

limP (fΩ, κΩ) ⊂ P (fψS , κψS ), (17)

where P is a defined operation, the slice on R3 is infinitely small, U is an open set in CψS , Θ
−1(·) is the

inverse function to solve corresponding independent variables, and Θ−1(U) ∈ CΩ.
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Figure 3 (Color online) Convolution in manifold ψS = {ξ1, ξ2, . . . , ξm}. ∆F and ∆G are two small slices from FψS and GψS .

Theorem 1. ψS is an equivalent expansion manifold from ΩI(x, y, z) in R
m satisfying three conditions.

(1) Each element in ψS is a bijection from coordinate system Sξ = {ξ1, ξ2, . . . , ξm} to an exclusive open
subset Rm.

(2) ψS is m-dimensional C∞ differentiable.
(3) ΩI(x, y, z) is a three-dimensional differentiable open set calculated from ψS .
We give an example in Figure 3, where the convolution operation of CψS in the hyperspace is

defined as

CψS =

∫∫

· · ·
∫

ΩS

(Gξ − Fξ)dξ1 · · ·dξm. (18)

The manifold Fξ represents the original data I, and Gξ represents the kernel κ. An original data record
is a bounded set in R3. The transfer from R3 to Rm is a bounded mapping, ensuring the multiple integral
operation in ΩS is upper and lower bounded.

Theorem 1 guarantees the transformation in (17) is stable when reducing the dimension from M + 1
to M . Rewrite CΩ′ (I ′, κj′ ) in (14) as

CΩ′ (I ′, κj′) = −1

2
C2
ψS

+
1

2

∫

· · ·
∫

ΩS

(

G2
ξ + F 2

ξ

)

dξ1 · · · dξm. (19)

Followed by average pooling and full connecting layer, we obtain the final output of the neural net-
working model.

4 Learning dynamics of convolution kernel

4.1 Spatial radial basis function kernel convolution

The RBFNN model is well designed for a nonlinear function approximating a continuous form. A basic
form is shown in Figure 4.

The mixed structure is accepted to describe the relationship between influential factors owing to the
interconnection among neurons, where X is sent to the hidden layer for nonlinear mapping, the activation
functions adopted here have a Gaussian form, and the output of node l activates xm by

uml = f(xm, µl, σl) = exp

(

−‖xm − µl‖2
2σ2

l

)

, (20)

where u ∈ R(M−m+1), σj is the normalized constant of kernel kl, µl ∈ Rm×m is the spread center, and
the feature map formed by uml is achieved from the hidden layer to the output layer.

The natural logarithm function ln(·) is applied before the pooling stage; for the l-th feature map u(·,l),
we have

Il = − ln(u(·,l)). (21)
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Figure 4 (Color online) Structure of RBF convolution: input xm ∈ Ri×i accepts data from real systems (X ∈ RM×M ); kernel

kl is determined by µl and σl; corresponding output is uml.

The natural logarithm function transfers u into the restricted area [−∞, 0) by ln(u(·,l)); we use the
reverse form to ensure the normal gradient backpropagation.

Il is then used for common average pooling as in (4). The fully connected layer is given by

yk =

M
∑

i

K
∑

j

wkIl + bk, (22)

where wk are adjusting weights from the hidden layer to the output layer, and bk is the predefined
bias. yk is the response signal to the corresponding input; it transferred to workspace depending on the
application requirement.

Remark 2. It can be seen that umax(x, µ, σ) = 1. Assume there are L hidden neurons, w ∈ [0, 1]. Then
the output of the system is

yout =
∑

wj exp

(

− (x− µj)
2

2σ2
j

)

6 K · wmax. (23)

Moreover, let µ̂ be the maximum weight; then we get

wj exp

(

− (x− µj)
2

2σ2
j

)

< 1, x > µ̂. (24)

For arbitrary x,

lim
x→±∞

wj exp

(

− (x− µj)
2

2σ2
j

)

= 0. (25)

As a result, the system output is limited within the upper bound K, activated by a transfer function
in the Gaussian form, and the system output is stable.

A system state expression can be obtained based on this method, and it is easy to analyze the stability of
the system, but the actual operation system contains redundant information beyond extracted utilization,
where its stability analysis is limited and cannot provide detailed parameters for application design or
model settings.

4.2 Spatial transfer function

A control model with three transfer function parts and one feedback part is shown in Figure 5. xm is the
input instance; G1, G2, and G3 are respectively the kernel, adjustment, and soft mapping parts; and H
is the feedback from the system output.

Let the spatial transfer function activate input xi by the kernel G1 (size 2× 2). Then the feature map
is formed by

f1 =

(

G11 G12

G13 G14

)

xi. (26)
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Figure 5 Computing flow from input X to output y, with transfer functions from G1, G2, G3, and feedback H.

The natural logarithm function ln(·) of G2 regularizes the feature map from G1. We assign G2 the
value −1 to control the output to be bounded positive. Then we get

f2 = G2(f1) = − ln

(

exp

(

−‖xm − µl‖2
2σ2

l

))

=
‖xm − µl‖2

2σ2
l

. (27)

Using the average pooling operation in G3, we have

y = G3(f2) =
1

4

4
∑

m=1

‖xm − µl‖2
2σ2

l

. (28)

Let xm denote a small slice from input matrix X . G1 is the l-th kernel, and a combination of G3 forms
output y as a fully connected layer, adjusted by weights θkl.

Yk =
1

4

K
∑

k=1

(

L
∑

l=1

θkl
‖xk − µl‖2

2σ2
l

)

. (29)

The integration from input to output is approximately equal to

Ỹk =
1

8

K
∑

k=1

L
∑

l=1

θkl

(

xk − µl

σl

)2

=
1

8

K
∑

k=1

L
∑

l=1

θkl

(

x2k + µ2
l − 2xkµl
σ2
l

)

=
1

8

K
∑

k=1

L
∑

l=1

θkl
x2k
σ2
l

+
1

8

K
∑

k=1

L
∑

l=1

θkl
µ2
l

σ2
l

−1

4

K
∑

k=1

L
∑

l=1

θkl
xkµl

σ2
l

. (30)

We seek to embed the original input data X accompanied by target Y0 into proper manifolds F kξ ∈ ψS .

Define the kernel set gκ(l) into Glξ ∈ ψS . The goal is to minimize the distance by computing and
optimizing the integral computation among large samples,

{

min ‖∑ (Y0 − Yk)‖ ,
CψS (k, l) =

∫

· · ·
∫

ΩS
(Glψ − F kψ)dξ1 · · · dξm,

(31)

where CψS (k, l) is a scalar, θkl is the weight of its activation function, and k is the number of all instances
in small batches.

Error-based parameter modification is effective in most networking models. Suppose the current iter-
ation output is yk(t). By comparing the reference value y0, the loss function based on an error e(t) is
produced by

l(t) =
1

2
(y0 − yk(t))

2
. (32)

The gradient descent method to adjust an element in the kernel is iterated by

w(t+ 1) = w(t) − η
l(t)|w
w(t)

. (33)

The learning rate η is a predefined constant. In some improved methods [19, 20], it can be updated
by solving Fisher information metric real-time. This kernel-based convolution proceeds in a scalar way,
while the information about the kernel structure and direction may be neglected, including many deep
learning structures considering the influence of the directional kernel [21, 22].
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Theorem 2. Let ψG : Gξ = [ξ1, ξ2, . . . , ξm]. The partial differentiable function at ξi is

k(ξi) =
∂Gξ

∂ξi
=
∂G(ξ1, ξ2, . . . , ξm)

∂ξi
. (34)

The tangent space Tp represents the directional weight at point p ∈ Gξ, corresponding to the convolu-
tion kernel manifolds, by forming all partial differentiable functions:

Tp = {k(ξ1), k(ξ2), . . . , k(ξm)}|p. (35)

The vector k(ξi) is parallel to the i-th coordinate of ξi, and a small step between points p and p′ can
be described by pp′ = dξik(ξi), with a fixed constant of all the rest ξj (j 6= i).

The gradient field Vψ of Gψ is

Vψ = k(ξ1) · ξ1 + k(ξ2) · ξ2 + · · · k(ξm) · ξm. (36)

Assume point p is located in a small slice ∆G. The weight of p at the t-th iteration is

wp(t) = Vψ|p , (37)

where wp(t) is a point in Tp, and the magnitude of wp(t) is

∥

∥

∥
Vφ|p

∥

∥

∥
=
√

k(ξ1)|2p + · · ·+ k(ξm)|2p. (38)

Because ψS is C∞ differentiable, Tp is a smooth curve in ψ′
S , and wp(t) ≈ w∆G(t) holds, we have

w∆G(t) =
[[

p1(t) · · · pm(t)
]]

, (39)

where w∆G(t) is a tensor based on all substrates ξ. The point p contains the directional information of
w∆G(t). Element-to-element multiplication in a matrix is an operation in Rm, and w is adjusted in a
scalar way.

4.3 Kernel learning in state spatial equation

To reveal the state of a kernel, we apply the spatial matrix to map the system status, data of both input
and output. Theoretically, the dynamic process for a control model is represented by convergence speed,
accuracy, and stability. Let the status of kernels be represented by κ, input data by u, and the full
connected layer parameter by C. Then the state space expression can be described by the state space
equation:

{

κ̇ = A(t)κ+B(t)u,

y = C(t)κ,
(40)

where κ̇ is the differential form of kernels, the learning dynamics are described by A and B, and the output
y is determined by C and kernel κ. A group of independent state vectors κT(t) = [κ1(t), κ2(t), . . . , κn(t)]
constitutes a first-order differential equation of the system, A is the n-order system matrix, uT =
[u1, u2, . . . , ur] is an r-dimensional input vector, yT = [y1, y2, . . . , ym] is the m-dimensional output vector,
B is the input matrix (n × r), and C is the output matrix (m × n). The direct transmission matrix
D ∈ (m× r) is not used because there are no direct connections from source to end.

Remark 3. The control model of kernels evolved from (42) indicates the dynamical processing of system
convergence. To be specific, κ̇ is expected to be weakened when the system is stabilized. In the stepwise
case, we have another form for κ,

κ(t+ 1)− κ(t)

κ(t)
= A(t)κ(t) +B(t)u. (41)

Note that A(t) indicates the system control matrix throughout all epochs, which is time-varying; hence,
we need to quantify it in the time domain. Because this training strategy is ample, we consider it as a
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Table 1 Network parameter settings of comparative deep neural network models

Description AlexNet [24] VGG-19 [25] Resnet [26] CNN K-CNN

Layers 8 19 152 5 5

Convolution layer 5 16 151 2 2

Full-connected layer 3 3 1 1 1

Parameters (M) 64.2 172.5 23.6 1.7 3.3

Table 2 Identification comparison results on MNIST dataset

Result AlexNet VGG-19 Resnet CNN K-CNN

Train accuracy (%) 64.22 47.81 75.24 82.45 79.84

iter = 50
Valid accuracy (%) 58.49 45.66 71.87 80.77 77.45

Train loss 14.2785 48.2274 8.7784 2.2274 5.7782

Valid loss 17.8847 50.2389 6.7947 2.3785 6.2845

Train accuracy (%) 77.55 65.28 81.47 87.34 82.23

iter = 100
Valid accuracy (%) 73.41 64.59 80.25 85.75 81.54

Train loss 10.1785 32.8954 4.7891 1.9887 3.7841

Valid loss 12.5564 33.2786 4.5823 2.0149 3.6248

Train accuracy (%) 92.88 95.45 94.46 93.76 94.58

iter = 300
Valid accuracy (%) 91.57 94.77 94.05 93.07 94.25

Train loss 3.2247 2.8564 0.5641 0.3976 0.5875

Valid loss 3.4896 2.8713 0.5826 0.4378 0.5924

full excitation. The direct connection from input to κ(t) is zero, hence we let B(t) = 0. Owing to the
RBFNN structure, the kernel operation error equals the network loss, and we have

F (x;κ(t+ 1))− F (x;κ(t))

κ(t)
= A(t)κ(t). (42)

The loss function is
L (x;κ(t+ 1)) = κ(t)A(t)κ(t). (43)

As a result, we can obtain the kernel control matrix A(t) in a stepwise way.

5 Experiment

We validated the dynamics of the proposed kernel-based convolution on the MNIST and CIFAR-10
datasets. The MNIST database of handwritten digits has a training set of 60000 28 × 28 examples and
a testing set of 10000 examples [23], while the CIFAR-10 dataset contains 60000 32 × 32 RGB images,
which are divided into 10 classes. Furthermore, we compared the performance of some popular deep
learning models including AlexNet, VGG-19, Resnet, and our kernel-based CNNs, with hyperparameter
learning rate η = 0.001 and batch size bz = 64; the parameter descriptions are listed in Table 1 [24–26].
The original CNN was designed with five layers, including two convolutional layers (the size of conv.1
is 5×5, the sizes of conv.3 are 3×3 for MNIST and 5×5 for CIFAR), reshaped by two average pooling
layers (avg-pool.2 and avg-pool.4, both size 2×2), and two fully-connected layers of dimension 10×1
corresponding to the target categories.

The recognition results at given training iterations are listed in Tables 2 and 3. The MNIST dataset
is relatively simple for recognition. Many deep CNNs obtain good accuracy on this dataset. From
Table 2, though some complex deep networks eventually attain high accuracy, training on the large scale
of parameters requires more time for convergence. However, for the image classification task on the
CIFAR dataset, in Table 3, AlexNet, VGG-19, and Resnet all have accuracy above 70.00% at the 100th
iteration, and above 80.00% at the 300th iteration, much better than CNN or K-CNN, whose simple
CNN structures may work insufficiently well owing to limited inner parameters.

Remark 4. The difference between the three deeper models (AlexNet, VGG-19, and Resnet) and the
simple CNN models is determined by the controller order and operation mode. For example, VGG-19
has 16 convolution layers; hence their integration operations outnumber those of K-CNN or basic CNN.
Consequently, the controller has more poles to reduce those unstable statuses in training. Furthermore,
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Table 3 Identification comparison results on CIFAR dataset

Result AlexNet VGG-19 Resnet CNN K-CNN

Train accuracy (%) 50.49 37.94 68.65 20.35 17.26

iter = 50
Valid accuracy (%) 46.84 37.21 67.37 16.74 16.15

Train loss 2287.64 78.4496 12.6679 7.5471 28.9975

Valid loss 2409.83 76.2256 13.4286 7.6523 30.6547

Train accuracy (%) 72.39 56.45 76.49 37.35 35.47

iter = 100
Valid accuracy (%) 70.68 55.82 70.22 36.49 34.82

Train loss 1895.48 42.2641 9.7185 4.7864 13.1476

Valid loss 2054.37 39.7745 10.1642 4.8147 14.8457

Train accuracy (%) 80.42 84.21 88.46 66.28 75.18

iter = 300
Valid accuracy (%) 80.21 81.45 85.35 64.53 69.59

Train loss 134.15 12.3864 6.5894 2.2538 3.7716

Valid loss 146.57 13.7413 7.1157 2.3129 4.1728

0 50 100 150 200 250 300
Iteration

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

K
er

n
el

K
er

n
el

 d
iv

0 50 100 150 200 250 300
Iteration

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) (b)

Figure 6 (Color online) Kernel learning dynamics of K-CNN at training MNIST dataset. (a) Adjusting status of 15 elements in

the first layer; (b) first derivative values of 15 elements through 300 iterations.

the pooling operation smooths the intermediate convolution outputs like an inertial element that slows
down training with more fluctuation.

The fundamental CNN with only five layers converged quickly with acceptable accuracy of about
93.07% after just 300 iterations, and its kernel-based method has better accuracy at the initial training
stage than complex models such as AlexNet, VGG, and Resnet. It achieves a balance between accuracy
and computational cost, with accuracy of 94.25% at the 300th iteration. The kernel element status of
K-CNN is shown in Figure 6; this kernel is stabilized after about 130 iterations. The first derivative
values indicate that the kernel has three stages during training, consisting of random gradient descent
with vibrations, directional error reduction, and limited fluctuations.

To reveal the kernel dynamics of kernel-based CNN training on the MNIST dataset, we introduced
the root locus and Nyquist diagram in the 50th, 100th, and 300th iterations, with results as shown in
Figure 7, with some parameters listed in Tables 4–6. As seen in Figure 7(a), the kernel is not always stable
because of random kernel initialization. The Nyquist diagram shows that point (−1, j0) is not included in
the trajectory circle, but there are two poles in Figure 7(b) in the right coordinates (B → C, A→ +∞),
which confirm that the unstable training stage does exist with certain initializations, the stages of D → I,
G→ F have limited stability, and H → −∞ is stable. In the second stage, from Figures 7(c) and (d), the
system trajectory excludes the point (−1, j0), and the training stability is much improved as the roots on
the real axis are a limited zone (A → B and C → D), while most roots are located at the left real axis,
and stages E → F , G → H → I ensure system stability during batch training. From Figures 7(e) and
(f), the system stability is enhanced by only a small circle for parameter adjustment. The root trajectory
from A→ B is reduced to a tiny zone, and the track from C → D converges to a small range.

The training process on the CIFAR-10 dataset has a similar trend to a kernel-based CNN. We illustrate
the root locus and Nyquist diagram in Figure 8, and some critical status values are shown in Tables 7–9.



Wu W, et al. Sci China Inf Sci November 2021 Vol. 64 212103:12

(a) (b)

(c) (d)

(e) (f)

1

0.976

0.80.940.9760.9890.9950.997

0.999

1

0.80.940.9890.9950.997

0.999

1

0.20.40.60.811.2

Root locus

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0 0

2

4

6

8
Nyquist diagram

Real axis

Nyquist diagram

Real axis

−0.8 −0.6 −0.4 −0.2 0 0.2

−0.8−1.0

−1.0−1.2

−0.6 −0.4 −0.2 0 0.2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4

0.4 0.6
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

11

0.980.9910.996

0.998

0.999

0.850.950.980.9910.996

0.998

0.999

1

0.850.95

1

0.10.20.30.40.50.60.70.8

Root locus

Real axis (s−1)

Real axis (s−1)

Real axis (s−1)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

Im
ag

in
ar

y
 a

x
is

Im
ag

in
ar

y
 a

x
is

Im
ag

in
ar

y
 a

x
is

−1.0 −0.5 0 0.5 1.0 1.5
−5

0

5
Nyquist diagram

Real axis

−2 −1 0 1 2 3 4
−25

−20

−15

−10

−5

0

5

10

15

20

25

−2.5

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

−0.10

−0.05

0.05

0.10

1.5

2.0

2.5

0.2

0.1

0.020.0420.07

0.1

0.14

0.2

0.3

0.55

0.020.0420.07

0.14

0.3

0.55

5

10

15

20

25

5

10

15

20

25

Root locus

ABCD

B

EGH

C BADEFGH

I

F

ACDEG

I

FH

I

Figure 7 (Color online) Root locus and Nyquist diagram of control matrix A of CNN kernel at different iterations on MNIST

dataset. (a) and (b) at 50th iteration; (c) and (d) at 100th iteration; (e) and (f) at 300th iteration. B is selected as the Jordan

matrix of dimension 5×5; C is the softmax layer with each element not equal to zero.

Table 4 Kernel dynamics of K-CNN in training MNIST at 50th iteration

Parameter A B C D E F G H I

Gain 0.052 0.0146 3.26 0.0159 0.286 3.4 18.1 0.128 1.28

Pole 0.225 0.0725 0.00148 −0.0575 −0.209 −0.237 −0.295 −0.41 −0.217 + 0.0297i

Damping −1 −1 −1 1 1 1 1 1 0.991

Overshoot (%) 0 0 0 0 0 0 0 0 0

Frequency (rad·s−1) 0.225 0.0725 0.00148 0.0575 0.209 0.237 0.295 0.41 0.219

The Nyquist curve in Figure 8(a) is on the right panel with point (−1, j0) excluded, while there are poles
A,C on the real axis in Figure 8(b), which lead the kernel is not stable, that is, the untrained learning
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Table 5 Kernel dynamics of K-CNN in training MNIST at 100th iteration

Parameter A B C D E F G H I

Gain 3.27e+04 0.00765 0 1.54 0.00838 1.68 0.11 0.517 11.8

Pole 3.62 0.223 0.0799 0.00155 −0.0544 −0.191 −0.215 −0.276 −0.403 + 0.583i

Damping −1 −1 −1 −1 1 1 1 1 0.568

Overshoot (%) 0 0 0 0 0 0 0 0 11.4

Frequency (rad · s−1) 3.62 0.223 0.799 0.00155 0.0544 0.191 0.215 0.276 0.708

Table 6 Kernel dynamics of K-CNN in training MNIST at 300th iteration

Parameter A B C D E F G H I

Gain 0.000884 2.19 0.00144 0.0248 0.799 2.14 0.0436 0.0899 0.469

Pole 0.221 0.238 0.0782 −0.0526 −0.0655 −0.185 −0.217 −0.398 −0.42 + 0.0787i

Damping −1 −1 −1 1 1 1 1 1 0.983

Overshoot (%) 0 0 0 0 0 0 0 0 0

Frequency (rad · s−1) 0.221 0.238 0.0782 0.0526 0.0655 0.185 0.217 0.398 0.427

Table 7 Kernel dynamics of K-CNN in training CIFAR-10 at 50th iteration

Parameter A B C D E F G H I

Gain 0 1.41 0.00647 1.24 0.0039 1.67 0.0038 0.0505 0.15

Pole 0.221 0.217 0.075 0.0074 −0.0563 −0.127 −0.215 −0.41 −0.406 + 0.0324i

Damping −1 −1 −1 −1 1 1 1 1 0.997

Overshoot (%) 0 0 0 0 0 0 0 0 0

Frequency (rad · s−1) 0.221 0.217 0.075 0.0074 0.0563 0.127 0.215 0.41 0.408

Table 8 Kernel dynamics of K-CNN in training CIFAR-10 at 100th iteration

Parameter A B C D E F G H I

Gain 0.0205 1.13 0.0033 0.0623 0.0084 0.392 0 0.249 0.302

Pole 0.233 0.235 0.0774 −0.0518 −0.0509 −0.0543 + 0.0264i −0.212 −0.397 −0.403 + 0.0149i

Damping −1 −1 −1 1 1 0.9 1 1 1

Overshoot (%) 0 0 0 0 0 0.155 0 0 11.4

Frequency (rad · s−1) 0.233 0.235 0.0774 0.0518 0.0509 0.0604 0.212 0.397 0.403

Table 9 Kernel dynamics of K-CNN in training CIFAR-10 at 300th iteration

Parameter A B C D E F G H I

Gain 0.0177 1.52 0.0041 0.0213 7.82 0.0029 3.3 0.0359 0.408

Pole 0.223 0.238 0.0765 -0.0518 −0.0866 + 0.0379i −0.213 0.398 −0.403 −0.0603 + 0.0483i

Damping −1 −1 −1 1 0.916 1 1 1 0.78

Overshoot (%) 0 0 0 0 0.0769 0 0 0 0.14

Frequency (rad · s−1) 0.223 0.238 0.0765 0.0518 0.0946 0.213 0.398 0.403 0.0772

model requires sufficient training. In Figure 8(c), the trajectory circle surrounds (−1, j0) once, and in
Figure 8(d), the zone A → B is reduced, and the path C → E goes through F not on the negative real
axis, extending the learning period of the stable stage. Furthermore, the path in Figure 8(f) is extended
to a much bigger processing; the learning is much reduced while the stabilized status is enhanced.

6 Conclusion

We have proposed a novel expression for manifolds of CNNs. The layered structure is preceded by
continuous surface integration in a limited space, with weights adjusted, including the value and direction.
The kernel-based CNN computing flow can be approximated by kernels in a high-dimensional manifold.
Moreover, we analyzed the kernel control model in the frequency domain and proposed three stages of
CNN training, consisting of vibrations, directional error reduction, and limited fluctuations. Generally,
the unstable status in kernel-based CNN training drives the neural networking model to learn from
supervised datasets. An experiment on the MNIST and CIFAR datasets revealed that the dynamics of
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Figure 8 (Color online) Root locus and Nyquist diagram of control matrix A of CNN kernel at different iterations on CIFAR

dataset. (a) and (b) at 50th iteration; (c) and (d) at 100th iteration; (e) and (f) at 300th iteration. B is selected as the Jordan

matrix of dimension 5×5; C is the softmax layer with each element not equal to zero.

kernels in CNNs should be stable after proper training through root trajectories.
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