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Abstract Representation learning on textual network or textual network embedding, which leverages rich

textual information associated with the network structure to learn low-dimensional embedding of vertices, has

been useful in a variety of tasks. However, most approaches learn textual network embedding by using direct

neighbors. In this paper, we employ a powerful and spatially localized operation: personalized PageRank

(PPR) to eliminate the restriction of using only the direct connection relationship. Also, we analyze the

relationship between PPR and spectral-domain theory, which provides insight into the empirical performance

boost. From the experiment, we discovered that the proposed method provides a great improvement in link-

prediction tasks, when compared to existing methods, achieving a new state-of-the-art on several real-world

benchmark datasets.
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1 Introduction

The aim of the representation learning on a textual network or textual network embedding is to leverage
dimensionality reduction techniques, and also to extract the high-dimensional information about a vertex’s
structural information and associated textual information into a dense feature vector embedding. The
following downstream network data mining task utilizes these network embeddings: link prediction, vertex
classification, and clustering [1].

Traditional network embedding methods for dimensional reduction [2, 3] have good performance on
small network datasets. However, the complexity of these embedding methods is quadratic in the size of
network vertices. Thus, this makes it impossible to run on large-scale networks. To address the scala-
bility limitation, Perozzi et al. [4] proposed DeepWalk to learn a low-dimensional vector by introducing
deep learning techniques into network embedding. Several researches have followed suit [5, 6]. These
neural network-based methods demonstrate both high scalability and performance. The methods achieve
excellent results on link prediction and vertex classification tasks in large-scale network datasets. More-
over, NetMF [7] provides theoretical analysis to show that these methods are closely equivalent after
transformation. Meanwhile, these methods are designed for structure-only network datasets despite their
progress. Network vertices such as social networks and citation networks contain rich textual information.
TADW [8] proposed DeepWalk to incorporate textual information into the matrix factorization model.
CENE [9] formulated a novel network embedding method that leverages both structure and textual con-
tent information in a network by considering contexts as a special kind of vertices. CANE [10] extended
LINE to incorporate textual information to learn context-aware embedding for a vertex embedding ac-
cording to the direct neighbor it interacts with.

We identify two major limitations of existing textual network embedding methods despite their success.
Besides, TADW [8] successfully incorporates textual information into the embedding learning process.
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However, a major limitation of this method is that it is inherently flat. This is because it optimizes the
problem using a time-consuming matrix-factorization objective function and is difficult to generalize for a
large dataset. Meanwhile, CANE [10] performs better than CENE [9] by modeling relationships between
direct connect vertices more precisely and also overcomes the scalability problem since it utilizing the
neural network-based technique. Moreover, CANE [10] depends on the first-hop neighbor’s information
without considering a larger neighborhood. Thus, such a strategy denies the desirable feature, thereby
reducing the overall performance.

In this paper, we present a representation learning on textual networks with the personalized PageRank
(PPR) method to address the aforementioned issues. Instead of aggregating textual information only from
the direct neighbors, the proposed model aggregates textual information from a larger neighborhood.
We provide a theoretical analysis from the spectral domain theory perspective. To demonstrate the
effectiveness of the proposed, we conduct extensive experiments on several benchmark datasets, achieving
a new state-of-the-art when compared to the existing methods.

2 Related work

Classical network embedding methods mainly focus on the structural information of the network. These
network embedding methods learn low-dimensional embeddings by utilizing random walk statistics and
matrix-factorization-based learning objective function. For instance, Perozzi et al. [4] proposed DeepWalk
to learn a low-dimensional feature vector by performing random walks over networks in an efficient similar
skip-gram learning fashion as word2vec [11]. Tang et al. [5] proposed LINE to explicitly capture first-order
and second-order proximity information from the vertices of the large-scale network. Grover et al. [6]
modified the random walk into a biased random walk to make the network embedding more efficient.
However, these methods only consider the topology information of the network, without considering the
associated textual information.

Furthermore, researches were carried out to integrate the associated textual information into the net-
work embedding learning process. Regarding this, Yang et al. [8] proposed a text-associated DeepWalk
(TADW) to integrate textual features into network representation learning under the model of matrix
factorization. CENE [9] considered the text information as a special kind of vertex and use a bidirec-
tional recurrent neural network to abstract the semantic information for network embedding learning.
CANE [10] learns the context-aware embeddings of vertices through mutual attention mechanisms, and
expected to recognize the semantic relationship between vertices more accurately.

3 Problem definition

3.1 Textual network

We consider a textual network G = (V,E), where V denotes the vertex set and E denotes the edge
set, respectively. Also, we define A ∈ R

N×N as an adjacency matrix encoding the connection situation
between two vertices and T , the textual information associated with vertices. The textual information
associated a specific vertex v ∈ V is represented as a token sequence Sv = (w1,w2, . . . ,wnv

), where
nv = |Sv|. We pre-embedded all the tokens in a fixed dimensional feature vector. The goal of textual
network embedding is to learn a low-dimensional embedding for each vertex by utilizing both network
structural information and associated textual information simultaneously.

3.2 From PageRank to personalized PageRank

The original PageRank [12] started with a summation equation, which originates from bibliometrics study
and the analysis of the citation structure in academic papers. The PageRank of a page Pi denoted as
r(P i), is the sum of the PageRanks of all pages pointing into Pi.

r(Pi) =
∑

Pj∈BPi

r(Pj)

|Pj |
, (1)

where BPi
is the set of pages pointing into Pi and |Pj | is the number of out-links from page Pj .
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To write Eq. (1) using matrices, we consider a directed graph G = (V,E), let A be the adjacent matrix
of the directed graph, and define A as follows:

A(vi,vj) = 1, if(vi,vj) ⊆ E. (2)

Now, let d be the number of edges leaving a vertex vi and D be the diagonal matrix with the out-links
of nodes on the diagonal. Then we have

Arw = AD−1. (3)

Then, we introduce a 1 × n vector π, which represents the PageRank value for all pages in the index,
and finally, the aforementioned Eq. (1) is re-formulated:

π
(k+1)T = π

(k)TArw, (4)

where k denotes that the PageRank vector at the kth iteration.
The PPR vector π for vertex vi is the stationary distribution of the following random walk starting

from vi: at each step, return to vi with probability α, and otherwise move to a random neighbor of the
current vertex. The PPR vector of vertex vi is given by

π
(k+1)T
vi

= (1 − α)π(k)T
vi

Arw + αeT
vi
, (5)

where eT
vi

is identity vector of vi and the parameter α ∈ (0, 1].

4 Method

4.1 Model framework overview

To efficiently encode both the structural information and the associated textual information in the textual
network embedding, we state two types of embedding for each vertex v ∈ V , namely structural information
embedding vs and textual information embedding vt. The final embedding of vertex v is constructed by
concatenating the two types of the embedding: v = vs ⊕ vt.

To leverage both the structural information and textual information into the final embedding process,
we define the objective function of the proposed model as

L =
∑

Lstructure(e) + Ltext(e) + Ljoint(e), (6)

where Lstructure(e) denotes the structural information objective, Ltext(e) denotes the textual information
objective, and Ljoint(e) denotes joint learning loss for structural and textual information, respectively. In
general, the structural information objective is represented as

Lstructure(e) = ωij log p(v
s
i |v

s
j ), (7)

where p(vs
i |v

s
j ) denotes the conditional probability between structural information embedding vertex pair

vs
i , vs

j with weight parameter ωij .
Based on the method by [5], we define the conditional probability as

p(vs
i |v

s
j ) =

exp(vs
i · v

s
j )∑

v
s
k
∈V exp(vs

k · vs
j )
. (8)

Also, the textual information objective is represented as

Ltext(e) = ωij log p(v
t
i |v

t
j), (9)

where

p(vt
i |v

t
j) =

exp(vt
i · v

t
j)∑

v
t
k
∈V exp(vt

k · vt
j)
. (10)

Furthermore, we also introduce the joint learning loss for structural and textual information simulta-
neously. Consequently, the joint structural-textual training objective is given by

Ljoint(e) = β1ωij log p(v
t
i |v

s
j ) + β2ωij log p(v

s
i |v

t
j), (11)
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where

p(vt
i |v

s
j ) =

exp(vt
i · v

s
j )∑

v
t
k
∈V exp(vt

k · vs
j )
, (12)

p(vs
i |v

t
j) =

exp(vs
i · v

t
j)∑

v
s
k
∈V exp(vs

k · vt
j)
, (13)

and β1 and β2 are hyper-parameters, which measure the impact of the different components.

4.2 Textual embedding

Here, we now introduce the textual embedding component to convert the original input text content of
each vertex into the latent representation. For each vertex v with associated textual information vt, we
obtain the textual embedding using an end-to-end CNN [13] method. For any vertex v with associated
textual information vt = {p1,p2, . . . ,p|vt|}, the model first leverages LookingUp layer to transform

each pi into their corresponding word embedding pi ∈ R
l, where l indicates the dimension of the word

embedding and ⊕ is the concatenation operator. Therefore, the textual information representation of
vertex vt is given by

P = LookingUp(vt) = p1 ⊕ p2 ⊕ · · · ⊕ p|vt|. (14)

We then apply a convolution operation that involves the filter w, to a window ofm words for generating
a new feature. For instance, the feature xi is generated from the window of words pi:i+m:

xi = f(w · pi:i+m + b), (15)

where b is a bias term and f is a non-linear function such as hyperbolic tangent. Therefore we can obtain
the feature map using

x = [x1, x2, . . . , x|vt|−m+1]. (16)

We conduct a max-over-time pooling operation x̂ = max{x} on x to extract the most relevant feature
corresponding to this particular filter. Finally, we encode the textual information of vertex vt and obtain
the textual embedding representation as

vt = [x1, x2, . . . , xn]
T, (17)

where n is the number of filters.

4.3 Personalized PageRank integrating

The PPR is a variation of PageRank which is biased towards a set of root vertices. This variant of
PageRank increases the chance of teleporting back to the root vertex. This ensures that the PageRank
score encodes the local neighborhood information of each root vertex. We calculate the original PageRank

using the following equation: π
(k+1)T
pr = π

(k)T
pr Arw with Arw= AD−1, D is the diagonal matrix with the

out-links of nodes on the diagonal. Considering the root vertex, we formulate the PPR vector of vertex
vi as

π
(k+1)T
vi

= (1 − α)π(k)T
vi

Arw + αeT
vi
, (18)

where eT
vi

is identity vector of vi and the parameter α ∈ (0, 1] (Figure 1).
Instead of using the random walk adjacency matrix Arw directly, here we adopt the symmetrically

normalized adjacency matrix with self-loop Â, which proved to be more effective by [14]. Therefore, we
formulate the PPR vector of vertex vi as follows:

π
(k+1)T
vi

= (1 − α)π(k)T
vi

Â+ αeT
vi
, (19)

where Â = D̂−1/2(A+ In)D̂
−1/2 is the symmetrically normalized adjacency matrix with self-loop, with

the diagonal degree matrix D̂ij =
∑

p (A+ I)ip. And k denotes that the PPR vector at the kth iteration.
After several iterations, we obtain that the above Eq. (19) converges to the equilibrium state, we have

πvi
= α(In − (1 − α)Â)

−1
evi

. (20)
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Figure 1 (Color online) Illustration of the PPR. At the iter-

ation k, the root vertex v1 aggregates textual information from

its own and its neighbors, the parameter α controls the prior-

ity given to the textual information aggregation from itself as

opposed to its large neighbors.

Figure 2 (Color online) High-level illustration of our pro-

posed method. The textual information propagates from the

right vertex vj to the left root vertex vi via the PPR.

The influence score of root vertex vi to vertex vj is proportional to the jth element of πvi
. While the

propagate speed from root vertex vi to vertex vj is controlled by parameter α. Replacing the identity
vector evi

with unit matrix In, we obtain the fully PPR matrix as

Π = α(In − (1− α)Â)
−1

. (21)

We note that Πij = Πji, since the influence score from vertex i to vertex j is equal to the influence
score from vertex j to vertex i.

Combining the textual embedding of each vertex vt and the PPR scheme, we obtain our proposed
model equation as

Ṽ = α(In − (1 − α)Â)
−1

V , Vi,: = vt
i . (22)

Consequently, the textual information of each vertex is generated from itself as well as from other
vertex’s textual information propagated through the PPR scheme (Figure 2).

4.4 Spectral analysis of PPR

By studying and analyzing the PPR from a graph spectral domain perspective, we obtain that PPR
corresponds to an equivalent polynomial filter on the graph spectral domain.

Traditional spectral theory [15] to graph has three different Laplace operators, namely, the unnormal-
ized Laplacian L = D − A, the random-walk normalized Laplacian L = I − Arw and the symmetric
normalized graph Laplacian L = I −Asym. The Laplacian is indeed diagonalized using the Fourier basis
U = [u0, . . . ,un−1] such that L = UΛUT where Λ = diag[λ0, . . . , λn−1].

The graph Fourier transform of a signal x ∈ R
n is defined as x̂ = UTx and its inverse as x = Ux̂.

The convolution operator on graph G is define as

x ∗G y = U((UTx)⊙ (UTy)), (23)

where ⊙ is the element-wire Hadamard product. A signal x is filter by gθ can be formulated as

y = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx, (24)

where gθ(Λ) = diag(θ) and θ ∈ R
n. One common choice of gθ is a polynomial filter of order J to reduce

the learning complexity and capture the localized information simultaneously [16].

gθ(L) =

J∑

j=0

θjL
j = U




J∑

j=0

θjΛ
j



UT, (25)

where θ ∈ R
J is a vector of polynomial coefficients.
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As shown in [17], the PPR model can be approximately reformulated as

fα(A) = α

K∑

k=0

(1− α)k(Â)k. (26)

To obtain the relationship between Eqs. (25) and (26), we choose the Laplacian corresponding to

L = In − Â, and define ηk = α (1− α)
k
. Using the binomial theorem, Eq. (26) can be represented as

K∑

k=0

ηk (In −L)k =

K∑

k=0

ηk

k∑

j=0

(
k

j

)
Ik−j
n (−1)jLj

=
K∑

k=0

k∑

j=0

(
k

j

)
ηkI

k−j
n (−1)jLj

=

K∑

k=0

k∑

j=0

(
k

j

)
ηk(−1)jLj

=

K∑

j=0

K∑

k=j

(
k

j

)
ηk(−1)jLj . (27)

Comparing Eqs. (25) and (27), we can conclude θj =
∑K

k=j

(
k

j

)
ηk(−1)

j
. Now, replacing ηk = α(1−α)k

and setting K = +∞, we obtain

θj =

+∞∑

k=j

(
k

j

)
ηk(−1)j =

+∞∑

l=0

(
l + j

l

)
ηl+j(−1)j

=

+∞∑

l=0

(
l + j

l

)
α(1 − α)l+j(−1)j

= α(1 − α)j
+∞∑

l=0

(
l+ j

l

)
(1− α)j(−1)j

= α(1 − α)j
1

αj+1
=

(
1− α

α

)j

. (28)

This shows that the PPR can be expressed as polynomial filters on the graph spectral domain.

4.5 Optimization

Direct optimization of the objective function (6) requires considering all the vertex information, which
is computationally demanding for many large-scale network data sets. To remedy this issue, we leverage
the negative sampling method introduced by Mikolov et al. [11]. We formulate the objective function
into the following form:

log σ(vivj) +

K∑

k=1

Evk∼P (v)[log σ(−vkvi)], (29)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, K is the number of negative samples. The
first term maximizes the probability of occurrence for vertices that lie in the context window. While
the second term iterates over some random vertex k that do not lie in the window and minimizes their
probability of co-occurrence. We set the noisy distribution P (v) ∝ d

3/4
v , where dv is the out-degree of

vertex v. Thereafter, we employ Adam [18] to optimize the objective function.

5 Experiments

In this section, we demonstrate the proposed method through a series of experiments.
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Table 1 Datasets statistics

Dataset Type Vertex Edge Label

Cora Citation network 2708 5429 7

Hepth Citation network 1039 1990 –

Zhihu Social network 10000 43894 –

5.1 Datasets

We evaluate the link prediction performance of the proposed method on three widely studied real-world
textual network datasets: Cora, Hepth, and Zhihu.

Cora is a typical paper citation network constructed by [10], vertices are documents and edges are
citation links. After filtering out papers without text information, there are 2277 papers in this citation
network.

Hepth is another paper citation network from Arxiv website1) on high energy physics theory released
by Stanford. There are 1038 papers after filtering out the paper without text information.

Zhihu is a social network dataset constructed by Tu et al. [10], which extracts 10000 active users as
network vertex from Zhihu website2) and takes the descriptions of concerned topics as text information.
Dataset statistics are summarized in Table 1.

5.2 Baselines

In the performance comparison, we consider baselines based on structure-only methods as well as the
structure-text fusion method.

DeepWalk [4]. Learning low-dimensional vector by performing random walks over networks in an
efficient similar skip-gram learning fashion as Word2vec.

LINE [5]. Capturing first-order and second-order proximity information from the vertices of the
large-scale network.

Node2vec [6]. Modifying the random walk into a biased random walk to infer the network embedding
more efficiently.

Concatenate. Simply concatenate the structural feature and textual feature into network embedding.
TADW [8]. Integrating textual features into network representation learning under the framework of

matrix factorization.
CENE [9]. Utilizing bidirectional recurrent neural network to abstract the semantic information to

learn network embedding.
CANE [10]. Learning the context-aware embeddings of vertices through mutual attention mechanisms

and is expected to capture the semantic relationship between vertices more accurately.

5.3 Experiment setup

For a fair comparison, we adopt experimental setup in Tu et al. [10] to prevent unnecessary bias in our
experiment. Precisely, we set the embedding dimension into 200 and use Adam with a learning rate 1e−3

to train our model. Also, we use a grid search to set the hyper-parameter on the split validation set.
Meanwhile, we tune the number of epochs based on both convergence behavior and validation accuracy
on all datasets. We apply a standard evaluation metric area under the curve (AUC) for link prediction.

5.4 Experimental results

Based on the results in Tables 2–4, we conclude that the proposed method performs better and is very
competitive.

(1) Tables 2 and 3 show that the performance of the proposed method matches the performance of
CANE in most cases. Remarkably, under 55% of edges setting, our method is about 2% worse than
CANE on Cora, this is attributed to overfitting since the training set is small to fit our model.

(2) On Zhihu, Table 4 shows that the proposed method achieves significant improvement when com-
pared to all the baseline methods. In particular, the proposed method obtains over 10% performance

1) http://arxiv.org.

2) http://zhihu.com.

http://arxiv.org
http://zhihu.com
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Table 2 AUC scores for link prediction on Cora

Percentage of edges

55% 65% 75% 85% 95%

DeepWalk 80.1 85.2 85.3 87.8 90.3

LINE 77.6 82.8 85.6 88.4 89.3

Node2vec 78.7 81.6 85.9 87.3 88.2

Concatenate 88.7 91.9 92.4 93.9 94.0

TADW 90.0 93.0 91.0 93.4 92.7

CENE 89.4 89.2 93.9 95.0 95.9

CANE 94.6 94.9 95.6 96.6 97.7

PPR 92.4 95.0 95.8 96.9 98.1

Table 3 AUC scores for link prediction on Hepth

Percentage of edges

55% 65% 75% 85% 95%

DeepWalk 81.3 83.3 87.6 88.9 88.0

LINE 78.5 83.8 87.5 87.7 87.6

Node2vec 84.3 87.3 88.4 89.2 89.2

Concatenate 88.7 91.8 92.1 92.0 92.7

TADW 91.1 92.6 93.5 91.9 91.7

CENE 92.3 91.8 93.2 92.9 93.2

CANE 94.2 94.6 95.4 95.7 96.3

PPR 94.7 95.9 96.8 97.5 98.7

Table 4 AUC scores for link prediction on Zhihu

Percentage of edges

55% 65% 75% 85% 95%

DeepWalk 61.8 61.9 63.3 63.7 67.8

LINE 64.3 66.0 67.7 69.3 71.1

Node2vec 58.7 62.5 66.2 67.6 68.5

Concatenate 64.4 68.7 68.9 69.0 71.5

TADW 60.8 62.4 65.2 63.8 69.0

CENE 66.3 66.0 70.2 69.8 73.8

CANE 68.9 70.4 71.4 73.6 75.4

PPR 78.7 81.1 83.9 85.7 87.2

boost than the CANE method, verifying that our model can be fit more precisely on the large dataset
by aggregating more textual information from a larger neighborhood.

5.5 Parameter analysis

As shown in Eq. (19), the PPR introduces the hyper-parameter α to control the priority given to the
textual information aggregation from itself as opposed to its large neighbors. Therefore, we conduct
experiments to show the effect of the AUC scores on all datasets. Figure 3 shows the effect of PPR by
varying α from 0.01 to 1.0. From these figures, we observe that the optimal choice for different datasets
differs slightly. For small datasets such as Cora and Hepth, the AUC score increases to a slight variation
of high value with the increasing value of α. This means that under a small dataset setting, the AUC
score is not very sensitive to the variation of the hyper-parameter. For large dataset Zhihu, we obtain
that α ∈ [0.05, 0.1] performs better, indicating that aggregate the large neighbor’s textual information
plays an important role in the performance improvement.

5.6 Embedding visualization

Figure 4 demonstrates the 2D visualization of the textual network embedding on the Cora dataset by
utilizing the t-SNE [19] toolbox. We obtain that the data of different classes are distributed more clearly
in our method when compared to the method without PPR. However, this shows the effectiveness and
advantages of incorporating PPR into the textual network learning process.
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Figure 3 (Color online) AUC scores depending on hyperparameter α. (a) Cora; (b) Hepth; (c) Zhihu.
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Figure 4 (Color online) t-SNE visualization on the Cora dataset. Different classes are marked by different colors. (a) w/o PPR;

(b) w/ PPR.

6 Conclusion

In this paper, we introduced a PPR method for textual network embedding that can aggregate more
information from a larger neighborhood. Using the proposed method, we achieve new state-of-the-art
results on several real-world link prediction benchmarks.

In addition to our empirical analysis, we analyze our method from a spectral domain theory perspective
and manifest PPR as polynomial filters on the graph spectral domain. This provides theoretical evidence
for performance improvement.

Given its empirical performance and theoretical interpretability, we argue that the proposed method
would be highly beneficial to the research community from a different perspective.

Furthermore, an important future direction is to explore some approximate algorithms to compute
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the inversion operation more efficiently, e.g., methods presented by [20, 21]. Also, we suggest the design
of neural networks that can learn general textual network embedding paradigms and to explore neural
architectural search space of the algorithm structures.
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