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Dear editor,

Components such as gyros, turbines, and bearings are vital

in aircraft and spacecraft, and must run safely during their

entire life cycle. However, gradual damage inevitably occurs

resulting in component failure. Therefore, necessary main-

tenance such as component replacement should be sched-

uled. Traditional maintenance models are generally time-

based, and in such models, maintenance decisions are made

to minimize the expected cost rate, regardless of the actual

degradation condition. Therefore, traditional models are in-

appropriate for individual servicing components. Advances

in sensor technologies have enabled the monitoring of criti-

cal components for detecting degradation signals, which can

enhance condition-based maintenance (CBM) [1]. In CBM,

maintenance activities are scheduled only if necessary based

on the collected degradation signals. In contrast to time-

based maintenance, CBM can potentially improve operating

reliability and reduce economic costs.

Generally, component degradation is assumed to be ei-

ther monotonic [2] or associated degradation model param-

eters are fixed [3]. However, degradation signals collected by

sensors are generally not monotonic owing to noise. In ad-

dition, fixed model parameters lower the adaptive ability of

the degradation model in predicting the future degradation

state. In cases where nonmonotonic processes are used, some

additional assumptions are imposed on the distribution of

the predicted degradation state [4] or only current degrada-

tion observations are used to update model parameters [5].

As such, historical data of similar components are ignored

causing the updated parameters to fluctuate. Therefore, de-

veloping a new optimal condition-based replacement policy

is necessary to overcome the abovementioned limitations.

A control-limit replacement policy for degrading compo-

nents is proposed based on degradation process modeling

wherein the replacement problem is constructed as a Markov

decision process (MDP). The optimal solution to the pro-

posed policy is found to be a monotonic control-limit re-

placement policy. Finally, a case study illustrates the pro-

posed method.

Problem formulation. Let {L(t), t > 0} denote the com-

ponent degradation process with an increasing but not nec-

essarily monotonic trend. A sensor is used to monitor the

degradation state in discrete real time tk , k = 0, 1, . . .. Here,

we consider that the monitoring interval is ∆t, and it is

equally spaced. Then, tk = k∆t, which denotes the current

time. Further, let Lk ∈ R be the stochastic degradation

state of the component at tk , i.e., Lk = L(tk), and the re-

alization of Lk is expressed as lk, denoting the measured

degradation quantity. Then, the optimal replacement pol-

icy for the degrading component can be obtained by solving

the following MDP:

V (k, lk)=











c2+V (0, l0), lk>ξ
′

,

min{c1+V (0, l0),

λ(c3+E[V (k+1, L)])}, lk6ξ
′

,

(1)

where V (k, lk) is the value function that represents the total

discounted cost with the initial state (k, lk); l0 denotes the

initial observation; 0 < λ < 1 denotes the discount factor;

L is defined as L = Lk+1, which represents the degradation

state at tk+1; ξ
′ is the failure threshold; and E[V (k + 1, L)]

is an expected value function after the transition from (k, lk)

to (k+1, L). The basic principle of the proposed policy (1)

can be formulated as follows: if lk > ξ′, a corrective re-

placement takes place with a cost c2 and the component is

restored to the state (0, l0); if lk 6 ξ′, either a preventive

replacement or no action is selected according to the min-

imal cost. Here, a preventive replacement incurs a cost c1
(c2 > c1) while making the component restore to (0, l0).

Otherwise, an expected discount cost continues according

to E[V (k + 1, L)], incurring a monitoring cost c3. The case

when the degradation level exceeds the failure threshold be-

tween inspection epochs but turns back below the threshold

at the inspections is not considered as a failure in this study.

To solve (1), E[V (k + 1, L)] should be evaluated based on

the predicted L at tk+1.

Degradation model. Considering extensive applications

of the Wiener process in degradation modeling, this study
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considers a linear Wiener process with a drift to model

{L(t), t > 0}, formulated as follows:

L(t) = l0 + βt+ σB(t), (2)

where l0 denotes the initial degradation, β is a drift coeffi-

cient expressing the degradation rate, σ is a diffusion param-

eter, and B(t) is the standard Brownian motion (BM) pro-

cess distributed as B(t) ∼ N(0, t) and expressing stochas-

tic dynamics. This model is nonmonotonic due to the ef-

fect of B(t). In practice, each component may encounter

different operating environments, and thus, has an indi-

vidual degradation rate even for the same type of compo-

nents. Therefore, the parameter β is generally considered

as a random variable representing the individual variability,

while σ is considered as a deterministic parameter represent-

ing the common characteristic shared by all components.

In this study, β is assumed to be normally distributed as

β ∼ N(µ0, σ2
0). Furthermore, it is assumed that β and B(t)

are statistically independent. The maximum likelihood es-

timation for the model parameters in (1) can be obtained

if the historical degradation data of the components in the

considered population are available.

According to (2), the degradation trend is governed by

β. Thus, one should consider how to update β based on the

monitored degradation signals up to tk for the considered

component. To do so, the degradation data l0, l1, . . . , lk up

to an epoch k is denoted as l0:k = {l0, l1, . . . , lk}. Then,

the joint probability density function (PDF) of l0:k (i.e.,

likelihood function) is normal according to the independent

increment and Markov properties of BM. In this case, the

prior distribution for β falls into the conjugate family of the

likelihood function p(l0, l1, . . . , lk|β
′). As a result, the pos-

terior distribution of β is still normal with the mean and

variance being as follows:

µβ,k = (µ0σ
2 + lkσ

2
0)/(k∆tσ2

0 + σ2),

σ2
β,k = σ2σ2

0/(k∆tσ2
0 + σ2).

(3)

Then, we can obtain the estimate for β (denoted as

β̂Bayes) using the Bayesian decision theory. To do so, we ap-

ply the loss function defined as h(β, β̂Bayes) = (β− β̂Bayes)
2,

and the Bayesian estimate β̂Bayes for β can be obtained by

minimizing the expected loss function h(β, β̂Bayes). The es-

timation result is provided in Proposition 1 as follows.

Proposition 1. According to model (2) and based on l0:k,

minimizing the expected loss function h(β, β̂Bayes) yields the

following Bayesian estimate β̂Bayes for β at tk :

β̂Bayes(k, lk)=arg min
β̂Bayes

[

h(β, β̂Bayes(k, lk))
∣

∣l0:k
]

=µβ,k, (4)

where µβ,k can be obtained according to (3).

The proof of (4) can be easily achieved and is thus omit-

ted here. According to (3) and (4), the Bayesian estimate

β̂Bayes(k, lk) can combine the historical degradation data of

other components and degradation signals of the component

in service. Here, the historical degradation data of other

components are used to estimate σ, µ0, and σ0, while the

degradation signals of the component in service are utilized

to update the posterior estimation of β.

Providing the Bayesian estimate β̂Bayes(k, lk) and l0:k, L

at tk+1 can be formulated as

L = lk + β̂Bayes(k, lk)∆t +B(tk+1)− B(tk). (5)

Then, L at tk+1 is normally distributed with the cumu-

lative distribution function (CDF) FL(x), defined as

FL(x) = Φ

(

x− µ̃(k, lk)

σ̃

)

, (6)

where Φ(·) is the CDF of the normally distributed random

variable with a mean of 1 and a variance of 1, and

µ̃(k, lk) = lk + µβ,k∆t, (7)

σ̃2 = σ2∆t. (8)

Based on (6)–(8), the following Proposition 2 can be for-

mulated for the predicted degradation state L. The proof

can be achieved using the definition of the stochastic order

and thus is omitted here.

Proposition 2. The predicted degradation state L in-

creases in lk and decreases in k with the increase of the

stochastic order.

Structural properties and solution policy. Based on

Proposition 2, the structural properties of the value func-

tion V (k, lk) are summarized in the following theorems.

Theorem 1. Given k, V (k, lk) is an increasing function

with regards to lk.

Theorem 2. Given lk , V (k, lk) is a decreasing function

with regards to k.

Providing Theorems 1 and 2, the optimal solution to (1)

can be found according to Theorem 3.

Theorem 3. The optimal replacement policy is a mono-

tonic nondecreasing control-limit policy with regards to k,

and the optimal decision is to conduct the preventive re-

placement once lk > l∗
k
, where l∗

k
is the control limit.

Proofs of Theorems 1–3 can be found in Appendixes A–C.

Case study. Gyros are a vital component for inertial nav-

igation systems used in various aircraft and missiles. In this

case study, we use the degradation data of three gyros, as

illustrated in Figure E1(a). Here, the regular inspection in-

terval is ∆t = 2.5 h, ξ′ = 0.37◦/h, and l0 = 0.

To initialize the degradation model, the degradation data

of the gyros 2 and 3 are considered as the historical data,

while the model parameters can be determined offline. As

such, the estimated results for (2) are µ0 = 0.02586, σ2
0 =

8.562 × 10−4, and σ2 = 2.1062 × 10−4. Then, the data of

the gyro 1 can be used to sequentially update β and ob-

tain the Bayesian estimate β̂Bayes(k, lk) at each tk. Based

on β̂Bayes(k, lk), the predicted mean degradation level of L

can be obtained according to (7). Figure E1(b) shows the

predicted mean degradation signal µ̃(k, lk) and the actual

degradation signal, indicating a good fitting. To show the

optimal control-limit policy, we set c1 = 6000 RMB, c3 = 30

RMB, and the discount factor λ = 0.99. To conduct sen-

sitivity analysis on the optimal policies, we consider three

different settings for c2. Then, the value iteration algorithm

in Appendix D is used to solve the MDP and find the optimal

control limit. As shown in Figure E1(c), l∗
k
has a monotonic

nondecreasing feature in t for all considered cases. In ad-

dition, the control limits decrease monotonically with the

increase of c2. The decreasing limit lowers the failure risk

during the component operation because a large threshold

would delay the replacement and may lead to a high risk

of failure in the case of a costly corrective replacement. In

contrast, the decrease in c2 results in l∗
k
approaching ξ′ and

the increase of the consumption of the useful life of the con-

sidered component as much as possible. These results for

the considered case study verify the proposed policy and

demonstrate its application.



Si X S, et al. Sci China Inf Sci October 2021 Vol. 64 209205:3

Conclusion. A condition-based control-limit replacement

policy for degrading components formulated as an MDP

problem was proposed. Using degradation modeling and an-

alyzing the structural properties of the formulated MDP, it

was proved that the associated optimal solution is a mono-

tonic nondecreasing control-limit replacement policy. The

application of the proposed method was demonstrated with

a case study. The method can be extended to multi-unit

systems based on a recent promising work reported in [6].
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