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Appendix A Related works

The 8-point method [1] can be used to estimate the fundamental matrix when the number of points N > 8. It first

involves solving a set of linear equations without considering the singularity constraint of the fundamental matrix. Then

the singularity constraint is enforced by singular value decomposition (SVD) correction. The 7-point method [1] is a minimal

solver and is only applicable when N = 7, which enforces the singularity constraint directly. It is often used with the random

sample consensus (RANSAC) algorithm to deal with outliers. Both the 8-point method and the 7-point method are designed

for general motion. The 6-point method [2] can be used to estimate the fundamental matrix under planar motion when

N > 6. Similar to the 8-point method, the 6-point method enforces the singularity constraint by SVD correction. The

proposed 4-point method is a minimal solver designed for planar motion and is only applicable when N = 4. Similar to

the 7-point method, it enforces the singularity constraint directly. Note that the importance of the singularity constraint is

pointed out in [3]. A detailed comparison of the four different methods is shown in Table A1.

Table A1 Comparison of the four different methods.

Method Singularity constraint Planar-motion constraint Motion type Minimal solver

8-point posteriorly enforced Not exploiting general motion No

7-point directly enforced Not exploiting general motion Yes

6-point posteriorly enforced Exploiting planar motion No

4-point directly enforced Exploiting planar motion Yes

Appendix B Definition of coefficient matrix C ∈ R2×10

Suppose that we have got

F1 =


0 a1 a2

a3 0 a4

a5 a6 a7

 ,F2 =


0 b1 b2

b3 0 b4

b5 b6 b7

 ,F3 =


0 c1 c2

c3 0 c4

c5 c6 c7

 . (B1)

Then

F = xF1 + yF2 + F3 =


0 a1x+ b1y + c1 a2x+ b2y + c2

a3x+ b3y + c3 0 a4x+ b4y + c4

a5x+ b5y + c5 a6x+ b6y + c6 a7x+ b7y + c7

 . (B2)

According to the first constraint det(F) = 0, we can rewrite this constraint equation as

[C(1, 1),C(1, 2), . . . ,C(1, 10)][x3, x2y, xy2, y3, x2, xy, y2, x, y, 1]T = 0. (B3)

*Corresponding author (email: fuqiang@ustb.edu.cn)



Qiang Fu, et al. Sci China Inf Sci 2

Therefore, we can get

C(1, 1) = a1a4a5 − a1a3a7 + a2a3a6

C(1, 2) = a1a4b5 + a1a5b4 + a4a5b1 − a1a3b7 − a1a7b3 + a2a3b6 + a2a6b3 + a3a6b2 − a3a7b1

C(1, 3) = a1b4b5 + a4b1b5 + a5b1b4 − a1b3b7 + a2b3b6 − a3b1b7 + a3b2b6 + a6b2b3 − a7b1b3

C(1, 4) = b1b4b5 − b1b3b7 + b2b3b6

C(1, 5) = a1a4c5 + a1a5c4 + a4a5c1 − a1a3c7 − a1a7c3 + a2a3c6 + a2a6c3 + a3a6c2 − a3a7c1

C(1, 6) = a1b4c5 + a1b5c4 + a4b1c5 + a4b5c1 + a5b1c4 + a5b4c1 − a1b3c7 − a1b7c3 + a2b3c6

+ a2b6c3 − a3b1c7 + a3b2c6 + a3b6c2 − a3b7c1 + a6b2c3 + a6b3c2 − a7b1c3 − a7b3c1

C(1, 7) = b1b4c5 + b1b5c4 + b4b5c1 − b1b3c7 − b1b7c3 + b2b3c6 + b2b6c3 + b3b6c2 − b3b7c1

C(1, 8) = a1c4c5 + a4c1c5 + a5c1c4 − a1c3c7 + a2c3c6 − a3c1c7 + a3c2c6 + a6c2c3 − a7c1c3

C(1, 9) = b1c4c5 + b4c1c5 + b5c1c4 − b1c3c7 + b2c3c6 − b3c1c7 + b3c2c6 + b6c2c3 − b7c1c3

C(1, 10) = c1c4c5 − c1c3c7 + c2c3c6.

Similarly, according to the second constraint det(F+ FT ) = 0, we can get

C(2, 1) = 2a1a2a4 − 2a23a7 − 2a21a7 + 2a1a2a6 + 2a2a3a4 + 2a1a4a5 − 4a1a3a7 + 2a2a3a6 + 2a1a5a6

+ 2a3a4a5 + 2a3a5a6

C(2, 2) = 2a1a2b4 − 2a23b7 − 2a21b7 + 2a1a4b2 + 2a2a4b1 + 2a1a2b6 + 2a1a6b2 − 4a1a7b1 + 2a2a3b4

+ 2a2a4b3 + 2a2a6b1 + 2a3a4b2 + 2a1a4b5 + 2a1a5b4 + 2a4a5b1 − 4a1a3b7 − 4a1a7b3 + 2a2a3b6

+ 2a2a6b3 + 2a3a6b2 − 4a3a7b1 + 2a1a5b6 + 2a1a6b5 + 2a3a4b5 + 2a3a5b4 + 2a4a5b3 + 2a5a6b1

− 4a3a7b3 + 2a3a5b6 + 2a3a6b5 + 2a5a6b3

C(2, 3) = 2a1b2b4 − 2a7b
2
3 − 2a7b

2
1 + 2a2b1b4 + 2a4b1b2 − 4a1b1b7 + 2a1b2b6 + 2a2b1b6 + 2a2b3b4

+ 2a3b2b4 + 2a4b2b3 + 2a6b1b2 + 2a1b4b5 + 2a4b1b5 + 2a5b1b4 − 4a1b3b7 + 2a2b3b6 − 4a3b1b7

+ 2a3b2b6 + 2a6b2b3 − 4a7b1b3 + 2a1b5b6 + 2a3b4b5 + 2a4b3b5 + 2a5b1b6 + 2a5b3b4 + 2a6b1b5

− 4a3b3b7 + 2a3b5b6 + 2a5b3b6 + 2a6b3b5

C(2, 4) = 2b1b2b4 − 2b23b7 − 2b21b7 + 2b1b2b6 + 2b2b3b4 + 2b1b4b5 − 4b1b3b7 + 2b2b3b6 + 2b1b5b6 + 2b3b4b5 + 2b3b5b6

C(2, 5) = 2a1a2c4 − 2a23c7 − 2a21c7 + 2a1a4c2 + 2a2a4c1 + 2a1a2c6 + 2a1a6c2 − 4a1a7c1 + 2a2a3c4

+ 2a2a4c3 + 2a2a6c1 + 2a3a4c2 + 2a1a4c5 + 2a1a5c4 + 2a4a5c1 − 4a1a3c7 − 4a1a7c3 + 2a2a3c6

+ 2a2a6c3 + 2a3a6c2 − 4a3a7c1 + 2a1a5c6 + 2a1a6c5 + 2a3a4c5 + 2a3a5c4 + 2a4a5c3 + 2a5a6c1

− 4a3a7c3 + 2a3a5c6 + 2a3a6c5 + 2a5a6c3

C(2, 6) = 2a1b2c4 + 2a1b4c2 + 2a2b1c4 + 2a2b4c1 + 2a4b1c2 + 2a4b2c1 − 4a1b1c7 + 2a1b2c6 + 2a1b6c2

− 4a1b7c1 + 2a2b1c6 + 2a2b3c4 + 2a2b4c3 + 2a2b6c1 + 2a3b2c4 + 2a3b4c2 + 2a4b2c3 + 2a4b3c2

+ 2a6b1c2 + 2a6b2c1 − 4a7b1c1 + 2a1b4c5 + 2a1b5c4 + 2a4b1c5 + 2a4b5c1 + 2a5b1c4 + 2a5b4c1

− 4a1b3c7 − 4a1b7c3 + 2a2b3c6 + 2a2b6c3 − 4a3b1c7 + 2a3b2c6 + 2a3b6c2 − 4a3b7c1 + 2a6b2c3

+ 2a6b3c2 − 4a7b1c3 − 4a7b3c1 + 2a1b5c6 + 2a1b6c5 + 2a3b4c5 + 2a3b5c4 + 2a4b3c5 + 2a4b5c3

+ 2a5b1c6 + 2a5b3c4 + 2a5b4c3 + 2a5b6c1 + 2a6b1c5 + 2a6b5c1 − 4a3b3c7 − 4a3b7c3 − 4a7b3c3

+ 2a3b5c6 + 2a3b6c5 + 2a5b3c6 + 2a5b6c3 + 2a6b3c5 + 2a6b5c3

C(2, 7) = 2b1b2c4 − 2b23c7 − 2b21c7 + 2b1b4c2 + 2b2b4c1 + 2b1b2c6 + 2b1b6c2 − 4b1b7c1 + 2b2b3c4

+ 2b2b4c3 + 2b2b6c1 + 2b3b4c2 + 2b1b4c5 + 2b1b5c4 + 2b4b5c1 − 4b1b3c7 − 4b1b7c3 + 2b2b3c6

+ 2b2b6c3 + 2b3b6c2 − 4b3b7c1 + 2b1b5c6 + 2b1b6c5 + 2b3b4c5 + 2b3b5c4 + 2b4b5c3 + 2b5b6c1

− 4b3b7c3 + 2b3b5c6 + 2b3b6c5 + 2b5b6c3

C(2, 8) = 2a1c2c4 − 2a7c
2
3 − 2a7c

2
1 + 2a2c1c4 + 2a4c1c2 − 4a1c1c7 + 2a1c2c6 + 2a2c1c6 + 2a2c3c4

+ 2a3c2c4 + 2a4c2c3 + 2a6c1c2 + 2a1c4c5 + 2a4c1c5 + 2a5c1c4 − 4a1c3c7 + 2a2c3c6 − 4a3c1c7

+ 2a3c2c6 + 2a6c2c3 − 4a7c1c3 + 2a1c5c6 + 2a3c4c5 + 2a4c3c5 + 2a5c1c6 + 2a5c3c4 + 2a6c1c5

− 4a3c3c7 + 2a3c5c6 + 2a5c3c6 + 2a6c3c5

C(2, 9) = 2b1c2c4 − 2b7c
2
3 − 2b7c

2
1 + 2b2c1c4 + 2b4c1c2 − 4b1c1c7 + 2b1c2c6 + 2b2c1c6 + 2b2c3c4

+ 2b3c2c4 + 2b4c2c3 + 2b6c1c2 + 2b1c4c5 + 2b4c1c5 + 2b5c1c4 − 4b1c3c7 + 2b2c3c6 − 4b3c1c7

+ 2b3c2c6 + 2b6c2c3 − 4b7c1c3 + 2b1c5c6 + 2b3c4c5 + 2b4c3c5 + 2b5c1c6 + 2b5c3c4 + 2b6c1c5

− 4b3c3c7 + 2b3c5c6 + 2b5c3c6 + 2b6c3c5

C(2, 10) = 2c1c2c4 − 2c23c7 − 2c21c7 + 2c1c2c6 + 2c2c3c4 + 2c1c4c5 − 4c1c3c7 + 2c2c3c6 + 2c1c5c6 + 2c3c4c5 + 2c3c5c6.
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Appendix C Real experiments

Three images acquired from a camera mounted on a vehicle moving on a plane (available at https://urlc.cn/Eb55BNH)

are used in the real experiments. Six fundamental matrices can be obtained from these images. For each image pair, after

building tentative matches by matching SIFT points [4], potential outliers are removed through RANSAC combined with

the proposed 4-point method or the 7-point method. Then the fundamental matrix is estimated from all correspondences

classified as inliers using the normalized 8-point method [1]. As for the evaluation criterion, the root-mean-squared (RMS)

error is used, i.e.,

ERMS =

√√√√ 1

n

n∑
i=1

(
x′T
i Fxi

)2
(ξ)21 + (ξ)22 + (ξ′)21 + (ξ′)22

, (C1)

where ξ = Fxi, ξ
′ = FTx′

i. Besides, (ξ)2j and (ξ′)2j denote the square of the j-th entry of the vector ξ and ξ′ respectively,

and n is the number of correspondences classified as inliers.

The computation efficiency of the 8-point method, the 7-point method, the 6-point method and the proposed 4-point

method combining with RANSAC is also investigated for the above real images. Experiments were performed by Matlab

2011b running on a desktop computer (Intel Core Processor at 3.2GHz). From Table C1, it can be concluded that when

combined with RANSAC, the proposed 4-point method is more accurate than the other methods for the real images. The

RANSAC running time of the proposed 4-point method is a little larger than that of the 8-point method and the 6-point

method, but is much smaller than that of the 7-point method.

Table C1 Performance of different methods for the real image pairs.

Method RANSAC running time (ms) ERMS

8-point 25.8 1.6996

7-point 649.4 1.6708

6-point 18.1 1.7482

4-point 59.8 1.5648

Note that RANSAC is usually used with a minimal solver. The 8-point method and the 6-point method are not minimal

solvers and their results are listed here for the purpose of comparison. The 4-point method combined with RANSAC gives

better accuracy than the other methods because it is the minimal solver for planar motion and is more effective to deal

with outliers.

Note that the calculation complexity of the methods combined with RANSAC can be roughly analyzed as follows.

Suppose that the number of input image points is N and the number of RANSAC iterations is Niter. Then the overall

calculation complexity of the four methods combined with RANSAC is [5]

Complexity = O
(
Niter

(
Cfitting +NCdis

))
, (C2)

where Cfitting is the cost associated to compute the fitting of the fundamental matrix from s matched points (s = 8, 7, 6, 4

in this paper), and Cdis is the cost associated to compute the geometric error of the fundamental matrix with respect to

each pair of image points.
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