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Dear editor,

For multi-agent systems, consensus is the most fundamental

problem, for which, vast studies have been reported, but a

few achieved optimal protocols [1–9]. As well known, opti-

mal consensus is nontrivial due to the mismatching between

the whole performance optimization (which usually leads to

a centralized protocol) and the given distributed communi-

cation topology [1]. This makes that for a pre-given global

cost functional, a distributed optimal protocol usually can-

not be derived based on certain Riccati equation [1–3], for

which suboptimal protocol could be attempted [4, 5]. De-

spite proposing distributed optimal protocols, Refs. [6, 7]

merely focus on local cost functionals (rather than global),

and Refs. [3, 8, 9] only consider post-given or man-made (to

some extent) global cost functionals, which lack practical

significance. Notably, Ref. [1] developed a novel design strat-

egy of distributed optimal protocol for pre-given global cost

functional and topology, but the strategy is only applicable

to single-integrator agents.

This study is the first attempt of a distributed optimal

protocol for second-order multi-agent systems. Essentially

different from the existing studies, the global quadratic cost

functional and the topology are both pre-given, and the

optimal protocol to be sought is distributed. Recognizing

the inapplicability of Riccati-based strategy, we develop an

effective strategy of distributed optimal consensus. Moti-

vated by [1], we first affirm the feasibility of distributed op-

timal protocol, i.e., the existence of optimal gain parame-

ters. Then, by recursively deriving the explicit formula of

the consensus error, an online implementable algorithm is

developed to achieve the parameterization of the cost func-

tional. Namely, the completely explicit formula of the cost

functional depending on gain parameters of all agents is de-

rived. Furthermore, the optimal gain parameters are ob-

tained by minimizing the explicit formula.

Problem statement. We consider the following leader-

following multi-agent system:

{

ẋi = vi, v̇i = ui, i = 1, . . . , N,

ẋ0 = v0, v̇0 = 0,
(1)

where xi ∈ R and x0 ∈ R are the positions of the i-th fol-

lower and the leader, respectively; vi ∈ R and v0 ∈ R are

the velocities, and ui ∈ R is the control input of the i-th

follower. In what follows, suppose that the topology asso-

ciated with system (1) is the following digraph with single

chain.

The objective is to find a distributed optimal protocol in

the form:

ui = −k̄iai,i−1(xi − xi−1)− l̄iwi,i−1(vi − vi−1)

=: −kiεi,i−1 − liδi,i−1, i = 1, . . . , N, (2)

with ki = k̄iai,i−1, li = l̄iwi,i−1, εi,i−1 = xi − xi−1 and

δi = vi − vi−1, such that all agents achieve consensus, i.e.,

limt→+∞(|xi(t)−x0(t)|+|vi(t)−v0(t)|) = 0, while minimizing

the following quadratic cost functional:

J =

∫ +∞

0

N
∑

i=1

(

ai,i−1

(

xi(t) − xi−1(t)
)2

+wi,i−1

(

vi(t) − vi−1(t)
)2

+ riu
2
i (t)

)

dt

=

∫ +∞

0

N
∑

i=1

(

ai,i−1ε
2
i,i−1(t) + wi,i−1δ

2
i,i−1(t)

+riu
2
i (t)

)

dt, (3)

where aij and wij , all positive, are respectively the weights

of exchanging the position and velocity information associ-

ated with the topology digraph (i.e., Figure 1); ri are the

positive weighted coefficients of the protocol.
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Figure 1 Digraph of one chain.

Remark 1. Although the optimal protocol problem can

be viewed as an LQR problem, it cannot be solved by the

means of certain Riccati equation. Otherwise, the deduced

optimal protocol, which is usually centralized rather than

distributed, violates the digraph in Figure 1 and is not the

desired distributed protocol.
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Main results. We first affirm the feasibility of distributed

optimal protocol (2), i.e., the existence of optimal gain pa-

rameters ki and li (see Theorem 1 below). Then, an online

implementable algorithm is presented to achieve the param-

eterization of cost functional (3), namely, to derive the com-

pletely explicit formula of the cost function- al with respect

to gain parameters ki and li. Moreover, the optimal gain

parameters are found by minimizing the explicit formula.

Theorem 1. There is an optimal protocol in the form (2),

which can achieve the consensus of multi-agent system (1),

while minimizing cost functional (3).

Proof. Under protocol (2), system (1) and cost functional

(3) become

{

ė = Ae,

Ju(e(0)) =
∫+∞

0 eT(t)Qe(t) dt,

where e = [ε10, . . . , εN,N−1, δ10, . . . , δN,N−1]
T.

Noting the positiveness of ki and li, we see that A is Hur-

witz, and Q is symmetric and positive definite. Then, the

protocol can guarantee the consensus of multi-agent system

(1).

Let us next show the existence of optimal protocol. It

is worth first pointing out that, if ki and li are given (and

of course positive), as well as A and Q, then there exists a

unique symmetric positive definite matrix P satisfying the

following Lyapunov equation:

ATP + PA = −Q, (4)

and Ju(e(0)) = eT(0)Pe(0) holds.

Because A and Q are linearly and quadratically depend-

ing on ki and li, their entries can be viewed as (linear or

quadratic) polynomials of ki and li. Noting that the unique

P satisfying (4) can be derived by solving linear equation

(4) via the elimination method, we can see that each entry

of P is a rational function of ki and li (whose numerator

and denominator are both polynomials).

Thus, to prove the existence of optimal protocol, it suf-

fices to prove the continuity of P (as a rational matrix of

ki and li) on R
2N
+ . In fact, the discussion below for the

case N = 1 (due to page limitation) shows that for nonzero

e(0), if any one of ki and li approaches zero or infinity, then

Ju(e(0)) would tend to infinity. This, together with the con-

tinuity of P , immediately means the existence of optimal

protocol.

To prove the continuity of P , we only need to prove that

no entry of P has denominator which vanishes for some pos-

itive ki or li. Otherwise, one entry of P would be infinity

for certain positive ki and li, which contradicts the exis-

tence and uniqueness of P satisfying the above Lyapunov

equation.

Let us check the case N=1. For the case, we have

Ju(e(0)) =

[

ε10(0)

δ10(0)

]T[

p1 p2

p2 p3

][

ε10(0)

δ10(0)

]

,

where p1 =
a10(l

2
1+k1)

2k1l1
+ w10k1

2l1
+

r1k
2
1

2l1
, p2 =

a10+r1k
2
1

2k1
, and

p3 =
a10+r1k

2
1

2k1l1
+

w10+r1l
2
1

2l1
. From this, it can be seen that

limk1+l1→+∞ Ju(e(0)) = +∞ and limk1l1→0 Ju(e(0)) =

+∞ provided that ε10(0) or δ10(0) is nonzero.

From the above proof, we know that Ju(e(0)) =

eT(0)Pe(0), where P satisfies (4). Because P is a rational

function of ki and li, the optimal gain parameters ki or li,

which minimize Ju(e(0)), depend on the initial system con-

ditions, and hence cannot be obtained by solving Lyapunov

equation (4). This is completely different from the classical

LQR problem which can be solved by merely solving a Ric-

cati equation. Recognizing the particularity and complexity

of our optimal problem, we next pursue the parameteriza-

tion of Ju(e(0)), i.e., the explicit formula of Ju(e(0)) as a

rational function of ki and li, such that the existing opti-

mization methods can be applied (e.g., gradient method and

particle swarm optimization).

Substituting (2) into (3) yields

Ju(e(0)) =
N
∑

i=1

(

(ai,i−1 + rik
2
i )

∫ +∞

0
ε2i,i−1(t) dt

+(wi,i−1 + ril
2
i )

∫ +∞

0
δ2i,i−1(t) dt

+2rikili

∫ +∞

0
εi,i−1(t)δi,i−1(t) dt

)

. (5)

In the following, we need to compute the integrals of ε2i,i−1,

δ2i,i−1 and εi,i−1δi,i−1 to finish the parameterization of

Ju(e(0)).

By (1) and (2), we have

[

ε̇i,i−1

δ̇i,i−1

]

=

[

0 1

−ki −li

][

εi,i−1

δi,i−1

]

+

[

0

ki−1εi−1,i−2+li−1δi−1,i−2

]

,

where the system matrix is Hurwitz with its eigenvalues

denoted by −si1 and −si2 for later development. From

the above equation, it follows that the explicit formulas of

the consensus errors εi,i−1 and δi,i−1 can be recursively

derived. Detailedly, the explicit formulas of εi,i−1 and

δi,i−1 can be represented as linear combinations of e−spjt

(p = 1, . . . , i, j = 1, 2), whose coefficients are rational func-

tions of spj (see Lemma 2 in Appendix A).

Because −spj are the eigenvalues of a Hurwitz matrix, the

linear combination of e−spjt (p = 1, . . . , i, j = 1, 2) must be

square integrable, which implies the square integrability of

εi,i−1 and δi,i−1. Recalling that Ju = eT(0)Pe(0) with P

being a rational matrix depending on ki and li, the integrals

of ε2i,i−1 and δ2i,i−1 in (5) are rational functions of ki and

li. Furthermore, the explicit formula of the cost functional

with respect to gain parameters can be derived recursively

as follows:

Ju(e(0)) =
N
∑

i=1

( i
∑

p=1

i
∑

q=p

E
pq
i1 (k[p,i],l[p,i])εp,p−1(0)εq,q−1(0)

+
i

∑

p=1

i
∑

q=p

E
pq
i2 (k[p,i],l[p,i])δp,p−1(0)δq,q−1(0)

+
i

∑

p=1

i
∑

q=p

E
pq
i3(k[p,i],l[p,i])εp,p−1(0)δq,q−1(0)

)

,

(6)

where the formulas of Epq
ij (·) (which are continuous rational

functions of k[p,i] and l[p,i]) are postponed in Appendix A.

It is seen from the proof of Theorem 1 that if any one

of ki and li tends to zero or infinity, then Ju(e(0)) would

tend to infinity. Thus, the minimum value of Ju(e(0))

must be achieved at extreme points. For clarity, Algo-

rithm 1 is given to summarize the detailed procedure of

deriving optimal gain parameters. Additionally, we em-

ploy the particle swarm optimization algorithm provided

in [1] to seek the minimum value of a rational function (see

Appendix B).
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The simulation example is given in Appendix B.

Algorithm 1 Find optimal gain parameters

1: Implement the parameterization of cost functional by (6).

2: Calculate ∂Ju(e(0))
∂ki

= 0 and ∂Ju(e(0))
∂li

= 0 to derive all

extreme points.

3: Compute the corresponding value of Ju(e(0)) at each ex-

treme point.

4: Derive the minimum Ju(e(0)) and the corresponding opti-

mal gain parameters ki and li.

Conclusion. This study is devoted to the distributed opti-

mal consensus for leader-following second-order multi-agent

systems. Remarkably, for pre-given global cost functional

and topology, an effective strategy is developed to find dis-

tributed optimal protocol. Specifically, the explicit formula

of the cost functional with respect to gain parameters is first

derived, and then optimal gain parameters are obtained by

minimizing the formula. Remark that in the leaderless case,

the directed topology contains at least a cycle for consen-

sus, which is essentially different from the leader-following

case under investigation. So in the future, we will attempt

to investigate the distributed optimal protocol for leaderless

case.
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