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Abstract This study considers the multivariate alarm design problem of nonlinear time-varying systems

by a Bayesian belief-rule-based (BRB) method. In the method, the series of belief rules are constructed

to approximate the relationship between input and output variables. Hence, the method does not require

an explicit model structure and is suitable for capturing nonlinear causal relationships between variables.

For the purpose of online application, this study further introduces sequential Monte Carlo (SMC) sampling

to update the BRB model parameters, which is a fast and efficient method for approximately inferring

nonlinear sequence models. Using the model parameters obtained by SMC sampling, the series of output

variable tracking errors can be estimated and employed for multivariate alarm design. The case study of a

condensate pump verifies the effectiveness of the proposed method.
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1 Introduction

Industrial alarm systems are widely used in modern plants to ensure the safety of equipment and processes.
In a typical alarm system, the measurement of a process variable is compared with a set point known as
an alarm limit or a control limit. Once the measurement exceeds the alarm limit, an alarm is triggered
to alert an operator so that corrective actions are performed. The application of alarm systems greatly
reduces the risk of failure or accident; however, it also causes alarm overloading and the concomitant loss
of productivity owing to the occurrence of numerous false or nuisance alarms [1,2]. This is especially true
for large-scale systems such as power-plants and pyrometallurgical and petrochemical facilities in which
numerous process variables are monitored.

To reduce false and nuisance alarms, researchers have developed different kinds of univariate alarm
methods, including those designed for systems with deadbands and delay-timers [3–6]. However, it is
found that univariate alarm systems may cause a significant number of false alarms as they do not
consider relationships between process variables [1]. Therefore, the design of an effective multivariate
alarm system has become an important research topic. Different methods have been developed, including
multivariate statistical methods and probability density-based approaches. For example, Kondaveeti et
al. [7] applied different multivariate statistical methods to design an efficient alarm system. Gupta et al. [8]
integrated several statistical methods such as wavelet analysis, principal component analysis (PCA), and
qualitative trend analysis to perform alarm design. Zhang and Li [9] performed kernel density estimation
to optimize process alarm thresholds. Han et al. [10] determined an alarm propagation path based on
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causal relationships among variables and developed an alarm threshold optimization strategy based on
a joint probability density analysis. Other methods are also considered, including the geometric process
control technique [11], methods based on correlation directions [12], evidence updating methods [13],
hybrid criterion combining intrinsic mode function and fractal wavelet package energy entropy [14], and
fractional differential operator [15].

More recently, research attention has been directed to multivariate alarm design for more complex
systems, such as nonlinear, dynamic and time-varying systems. Alrowaie et al. [16] considered the alarm
design problem for nonlinear stochastic systems using a particle filter. Zhu et al. [17] developed a dynamic
alarm management strategy for transition processes of chemical production. Yu et al. [18] designed
dynamic alarm limits for multivariate alarm systems using a hyper-ellipsoid model and also considered
the adjustment of manipulated variables for alarm design. Cheng et al. [19] designed a PCA and BRB
heath monitoring method for high-speed train running gears. Xiong et al. [20] developed a multivariate
alarm system for time-varying processes. The work in [20] was based on a linear input-output model,
in which the time-varying parameters were estimated using Bayesian filters and the moving window
approach. This method works well in the condensate pump application. However, while using a linear
input-output model, it is inherently assumed that a process is linear time-varying, which may not be
valid for many practical processes. Meanwhile, the application of the moving window approach requires
the determination of a new parameter: window length, which may lead to a significant number of false
or missing alarms if not appropriately determined.

Inspired by the work of Xiong et al. [20], this study considers the multivariate alarm design problem for
time-varying process using the BRB method [21,22]. It is a rule-based method based on belief structure
and is widely used to capture nonlinear causal relationships and process uncertainties. Owing to its rule-
based structure, it is capable of utilizing expert knowledge. In addition, its parameters and structures are
trained based on historical data. Hence, the BRB method shares merits of both knowledge-based and data
driven methods. To accommodate time-varying characteristics, this study further introduces an online
Bayesian estimation method to estimate the time-varying parameters and a new alarm design method is
developed. The benefits and contributions of this study can be summarized as follows: (i) the application
of the BRB method improves the ability to handle process nonlinearities; (ii) the online sequential Monte
Carlo (SMC) sampling-based Bayesian method is well-suited to estimating the time-varying parameters
of multivariate systems; (iii) the BRB method does not require an explicit model structure incorporating
input and output variables; hence, it is general.

2 Problem formulation

2.1 Model structure

Consider a multivariate system involving m inputs and n outputs. Assume a training data set consisting
of N samples has been collected as {(x(t),y(t))|x(t) ∈ R

m,y(t) ∈ R
n, t = 1, . . . , N}, where x(t) and y(t)

are the input and output sample at the tth time instance. The relationship between x(t) and y(t) can
be described as follows:

y(t) = f(x(t),Θ(t)) + ǫ(t), (1)

where f(·) is a nonlinear function with the time-varying parameter set Θ(t) and ǫ(t) is the error vector. In
contrast to the work in [20], the model in (1) is more general and does not require an explicit expression,
which is often not available in practical systems. The purpose now is to estimate the time-varying
parameterΘ(t) and the error vector ǫ(t) from the dataset for the subsequent alarm design. The parameter
estimation method used here is the BRB method.

2.2 Belief-rule-based inference method

The BRB is a rule-based inference method. It has been widely applied in fields such as fault diagnosis [23],
safety assessment [24] and failure prognosis [25, 26]. Instead of relying on an explicit expression of
model (1), the BRB method transfers the parameter estimation problem into learning of a series of belief
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rules, with the kth rule described as follows:

Rk : If x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xmk
is Ak

mk

Then {(D1, β1k), (D2, β2k), . . . , (DM , βMk)},

with the rule weight θk

and attribute weights δ1, δ2, . . . , δmk
,

(2)

where the input variable xi (i = 1, . . . ,mk) is called the antecedent attribute, Ak
i (i = 1, . . . ,mk; k =

1, . . . , L) is the referential value of the ith antecedent attribute, and mk (mk 6 m) and L are the
number of attributes and rules respectively. Dj (j = 1, . . . ,M) is the jth referential value of the output
or consequent, βjk ∈ {0, 1} is the belief degree to which Dj is the consequent of (x1, x2, . . . , xmk

) =

(Ak
1 , A

k
2 , . . . , A

k
mk

). If
∑M

j=1 βjk = 1, the kth rule is a complete rule; otherwise, it is incomplete. In
addition, “∧” is the logical “AND” operator. Each rule has a rule weight θk and each antecedent
attribute has an attribute weight δi. The final output is obtained by aggregating the contributions of all
activated rules. For the sake of simplicity, the number of output variables is set as n = 1 here. Extending
to multiple outputs can be easily achieved by expanding the number of output referential values.

Compared to the traditional IF-THEN rule whose consequent is either 100% true or 100% false, the
belief rule has better flexibility and can be easily extended to deal with continuous variables. The
parameter set of the BRB model can be defined as

Θ =
{

θ, δ,βk, k = 1, . . . , L
}

, (3)

where θ = (θ1, . . . , θL) is the rule weight vector, δ = (δ1, . . . , δmk
) is the attribute weight vector and

βk = (β1k, . . . , βMk) is the belief degree vector.
To estimate the model parameters, evidence reasoning (ER) [27] is generally applied, which consists of

an activation weight calculation step and a belief degree calculation step. The activation weight, referred
to ωk, is the degree of activation for each of the kth rule and can be calculated as

ωk =
θk
∏mk

i=1 (αik)
δ̄i

∑L
l=1

[

θl
∏ml

i=1 (αil)
δ̄i
] , δ̄i =

δi

maxi=1,2,...,mk
{δi}

, (4)

where αik (αik > 0,
∑mk

i=1 αik 6 1) is called the individual matching degree, which is the belief degree of
the input xi to the referential value Ak

i in the kth rule. Given a specific measurement of the ith input
xi(t) and a set of referential values A = {Ai,1, Ai,2, . . . , Ai,Mi

} sorted in ascending order (with Ak
i ∈ A,

if Ai,q 6 xi(t) 6 Ai,q+1), the individual matching degree αiq of xi(t) to the qth reference value Ai,q and
the (q + 1)th reference value Ai,q+1 can be calculated as

αiq =
Ai,q+1 − xi(t)

Ai,q+1 −Ai,q

, αi(q+1) =
xi(t)−Ai,q

Ai,q+1 −Ai,q

. (5)

The individual matching degrees of xi(t) to other referential values are 0. On the other hand, if xi(t) 6
Ai,1, the individual matching degree of xi(t) to Ai,1 is 1. Similarly, if xi(t) > Ai,Mi

, the individual
matching degree of xi(t) to Ai,Mi

is 1.
Once the activation weight is obtained, ER can be used to combine the rules and generate the output

belief degree βj as follows:

βj =
µ[
∏L

k=1 (ωkβjk + 1− ωk

∑M

i=1 βik)−
∏L

k=1 (1− ωk

∑M

i=1 βik)]

1− µ(
∏L

k=1 (1− ωk))
, (6)

where the parameter µ can be obtained as

µ =





M
∑

j=1

L
∏

k=1

(

ωkβjk + 1− ωk

M
∑

i=1

βik

)

− (N − 1)

L
∏

k=1

(

1− ωk

M
∑

i=1

βik

)





−1

. (7)

And the final output can be estimated as

ŷ(t) =

M
∑

j=1

βjDj. (8)
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3 Online evaluating procedures using sequential Monte Carlo

3.1 Basic assumptions

The BRB inference introduced in Subsection 2.2 is for time-invariant system. For time-varying sys-
tem whose parameter set Θ(t) changes with time, this inference method is not appropriate anymore.
Here a Bayesian online updating method is applied by estimating the posterior parameter distribution
p(Θ(t)|S(1 : t)), with S(1 : t) = {(x(1), y(1)), . . . , (x(t), y(t))} being the dataset. In order to approxi-
mate the posterior distribution, the SMC sampling [28] is applied which introduces a transition probability
p(Θ(t)|Θi(t − 1)) to propagate samples from t − 1 to t as well as an observation probability to update
the sample weight. The inherent assumptions for using SMC include the Markov assumption and the
observation assumption.

The Markov assumption assumes the change of BRB parameters is a Markov process. That is to say,
the distribution of parameters at time t only depends on those at time t− 1. And the transition can be
described as a random walk model as follows:

Θ(t) = Θ(t− 1) + η(t), η(t) ∼ N(0, ν21), (9)

where ν21 is the variance of transition probability. For the observation assumption, it is assumed that
the current output is only dependent on the current inputs and parameters, which can be described as
follows:

p(S(t)|Θ(1), . . . ,Θ(t− 1),Θ(t)) = p(S(t)|Θ(t)), (10)

where p(S(t)|Θ(t)) ∼ N(0, ν22) is the observation probability, with ν22 the variance of the observation
probability. The variances of the transition probability and observation probability determine the sen-
sitivity of the tracking algorithm. Smaller variances result in increased sensitivity of the algorithm to
incipient or slow-varying faults; however, it may increase the risk of false alarms as small disturbances
may be mistaken to be a fault. In contrast, greater variances cause reduced false alarms, while incipient
or slow-varying faults may be easily adapted. In practice, a trade-off between the sensitivity and false
alarms should be considered and this issue can be resolved by using a trial and error approach on the
training dataset by considering the balance between detection sensitivity and the false alarm rate.

The BRB parameters are subject to the following constraints:

0 6 βjk 6 1, j = 1, . . . ,M ; k = 1, . . . , L,

M
∑

j=1

βjk = 1,

0 6 θk 6 1, k = 1, . . . , L,

0 6 δi 6 1, i = 1, . . . ,mk,

Dj < Dj+1.

(11)

3.2 Online updating using sequential Monte Carlo sampling

The model in (1) as well as the BRB rules in (2) are nonlinear, hence it is difficult to estimate the posterior
parameter distribution p(Θ(t)|S(1 : t)) analytically. Here, the SMC sampling is used for approximation.
The SMC sampling is a kind of importance sampling technique, which assumes certain values in the
sampling procedures have more impact on the parameters to be estimated. In the BRB parameter
estimation problem, instead of directly sampling from p(Θ(t)|S(1 : t)), a simpler importance distribution
q(Θ(t)|S(1 : t)) is introduced. The true posterior distribution of p(Θ(t)|S(1 : t)) is a weighted sum of
the following form:

p(Θ(t)|S(1 : t)) ≈

Ns
∑

s=1

ωs(t) ·∆(Θ(t) −Θs(t)), (12)

where ∆(·) is the Dirac function, Θs(t) is the sth sampling of Θ(t) from q(Θ(t)|S(1 : t)), Ns is the
number of sampling, and ωs(t) is the importance weight defined as

ωs(t) ∝
p(Θ(t)|S(1 : t))

q(Θ(t)|S(1 : t))
. (13)
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The weights are normalized and
∑Ns

s=1 ω
s(t) = 1.

The importance distribution can be factorized as

q(Θ(t)|S(1 : t)) = q(Θ(t)|Θ(t − 1),S(1 : t))q(Θ(t − 1)|S(1 : t− 1)). (14)

And the posterior distribution can be factorized according to Bayesian theory and Markov assumption
as

p(Θ(t)|S(1 : t)) =
p(S(t)|Θ(t),S(1 : t− 1))p(Θ(t)|S(1 : t− 1))

p(S(t)|S(1 : t− 1))

=
p(S(t)|Θ(t),S(1 : t− 1))p(Θ(t)|Θ(t − 1),S(1 : t− 1))

p(S(t)|S(1 : t− 1))

× p(Θ(t− 1)|S(1 : t− 1))

=
p(S(t)|Θ(t))p(Θ(t)|Θ(t − 1))

p(S(t)|S(1 : t− 1))
p(Θ(t− 1)|S(1 : t− 1))

∝ p(S(t)|Θ(t))p(Θ(t)|Θ(t − 1))p(Θ(t− 1)|S(1 : t− 1)). (15)

Substituting (14) and (15) into (13), ωs(t) can be obtained as follows:

ωs(t) ∝
p(S(t)|Θs(t))p(Θs(t)|Θs(t− 1))p (Θs(t− 1)|S(1 : t− 1))

q (Θs(t)|Θs(t− 1),S(1 : t− 1))

= ωs(t− 1)
p(S(t)|Θs(t))p(Θs(t)|Θs(t− 1))

q (Θs(t)|Θs(t− 1),S(1 : t− 1))
. (16)

For simplicity, the importance distribution is often set as [29]

q (Θs(t)|Θs(t− 1),S(1 : t− 1)) = p(Θs(t)|Θs(t− 1)). (17)

So that the importance weight can be updated as

ωs(t) ∝ ωs(t− 1)p(S(t)|Θs(t)). (18)

During the sampling procedures, the samples drawn from the transitional distribution in (9) may violate
the constraints in (11). In such cases, the sample will be rejected and the parameter set will be resampled
until it satisfies the constraints.

Another important problem commonly encountered during the sampling procedures is the degeneration
problem. That is, after certain times of iterations, the weight of most samples may decay to almost zero
while a few samples have significant great weights. In this case, resampling may be needed. In practice,
it is the effective number of samples that determines whether to resample, which can be calculated as
follows [29]:

N̂eff =
1

∑Ns

s=1(ω
s(t))2

. (19)

If N̂eff is smaller than a predefined threshold Nthr, then resampling should be performed. The updating
algorithm of the SMC sampling is shown in Algorithm 1.

Algorithm 1 Updating algorithm for SMC sampling

Update {Θs(t), ωs(t)}Ns
s=1

, given {Θs(t − 1), ωs(t − 1)}Ns
s=1

and the input and output data pair S(t). Here Ns is the number of

sampling.

1. For s = 1, . . . , Ns, sample Θs(t) ∼ p(Θ(t)|Θs(t − 1)); check the constraints in (11); if Θs(t) does not satisfy the constraints,

perform resampling until the constraints are satisfied;

2. For s = 1, . . . , Ns, calculate the importance weights using (13);

3. For s = 1, . . . , Ns, normalize the importance weights;

4. Calculate N̂eff using (19) and check whether resampling is needed; if N̂eff < Nthr, draw Ns samples from the current parameter

set Θs(t), s = 1, . . . , Ns with probabilities proportional to their weights ωs(t) and replace the current parameter set with the new

one;

5. For s = 1, . . . , Ns, set the new weights as 1

Ns
.
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3.3 General procedures of BRB inference

In summary, the parameter estimation procedures for BRB model using SMC can be described as follows.

(1) Initialize BRB parameters. The parameters can be determined from (i) expert knowledge, (ii) ex-
traction from historical data, (iii) utilizing existing rule base, and (iv) random generation [30].

(2) Determine the transition probability p(Θ(t)|Θ(t − 1)) and observation probability p(S(t)|Θ(t)).

(3) Parameter updating using Algorithm 1.

Once the BRB parameters are determined, the model output can be estimated in two ways. The first
way is to use the estimated parameters to estimate the model output according to (8). The other way is
to calculate directly as

ŷ(t) ≈

Ns
∑

s=1

ωs(t)× f(x(t),Θs(t)). (20)

4 Multivariate alarm system design

The Bayesian BRB updating can be used to obtain estimation of model parameters online. Once an
anomaly arises, it is essential to detect it and trigger alarm to notify an operator. The difference between
normal and abnormal situations can be reflected by the change in model parameters. For a time-varying
system, if an abrupt change in the model parameters is observed, it indicates that the operational status
of the system has changed. Consequently, the abrupt change in model parameters will result in significant
increase in model error, which can be used to construct the multivariate alarm system.

For the purpose of alarm design, a historical normal dataset and a historical abnormal dataset are
collected and the BRB method is applied to estimate the parameters online. The purpose of introducing
a historical normal dataset and a historical abnormal dataset is to obtain a more appropriate alarm
threshold [20]. The threshold is constructed using the model error between the current output and its
estimation, which can be obtained from (8) using the current input and the model parameters of the
previous time instance.

Let φ(t) be the model error defined as follows:

φ(t) = |y(t)− ŷ(t)|. (21)

Based on (21), two sets of model errors φ1(t) and φ2(t) can be obtained, corresponding to the historical
normal dataset and the historical abnormal dataset respectively. Intuitively, the maximum of φ2(t) will
be greater than that of φ1(t) as the anomaly causes greater tracking errors in faulty conditions. Hence,
the alarm threshold can be defined as

φtp =
max(φ1(t)) + max(φ2(t))

2
. (22)

And the alarm system can be designed as

a(t) =

{

1, φ(t) > φtp,

0, otherwise.
(23)

With the alarm threshold set and alarm system designed, the BRB method can be used online to trigger
alarms for abnormal conditions. The procedures can be summarized by the following steps.

(1) Set alarm threshold using (22).

(2) Determine whether to alarm. At the tth time instance, the model input and model parameters
obtained at the last time instance are used to obtain the model error φ(t). Based on (23), the alarming
variable a(t) is calculated. If a(t) = 1, then trigger alarm.

(3) Decide whether to update model parameters. If a(t) = 0, the system is operating at the normal
situation; then update the model parameters using the current input and output data. If a(t) = 1, the
model parameters remain unchanged and Θ(t) = Θ(t− 1).

(4) Repeat Steps (2) and (3) whenever a new sample is available.
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Figure 1 (Color online) Normalized time series of the three variables. The red circles contain the data samples used for model

training and the green circles contain the data samples used for performance verification.
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Figure 2 (Color online) (a) Normalized time series of the historical normal data; (b) the 3D plot of the data.

5 Application case study

The developed Bayesian BRB method is applied to the abnormal condition detection of a condensate
pump used in a real coal-fired power plant in China. A dataset consisting of 11836800 data points in the
time period between January 15, 2015 and June 1, 2015 is collected. The dataset involves three process
variables, namely, the difference in pressure between the input and output flows ∆p(t), the rotational
speed of the pump r(t) and the flow rate q(t). The pressure difference ∆p(t) is closely related to the
rotational speed r(t) and the flow rate q(t). Hence, ∆p(t) is used as model output while r(t) and q(t) as
model inputs. Figure 1 presents the normalized time series of the three variables.

During the time period, three faults occurred at 10:40, January 24, 23:35, March 25 and 13:00, May
25 respectively. The faults caused the pressure difference dropping to zero, indicating that the pump
stopped working. The other two variables, however, are not zero since the backup pump started working
and the two pumps used the same transducer. As is analyzed in [20], the dataset exhibits clear time-
varying characteristics. During the model construction procedures, the work in [20] used extensive prior
knowledge about the relationship between the output variable ∆p(t) and the input variables r(t) and
q(t). Such prior knowledge, however, is generally not available in many practical cases. In this section,
the Bayesian online BRB model is applied to make full use of its capability in handling nonlinearity and
time-varying characteristics. For comparison, principal component analysis and traditional univariate
alarm method [31] are considered.

5.1 Model training for alarm system design

For alarm design, the data samples corresponding to the first fault are used. The data samples are divided
into a historical normal dataset and a historical abnormal dataset, each consisting of 5000 samples.

The time series of the historical normal dataset are shown in Figure 2. The dataset was divided into
three clusters, following the method used in [20]. From Figure 2, it can be clearly seen that there are
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Figure 3 (Color online) (a) Normalized time series of the historical abnormal data; (b) the 3D plot of the data.

Table 1 Initial referential values for the input and output variables

Variable
q(t) r(t) ∆p(t)

A1,1 A1,2 A1,3 A2,1 A2,2 A2,3 D1 D2 D3

Referential value 0.55 0.70 0.80 0.65 0.75 0.85 0.35 0.45 0.55

Table 2 Initial belief rule base

Number Rule Rule weight
Belief degree

β1,k β2,k β3,k

1 A1,1 ∧ A2,1 1 0.1639 0.8361 0

2 A1,1 ∧ A2,2 1 0.1609 0.8391 0

3 A1,1 ∧ A2,3 1 0 0.6719 0.3281

4 A1,2 ∧ A2,1 1 0.1700 0.8300 0

5 A1,2 ∧ A2,2 1 0 0.6719 0.3281

6 A1,2 ∧ A2,3 1 0 0.6719 0.3281

7 A1,3 ∧ A2,1 1 0 0.1857 0.8143

8 A1,3 ∧ A2,2 1 0 0.1857 0.8143

9 A1,3 ∧ A2,3 1 0 0.1857 0.8143

three clusters in the dataset, with 3750 blue points, 1043 yellow points and 207 red points.

In contrast, Figure 3 shows the historical abnormal dataset. For the historical abnormal dataset, an
anomaly happens at around the 3670th sample. This time, however, there are only 3 red points, which
clearly indicates the occurrence of an abnormal condition. In addition, it can be seen that the flow rate
q(t) suddenly increase, while the other variables decrease. This is in sharp contrast to Figure 2, where
all the three variables share the same trend.

Based on the historical datasets, the BRB model can now be constructed using the procedures proposed
in Section 3. In order to build a BRB model, the initial referential values of the input and output variables
should be obtained, as shown in Table 1. The initial referential values in Table 1 can be determined using
expert knowledge or observation from data. In this application, they are determined by investigating the
distribution of the input and output variables to ensure that the intervals defined by these referential
values equally cover the whole dataset. In addition, the initial attribute weights are set as δ1 = 1, δ2 = 1.
And a total of 9 initial belief rules are built, as shown in Table 2. In fact, determination of the number
of belief rules is problem-specific. In general, if a process involves more variables, more rules should be
constructed to get a satisfactory tracking accuracy. Obviously, more rules will result in more parameters
to be estimated and hence heavier computation load. In the case of condensate pump, it is found that
adopting 9 rules can better balance the computation burden and tracking accuracy via a number of tests
on the training dataset. In Table 2, the initial belief degrees are determined by roughly estimating the
percentage of output values falling into the subspace spanned by the input referential values in each rule.
Using the trial and error approach, the transition probability of each parameter and the observation
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Figure 4 Absolute tracking error for (a) the historical normal dataset and (b) the historical abnormal dataset.

probability are initialized to be as follows:

Ak
mk

(t) ∼ N(Ak
mk

(t− 1), 0.0001),

Dj(t) ∼ N(Dj(t− 1), 0.00001),

θk(t) ∼ N(θk(t− 1), 0.0001),

δi(t) ∼ N(δi(t− 1), 0.0001),

βjk(t) ∼ N(βjk(t− 1), 0.0001),

p(y(t)|Θ(t)) ∼ N(y(t), 0.0001).

(24)

With all the parameters initialized, a normal sample set with 500 samples are used to train the initial
model. Although the BRB method involves many parameters, the number of samples used to train the
initial model will be relatively small if a good initial model with appropriate parameters determined.
This is true in this case as only 500 samples are sufficient to generate a good initial model. Based on
the initial model, the sequential Monte Carlo sampling is then used to update the model parameters
online. For SMC, the number of sampling is set as Ns = 200 and the resampling threshold is set as
Nthr = 20. Increasing Ns results in higher tracking accuracy, however, at the cost of heavier computation
burden. Through multiple trials, it is found that increasing Ns to more than 200 does not show significant
improvement on tracking accuracy.

For the online updating algorithm, once a fault is detected, the Bayesian BRB parameters stop updating
and the tracking errors continuously exceed the control limit. If the system gets back to normal, the
tracking errors will not violate the control limit and the Bayesian BRB parameters begin to update
again. The tracking errors for the historical normal and abnormal datasets are shown in Figure 4.

It can be seen that the maximum of φ2(t) was observed at the 3676th sample, which is in accordance
with the previous knowledge about the occurrence of the fault. According to (23), the alarm threshold
is set as φtp = 0.01025.

5.2 Performance verification

In order to verify the performance of the proposed method, a test normal dataset and a test abnormal
dataset corresponding to the green circles in Figure 1 are considered. In the test normal dataset, a total
of 5000 data points are collected during the time from 9:32:10 to 10:23:20 on May 17, 2015. On the
other hand, another 5000 data points during 11:29:40 to 12:53:00 on May 25, 2015 are used as the test
abnormal dataset, during which a fault occurred. The time series of both datasets are shown in Figures 5
and 6.

Comparing Figures 5 and 6, we can see that when the fault occurred, the trend of flow rate q(t) differs
from those of ∆p(t) and r(t). This is in accordance with the analysis in Subsection 5.1. More specifically,
around the 3045th data point of the abnormal dataset, all the three variables increase. Around the
3200th sample, q(t) reaches its peak and begins to decrease. This can be explained. The fault caused
an emergency shutdown of the pump at around 13:00:00 and the backup pump is triggered. Using the
same parameter settings as in Subsection 5.1, the Bayesian BRB inference generates the absolute tracking
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Figure 5 Normalized time series of the test normal data.
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Figure 6 Normalized time series of the test abnormal data.
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Figure 7 (Color online) Values of φ(t) and the alarm sequence for the test abnormal dataset.

errors and the alarm variable a(t) for both the test normal dataset and test abnormal dataset, as shown
in Figure 7.

From Figure 7 it can be seen that satisfactory alarm results have been obtained. No alarm was triggered
before the 3045th sample as all the tracking errors are below the threshold. In contrast, the proposed
method triggered alarm for the test abnormal dataset at the 3053rd data point, just a few data points
after the fault occurred.

For comparison, the monitoring statistics and alarm sequence for the test abnormal dataset using PCA
and the univariate method proposed by [31] are presented in Figures 8 and 9. For PCA, the number of
principal components (PCs) retained is set as 2 because 2 PCs are sufficient of retaining more than 90%
variance.
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Figure 8 (Color online) Monitoring statistics and alarm sequence for the test abnormal dataset using PCA.
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Figure 9 (Color online) Monitoring results and alarm sequence for the test abnormal dataset using the univariate method.

From Figures 8 and 9 it can be seen that neither PCA nor the univariate method can capture the time-
varying characteristics of the system. As a result, a significant number of false alarms are observed. This
clearly indicates the advantages of the proposed method in accommodating time-varying and nonlinear
systems.

In addition, to test the efficiency of the Bayesian BRB method, the computation time is recorded. The
test is performed on a personal computer with the CPU of Intelr CoreTM i5-1035G1@1.00 GHz 1.19 GHz
and RAM of 16 G. The computation time for 5000 normal data samples is 126.09 s and the average time
for each sample is 0.025 s. For the test data samples, the computation time for the first 3053 samples is
75.73 s and the average time for each sample is 0.0248 s. After the 3053rd sample, a fault was detected
and the model stopped updating. It can be seen that the online tracking algorithm is fast and efficient.

6 Conclusion

This study proposed a Bayesian BRB inference multivariate alarm system for time-varying nonlinear
processes. Compared with conventional methods, the BRB method does not require the prior knowledge
of the input-output relationships and is able to handle general nonlinear processes. By introducing an
SMC-based inference method, the tracking error of the BRBmodel can be obtained online, which is further
used to update the multivariate alarm system. Application to the alarm design of a condensate pump
indicates that, compared to conventional methods, the proposed Bayesian BRB method can effectively
accommodate the nonlinear and time-varying characteristics of the process and significantly reduce the
amount of false and nuisance alarms.
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