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Abstract Many real-world optimization problems involve multiple conflicting objectives. Such problems

are called multiobjective optimization problems (MOPs). Typically, MOPs have a set of so-called Pareto

optimal solutions rather than one unique optimal solution. To assist the decision maker (DM) in finding

his/her most preferred solution, we propose an interactive multiobjective evolutionary algorithm (MOEA)

called iDMOEA-εC, which utilizes the DM’s preferences to compress the objective space directly and pro-

gressively for identifying the DM’s preferred region. The proposed algorithm employs a state-of-the-art

decomposition-based MOEA called DMOEA-εC as the search engine to search for solutions. DMOEA-εC

decomposes an MOP into a series of scalar constrained subproblems using a set of evenly distributed upper

bound vectors to approximate the entire Pareto front. To guide the population toward only the DM’s pre-

ferred part on the Pareto front, an adaptive adjustment mechanism of the upper bound vectors and two-level

feasibility rules are proposed and integrated into DMOEA-εC to control the spread of the population. To

ease the DM’s burden, only a small set of representative solutions is presented in each interaction to the DM,

who is expected to specify a preferred one from the set. Furthermore, the proposed algorithm includes a

two-stage selection procedure, allowing to elicit the DM’s preferences as accurately as possible. To evaluate

the performance of the proposed algorithm, it was compared with other interactive MOEAs in a series of

experiments. The experimental results demonstrated the superiority of iDMOEA-εC over its competitors.
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tion, compression
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1 Introduction

Multiobjective optimization problems (MOPs) are common in many areas, including energy manage-
ment [1], motion planning [2–4], resource allocation [5,6], and edge computing [7]. Conflicting objectives
mean that MOPs often do not have a unique optimal solution, but rather have a set of so-called Pareto
optimal solutions. The ultimate goal of multiobjective optimization is to assist the decision maker (DM)
in finding the most preferred solution (MPS). Many multiobjective evolutionary algorithms (MOEAs)
have been proposed to solve MOPs (e.g., see [8,9] for a comprehensive survey). MOEAs are characterized
by a population-based search paradigm. The population of an MOEA evolves generation by generation to
approximate the entire Pareto front of an MOP, which is very appealing for multiobjective optimization.
However, the number of solutions required for approximating the entire Pareto front grows exponentially
with the increase in the number of objectives, which leads to a high computational cost and imposes a
heavy burden on the DM, who is required to choose the MPS among many solutions.

Several studies have proposed interactive MOEAs by incorporating the DM’s preferences into
MOEAs [10]. The search is concentrated only on the DM’s preferred part of the Pareto front, so the com-
putational cost is reduced in this case. Moreover, the DM can learn about the MOP to be solved during
the solution process and adjust his/her preferences to refine solutions. Generally, two interaction patterns
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can be identified in interactive MOEAs [10]. The first involves interaction after a complete MOEA runs.
This means that an MOEA runs fully between every two adjacent interactions until its stopping criteria
is met to find approximate Pareto optimal solutions. The other pattern involves interaction during an
MOEA runs, which means that the MOEA runs only once and pauses its evolution process multiple times
to interact with the DM. The second interaction pattern is less time consuming, and the entire process
is more DM-oriented [11].

Interactive MOEAs adopting the second interaction pattern do not usually get close to the Pareto front
until the later period of the search process. When it is time to interact, these algorithms often provide
a set of intermediate solutions for the DM. The DM is required to express his/her preferences for these
solutions. Typically, preferences are expressed in the form of pairwise comparison, classifying solutions
into multiple categories, or selecting the best one among them. Compared with pairwise comparison,
specifying the best solution among a set of solutions requires less effort from the DM. For example,
m(m − 1)/2 comparisons would need to be made to compare m solutions pair-wisely; however, m − 1
comparisons are enough for the DM to select the best one from m solutions. This study considers the
type of preferences in the form of selecting the best solution among a set of solutions with the aim to
reduce the DM’s burden.

The idea of decomposing an MOP into a series of subproblems has been popular in handling MOPs [12,
13]. DMOEA-εC [13], AMOEA/D [14], and MOEA/D-AAP [15] are three state-of-the-art decomposition-
based MOEAs. Incorporating the DM’s preferences into these MOEAs can provide new ways of solving
MOPs with the aim of obtaining the DM’s preferred solutions.

For interactive MOEAs, compression is a good way of cutting down the search space and focusing the
search process on the region of interest. Several interactive MOEAs that ask the DM to provide the best
solution from multiple solutions utilize the DM’s preferences in different ways to reduce the objective space
directly or indirectly. For example, iTDEA defines a territory for each solution and uses the favorable
weights of the DM’s current best solution to determine a new preferred weight region [16]. Solutions
whose favorable weights are located in the preferred weight region are assigned a smaller territory size
to obtain denser solutions around the best one. iMOEA/D also uses the weighting vector of the best
solution to renew the preferred weight region that shrinks gradually with the interactions [12]. These
two algorithms compress the objective space indirectly by reducing the weight space. PI-NSGA-II-PC
uses the DM’s preferred solution to construct a polyhedral cone in the objective space [17]. Solutions
inside the cone are considered to be more preferable than those outside the cone. While the search space
is compressed progressively, the shape of the cone is not fixed, making it hard to control the size of the
preferred region (i.e., preferred region in the objective space).

This paper presents an interactive decomposition-based MOEA with an ε-constraint framework, called
iDMOEA-εC, which uses the DM’s current best solution to decompose MOPs and compress the objective
space directly. DMOEA-εC is used as a search engine to search for solutions. It decomposes an MOP
into a range of scalar constrained subproblems using a set of evenly spread upper bound vectors, and
is designed to approximate the entire Pareto front. An adaptive adjustment mechanism of the upper
bound vectors and two-level feasibility rules are developed and incorporated into DMOEA-εC to adapt
DMOEA-εC for finding the DM’s preferred solutions. To reduce the DM’s burden, only a small sample
set of solutions is provided in every interaction for the DM, who is expected to select the one (s)he prefers
most. Considering the difficulty of capturing the DM’s preferences using a small number of solutions, a
two-stage selection procedure is proposed to help elicit the DM’s preferences for a better localization of
the DM’s preferred region. Owing to these characteristics, iDMOEA-εC can use the DM’s preferences to
approximate the DM’s MPS well without imposing a heavy burden on the DM. In addition, iDMOEA-
εC’s computational complexity is close to that of DMOEA-εC; hence, it can assist the DM in finding the
MPS within a reasonable time.

The remainder of the paper is organized as follows. Section 2 presents related concepts of MOPs and
the algorithmic framework of DMOEA-εC. In Section 3, the proposed iDMOEA-εC is introduced in detail.
Section 4 is devoted to the verification of the effectiveness of iDMOEA-εC through the comparison of
iDMOEA-εC with several other interactive MOEAs. Further investigations on the behavior of iDMOEA-
εC are provided in Section 5. Section 6 concludes this paper.
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Table 1 Acronyms used in this paper

Acronym Full name

MOP Multiobjective optimization problem

DM Decision maker

MPS Most preferred solution

MOEA Multiobjective evolutionary algorithm

iDMOEA-εC Interactive decomposition-based MOEA with the ε-constraint framework

AMOEA/D Adaptive MOEA based on decomposition

MOEA/D-AAP Decomposition-based MOEA with angle-based adaptive penalty scheme

iTDEA Interactive territory defining evolutionary algorithm

iMOEA/D Interactive decomposition-based multiobjective evolutionary algorithm

NSGA-II Non-dominated sorting genetic algorithm with elitism strategy

PI-NSGA-II-PC Progressively interactive NSGA-II based on polyhedral cones

ICB-MOEA/D Interactive classification-based MOEA/D

DRA Dynamic resource allocation

EP Elite population

NFE Number of function evaluations

2 Preliminaries

This section is devoted to introducing some basic concepts of multiobjective optimization, the ε-constraint
method, and the framework of DMOEA-εC. In order to help readers get the meanings of the acronyms
used in this paper quickly, Table 1 presents these acronyms and their full names.

2.1 Multiobjective optimization problem

Generally, an MOP can be formulated as follows:

min f(x) = (f1(x), f2(x), . . . , fk(x))

s.t. x ∈ S ⊂ R
n,

(1)

where the decision vector x = (x1, x2, . . . , xn) belongs to the feasible region S ⊂ R
n, fi : S → R for all

i ∈ {1, 2, . . . , k} are k (k > 2) objective functions which are to be minimized simultaneously.
A vector u is said to dominate another vector v, denoted by u ≺ v, if and only if ui 6 vi, ∀i ∈

{1, 2, . . . , k} and uj < vj , ∃j ∈ {1, 2, . . . , k}. A decision vector x is said to be Pareto optimal if and only
if there is no decision vector which dominates it. The corresponding objective vector is called a Pareto
optimal objective vector. The set of all Pareto optimal decision vectors is denoted by E. The image of
E in the objective space is called the Pareto front.

When providing preferences, it is often useful for the DM to know the ranges of the objective func-
tions. The ideal point, denoted by z∗ = (z∗1 , z

∗
2 , . . . , z

∗
k), is composed of the minimum value of each

objective in the feasible region, i.e., z∗i = minx∈Sfi(x) for all i = 1, 2, . . . , k. The nadir point znad =
(znad1 , znad2 , . . . , znadk ) consists of the maximum value of each objective in the Pareto front, i.e., znadi =
maxx∈Efi(x) for all i = 1, 2, . . . , k [13].

2.2 The ε-constraint method

In the classic ε-constraint method introduced by Haimes et al. [18], one of the objective functions is se-
lected as the main objective which is to be minimized. The other objectives are converted into constraints.
The following constrained single-objective optimization problem is formed [13, 18]:

min fmain(x) = fs(x) + ρ

k∑

j=1

fj(x)

s.t.

{
f̃j 6 εj , ∀j ∈ {1, 2, . . . , k}/{s},

x ∈ S,

(2)

where f̃j = (fj(x) − z∗j )/(z
nad
j − z∗j ) for j = 1, 2, . . . , k; 0 6 ε = {ε1, . . . , εs−1, εs+1, . . . , εk} 6 1 is an

upper bound vector; ρ is a very small positive number. Generally, different upper bound vectors lead to
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Figure 1 Different upper bounds of the ε-constraint method and corresponding Pareto optimal solutions.

different optimal solutions. It has been proved that each Pareto optimal solution of an MOP can be found
by solving the ε-constraint method via altering the main objective and the upper bound vector [13, 19].
Figure 1 gives an example of a two-objective case with f2 being the main objective. Different upper
bounds and the corresponding Pareto optimal solutions (black points) are shown.

2.3 Framework of DMOEA-εC

Adopting the framework of the ε-constraint method, DMOEA-εC transforms an MOP into N constrained
single-objective subproblems by using a set of evenly spread upper bound vectors ε1, ε2, . . . , εN which
satisfy 0 6 εij 6 1, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , k}/{s} [13]. DMOEA-εC is a population-based algo-
rithm and each subproblem corresponds to a solution. All the subproblems are optimized collaboratively
in a single run of DMOEA-εC. Each subproblem has a neighborhood denoted by B(i). It consists of a
set of subproblems whose upper bound vectors are close to εi. In the following, we define some notations
that will be used in DMOEA-εC:

• Gmax: The maximum allowable generations.
• DRAinterval: Generation interval of using the dynamic resource allocation scheme.
• INm: Generation interval of alternating the main objective function.
• |EP|max: Maximum size of the external archive set EP; | · | means the size of a set.
The algorithmic framework of DMOEA-εC is presented in Algorithm 1. The dynamic resource alloca-

tion (DRA) scheme is to assign different amounts of computational effort to different subproblems [20]. In
addition, the main objective is alternated periodically. The solution-to-subproblem matching procedure
is used to match the solutions with subproblems after the subproblems are initialized or altered. The
subproblem-to-solution matching procedure is to find a suitable subproblem for each newly generated so-
lution. For every two solutions to be compared, whether they satisfy the constraints of the corresponding
subproblem is considered. The following Deb’s feasibility rules [21] are adopted for comparing them:

(1) Any feasible solution is preferred to any infeasible solution;
(2) For two feasible solutions, the one with better objective function value is preferred;
(3) For two infeasible solutions, the one having smaller constraint violation is preferred.

3 The proposed iDMOEA-εC

In the proposed iDMOEA-εC, the DM is allowed to specify the overall number of interactions, de-
noted by H . Then, H interaction stages, denoted by h = 1, 2, . . . , H , are arranged at generations
Gh, h = 1, 2, . . . , H . At each interaction stage, iDMOEA-εC pauses for interaction and presents a small
representative sample of nondominated solutions to the DM. We set G1 = Gmax

3 as has been done in [16]
to make the population not too far away from the Pareto front before interaction. The other interaction
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Algorithm 1 Framework of DMOEA-εC

Input: The MOP to be solved and related parameters.

Output: An external archive population EP.

1: Initialize N evenly spread upper bound vectors and a random population {x1, . . . ,xN}; find all nondominated solutions to

form EP; calculate z
∗ and z

nad; set generation number gen = 0;

2: Use the solution-to-subproblem matching procedure to match solutions with subproblems;

3: while gen 6 Gmax do

4: if gen > 0 and mod(gen,DRAinterval) == 0 then

5: Use the dynamic resource allocation scheme to update the indices of the subproblems I which will be processed in next

generations;

6: end if

7: if gen > 0 and mod(gen, INm) == 0 then

8: Alternate the main objective and form new subproblems;

9: Rematch solutions with new subproblems by using the solution-to-subproblem matching procedure;

10: end if

11: for i ∈ I do

12: Generate a new solution y by using the reproduction operator;

13: Update the approximated ideal point z
∗;

14: Use the subproblem-to-solution matching procedure to find a subproblem j for y;

15: Compare y with the solutions of B(j) and update these solutions by using Deb’s feasibility rules;

16: Update EP; if |EP| > |EP|max, use the farthest-candidate approach to prune it;

17: Update the approximated nadir point z
nad;

18: end for

19: gen = gen + 1.

20: end while

Best candidate solution

Decision maker

Representative candidate solutions

iDMOEA-εC

Figure 2 (Color online) The interaction between the decision maker and iDMOEA-εC.

stages are set as Gh = Gmax

3 + 2Gmax·(h−1)
3(H−1) for h = {2, 3, . . . , H}. When gen < G1, iDMOEA-εC performs

as DMOEA-εC does. After then, the population evolves under the guidance of the DM’s preferences.

Similar to DMOEA-εC, iDMOEA-εC also uses an archive set EP to store elite nondominated solutions.
In each interaction, a representative set of solutions from EP is presented to the DM who is required to
select the solution that (s)he prefers most, denoted by zb,h. According to this solution, a preferable upper
bound vector whose components act as the upper bounds for the corresponding objectives is determined.
We use zp,h+1 to denote this vector and define the region upper bounded by it as the preferred region.
Solutions outside the preferred region are less preferred. Particularly, to obtain more and denser elite
nondominated solutions in the preferred region, EP only stores nondominated solutions in the identified
preferred region. The algorithmic framework of iDMOEA-εC is presented in Algorithm 2. Figure 2 shows
the interaction between the decision maker and iDMOEA-εC.

3.1 Two-stage selection procedure

In reality, it is usually hard for the DM to choose the best solution from a large amount of solutions
owing to the heavy burden. Thus, it is reasonable to present a representative sample of solutions to the
DM. However, using a small number of solutions to represent the search space is difficult, especially in a
high-dimensional space. The representative solutions can be very sparse, and it is hard for the algorithm
to capture the DM’s preferences accurately, which may cause the deviation from the real preferred region.

To handle this problem, a two-stage selection procedure is proposed in this paper. At each interaction
stage, it uses a coarse-grained selection to determine a rough location of the DM’s preferred solution and
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Algorithm 2 Framework of iDMOEA-εC

Input: The MOP to be solved and related parameters.

Output: The solution that DM prefers most in the final interaction.

1: Initialize N evenly spread upper bound vectors ε
1, ε2, . . . , εN and a random population {x1, . . . ,xN}; find all nondominated

solutions to form EP; calculate z
∗ and z

nad; set gen = 0, h = 0;

2: Use the solution-to-subproblem matching procedure to match solutions with subproblems;

3: while gen 6 Gmax do

4: if gen > 0 and mod(gen,DRAinterval) == 0 then

5: Use the DRA scheme to update the indices of the subproblems I to be processed in next generations;

6: end if

7: if gen == Gh, ∀h ∈ {1, 2, . . . , H} then

8: Let h = h+1; the algorithm presents multiple nondominated solutions to the DM from EP, and the DM selects the most

preferred one by using the two-stage selection procedure introduced in Subsection 3.1;

9: if h == H then

10: break;

11: end if

12: Update the preferable upper bound vector z
p,h+1 according to (3);

13: Update EP by deleting solutions which do not dominate z
p,h+1;

14: if h > 2 then

15: Update the initial upper bound vectors ε
1, ε2, . . . , εN by using (5);

16: end if

17: end if

18: if gen > 0 and mod(gen, INm) == 0 then

19: Alternate the main objective;

20: if h > 2 then

21: Update the initial upper bound vectors ε
1, ε2, . . . , εN by using (5);

22: end if

23: Rematch solutions with new subproblems by using the solution-to-subproblem matching procedure;

24: end if

25: for i ∈ I do

26: Generate a new decision vector y by using certain reproduction operator;

27: Update the approximated ideal point z
∗;

28: Using the subproblem-to-solution matching procedure to find a subproblem j for y;

29: Compare the solutions of B(j) with y and update them via the two-level feasibility rules1) (see Subsection 3.4);

30: Update EP; if |EP| > |EP|max, prune it by using the crowding distance [13];

31: if gen < G1 then

32: Update the approximated nadir point z
nad;

33: end if

34: end for

35: gen = gen + 1.

36: end while

f
2 f

2

f
1z

1
f
1la,h

z
2
la,h

za,h

za,h

Ω1

Ω2

Ω1

Ω2

(a) (b)

Figure 3 Examples to show how Ω2 can be obtained according to the location of z
a,h in Ω1. (a) Case 1: z

a,h is in the middle

of Ω1; (b) Case 2: z
a,h is at the boundary of Ω1.

then a fine-grained selection to fine-tune the location. Suppose P solutions are to be selected from EP
and given to the DM. At the first stage, a set of P/2 solutions, denoted by Ω1, are selected from EP by
clustering (e.g., k-means clustering [22]). The DM is expected to choose the best one, denoted by za,h,
from Ω1.

Let J = {i|za,hi = minz∈Ω1zi, i = 1, 2, . . . , k}. At the second stage, another set of P/2 solutions,
denoted by Ω2, is chosen from EP\Ω1 according to J . The details are as follows.

Case 1. J = ∅. This means that for each objective i, there is at least one objective value that is smaller
than za,hi in Ω1. Let zla,h = [zla,h1 , . . . , zla,hk ] where zla,hi = max{zi|z ∈ Ω1, zi < za,hi }. We identify the set
of all the solutions dominated by zla,h from EP\Ω1 and use Ω3 to denote it. If |Ω3| > P/2, P/2 solutions

1) When gen < G1, there is no preference to follow and Deb’s feasibility rules in DMOEA-εC are still used.
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Figure 4 The preferred region and evenly spread upper bounds.

will be selected from Ω3 by clustering. Otherwise, find the other P/2−|Ω3| solutions closest to za,h from
remaining solutions according to the Euclidean distance. Figure 3(a) displays possible locations of Ω2

(black circles) according to za,h and Ω1 (black points) in this case.

Case 2. J 6= ∅. This implies that za,h is at the boundary of Ω1 and the solutions outside the range
of Ω1 may also be promising. Hence, we divide EP\Ω1 into two sets Ω4 and Ω5 where Ω4 = {z|z ∈

EP\Ω1, zi > za,hi , ∀i ∈ J} and Ω5 = {z|z ∈ EP\Ω1, zi < za,hi , ∃i ∈ J}. According to this division, none
of the solutions in Ω5 are in Ω1. Considering that if za,h is taken as the origin of coordinates, in the
|J |-dimensional space determined by the objective functions associated with J , Ω4 only locates in the
first quadrant, we choose ⌊P

2 · 1
2|J| ⌋ (⌊·⌋ means rounding down to an integer) solutions closest to za,h in

the sense of the Euclidean distance from Ω4. Meanwhile, P
2 − ⌊P

2 · 1
2|J| ⌋ solutions are selected from Ω5

by clustering. Figure 3(b) shows how Ω2 is determined based on za,h in this case.

In both cases above, P/2 solutions are chosen from EP\Ω1 to form Ω2. They together with za,h are
sent to the DM who is asked to specify the current best solution zb,h.

3.2 Update of the preferable upper bound vector

Once the current best solution zb,h has been determined by the DM, iDMOEA-εC uses it and the
preferable upper bound vector zp,h to calculate zp,h+1. Specifically, for each objective, if zb,hi < zp,hi ,

then we reduce zp,hi . Owing to the limited preference information on solutions, the DM’s real MPS may
occasionally be out of the preferred region constrained by zp,h and there may be the case that zb,h reaches
zp,h on some objectives. In this case, in order not to miss possible promising solutions, the values of zp,h

on these objectives are not reduced, but conversely increased. To sum up, ∀i ∈ {1, 2, . . . , k}, zp,h+1
i is

determined by using the following formula:

zp,h+1
i =

{
αzp,hi + (1− α)zb,hi , zb,hi < zp,hi ,

zp,hi + α(zp,hi − z∗i ), zb,hi = zp,hi ,
(3)

where α ∈ {0, 1} is the compression rate. A smaller α implies a faster contraction speed. Although some
extension may be needed occasionally, in general, the preferred region is compressed gradually.

Note that zp,1 is set to znad. After the first interaction begins, zp,h+1 will replace znad for normalizing
solutions and znad is not needed anymore. Let z̃p,h+1 denote the normalized preferable upper bound
vector. Obviously, z̃p,h+1 = [1, 1, . . . , 1]1×k and every upper bound εij does not exceed z̃p,h+1

j . In this

way of normalization, the region dominating zp,h+1, i.e., the preferred region, is emphasized. Figure 4
displays the preferred region (marked in gray) and several evenly spread upper bounds.
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Figure 5 The adjustment of upper bound(s). (a) A single upper bound; (b) multiple upper bounds.

3.3 Adaptive adjustment of upper bound vectors

As the interaction goes on, the preferable upper bound vector zp,h is getting closer and closer to the
Pareto front. If evenly distributed upper bound vectors are still used, there will be a lot of subproblems
which do not have feasible solutions in the preferred region. For example, in Figure 4, subproblems
associated with ε1, ε2 and ε3 have no feasible solutions in the preferred region. This will not only cause
a waste of computational resources, but also lead to a sparse distribution of obtained solutions in the
preferred region. Hence, we propose an adaptive adjustment mechanism for the initial evenly spread
upper bound vectors. At the h-th (h > 2) interaction stage, the initial upper bound vectors are shifted
towards the current normalized best solution which is defined as

z̃b,h = [z̃b,h1 , z̃b,h2 , . . . , z̃b,hk ], z̃b,hj =
zb,hj − z∗j

znadj − z∗j
, ∀j ∈ {1, 2, . . . , k}, (4)

and therefore the denser upper bounds near z̃b,h are obtained.
Let C (|C| = k− 1) denote the set of constraints of subproblems. For constraint j (j ∈ C), each upper

bound εij which is smaller than z̃b,hj is shifted towards z̃b,hj to obtain a new upper bound ε̂ij by using the
following equation:

ε̂ij = z̃b,hj − z̃b,hj

(
z̃b,hj − εij

z̃b,hj

) 1
γ(h)

,

γ(h) =
H − h

H − 1
, h = 2, . . . , H − 1.

(5)

Let L = z̃b,hj , l = z̃b,hj − εij , and l′ = z̃b,hj − ε̂ij . Then, we have

l′

L
=

(
l

L

) 1
γ

, 0 < l 6 L, γ ∈ (0, 1). (6)

The geometric illustration of this equation is given in Figure 5(a).

Theorem 1. If l and l′ satisfy the relation in (6), then, for a fixed γ: (1) l′ 6 l and the equal sign holds
if and only if l = L; (2) l′ strictly increases and increases faster with the growth of l.

Proof. (1) From (6), we can obtain l′

l = ( l
L )

1
γ −1. Since 1

γ − 1 > 0 and 0 < l
L 6 1, l′

l strictly increases

with l and reaches the maximum value when l = L. Furthermore, l′

l < 1 when l < L and l′

l = 1 when
l = L. Thus, l′ 6 l and l′ = l holds only when l = L.

(2) Since dl′

dl = 1
γ (

l
L )

1
γ −1 > 0 and d2l′

dl2 = 1
γL(

1
γ −1)( l

L )
1
γ −2 > 0, l′ is strictly increasing and grows faster

with the increase of l.

The first conclusion in Theorem 1 implies that ε̂ij is closer to z̃b,hj than εij when εij > 0. When εij = 0,

ε̂ij = εij = 0, which is beneficial for the population to preserve the lower-boundary solutions of the
preferred region. The second conclusion guarantees that all shifted upper bounds in the same dimension
do not overlap and become denser near z̃b,h. Figure 5(b) shows the contrast between original upper
bounds and the shifted ones.

Now we analyze the influence of γ. For a fixed l with l < L, (l/L)1/γ increases with γ. That is
to say, the smaller γ is, the closer the shifted upper bound is to the corresponding component of z̃b,h.
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Table 2 Time complexity analysis of iDMOEA-εC

Procedure Time complexity

Two-stage selection O(P · N)

Adaptive adjustment of upper bound vectors O(k · N)

Search engine (DMOEA-εC) O(k · N2)

This indicates that more subproblems can have the chance of owning feasible solutions in the preferred
region with the decrease of γ. In (5), γ decreases gradually with the number of interactions h, which is
beneficial for maintaining a relatively large coverage of the search space in the early interaction stages
and obtaining more and more solutions in the preferred region in the later interaction stages.

3.4 Two-level feasibility rules

Once a new decision vector y is generated, it is matched with a suitable subproblem j (j ∈ {1, 2, . . . , N})
and compared with the neighboring solutions of this subproblem. In order to push the population towards
the preferred region, the two-level feasibility rules are proposed. In the higher level, the components of
the preferable upper bound vector zp,h+1 are regarded as the upper bounds of k implicit soft constraints
for all objectives. For any decision vector x, its violation to these constraints, termed as “preference
violation”, is defined as

PV(x) =

k∑

i=1

max{fi(x)− zp,h+1
i , 0}.

In the lower level, the violation to the considered subproblem’s constraints is taken into account. Let xi

(i = 1, 2, . . . , |B(j)|) denote the i-th neighboring solution of the subproblem j. Then, xi will be replaced
by y under the following cases:

(1) PV(y) < PV(xi);

(2) PV(y) = PV(xi), while y is preferred to xi according to Deb’s feasibility rules in Subsection 2.3.

3.5 Computational complexity analysis

The time complexity of the main procedures of iDMOEA-εC is presented in Table 2. At each interaction
stage, the time complexity of eliciting and utilizing the DM’s preferences mainly comes from the two-stage
selection procedure and the adaptive adjustment of upper bound vectors. In the process of searching for
solutions, iDMOEA-εC uses DMOEA-εC as the search engine. The time complexity of DMOEA-εC at
each generation is O(kN2) and is mainly introduced by updating EP [13]. In summary, iDMOEA-εC’s
time complexity is O(kN2Gmax).

4 Numerical experiments

In order to verify the effectiveness of iDMOEA-εC, in this section, iDMOEA-εC is compared with five
interactive MOEAs on a series of real-world problems and benchmark test problems.

4.1 Experimental settings

4.1.1 Test problems

We select 20 test problems of different types from the literature. Owing to space limitation, the formula-
tions of these problems are given in Appendix A. Related information on these problems is summarized
in Table 3. In this table, the serial number of each problem, the corresponding references, the number
of objectives, and the number of decision variables are listed in the first to the fourth columns, respec-
tively. Other columns will be introduced later. Among the 20 test problems, P1 is a simplified water
resources planning problem [23–25]. P2 and P3 describe two water quality management problems [26,27].
A location problem is formulated in P4 [25, 28]. The other problems are common benchmark test prob-
lems [29–33].
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Table 3 Information on test problems

Problem Reference k n N NFE Weights Real MPS

P1 [23–25] 3 2 55 11000 [1, 1, 1] [44.1, 24.1749,−48.1301]

P2 [26] 4 2 55 10000 [1, 10, 1, 1] [−5.7049,−2.984,−6.9672, 0.6647]

P3 [27] 5 2 50 10000 [1, 5, 1, 1, 1] [−5.6894,−2.9447,−6.9881, 0.4082, 0.0634]

P4 [25, 28] 5 2 50 10000 [1, 1, 1, 1, 1] [−0.0797,−7.4879,−3.364,−0.0131,−6.4414]

P5 [29] 2 30 100 20000 [1, 1] [0.3478, 0.4102]

P6 [30] 2 2 50 10000 [1, 1] [0.35,0.2906]

P7 [30] 5 2 50 10000 [1, 2, 1, 2, 1] [3.0147, 5.5702, 34.6287,−1.2038, 8.3255]

P8 [30] 7 2 112 22000 [1, 1, 1, 1, 1, 1, 1] [2.9390, 1.1611, 2.5191, 5.1745, 34.9714,−1.2132, 9.9984]

P9 [31] 3 7 210 60000 [1.2, 1.1, 1] [0.1519,0.1657,0.1823]

P10 [31] 4 8 204 60000 [1, 1.2, 1.2, 1] [0.1364, 0.1136, 0.1136, 0.1364]

P11 [31] 3 12 210 60000 [1, 1, 1] [0.5, 0.6, 0.6245]

P12 [31] 4 13 204 60000 [1, 1, 1, 1] [0.4, 0.4, 0.5, 0.6557]

P13 [32] 2 30 200 100000 [1, 1] [0.3478, 0.4102]

P14 [32] 2 30 200 100000 [1, 1] [0.5, 0.5]

P15 [33] 2 11 100 20000 [1, 1] [0.382, 2.4]

P16 [33] 2 11 100 20000 [1, 1] [1.2, 1.6]

P17 [33] 2 11 100 20000 [1, 1] [1.5612, 2.5]

P18 [33] 3 12 210 60000 [1, 1, 1] [0.206, 0.5584, 2.4]

P19 [33] 3 12 210 60000 [1, 1, 1] [0.65, 1.3, 2.1]

P20 [33] 3 12 210 60000 [1, 1, 1] [0.8375, 2.223, 4.309]

4.1.2 Interactive MOEAs for comparison

Considering that iDMOEA-εC requires the DM to select the best solution from a sample set of solutions,
four interactive MOEAs that also ask for such kind of preferences from the DM are chosen for comparison.
They are iTDEA [16], PI-NSGA-II-PC [17], iMOEA/D [12], and ICB-MOEA/D [34]. In addition, another
interactive MOEA, named I-SIBEA [35], which allows the DM to classify a sample set of solutions into
preferred ones and non-preferred ones is also used for comparison. However, it is restricted to only ask
for a preferred solution from the DM. Since I-SIBEA needs to calculate hypervolumes very frequently, it
is very time-consuming. On MOPs with more than three objectives, its runtime can be hundreds of times
more than that of the other algorithms. Thus, we only compare with it on two- and three-objective test
problems.

4.1.3 Utility function

The following quadratic utility function which is to be minimized is used to simulate the real DM’s
preferences for evaluating solutions:

U(f1, f2, . . . , fk) =
k∑

i=1

wi(fi − z̄i)
2, (7)

where w = (w1, . . . , wk) is the weight vector whose values are given in Table 3. For P1–P10, the vector
z̄ = (z̄1, . . . , z̄k) is set to the ideal point z∗ which is computed beforehand. For P11–P20, z̄ is a point on
the Pareto front. The optimal solution of U in the feasible region is taken as the real MPS of U , denoted
by zMPS. The real MPS on each problem is displayed in Table 3. In each interaction, the current best
solution of the DM is the one with the minimum utility value.

4.1.4 Performance indicators

Let zfinal denote the solution most preferred by the DM at the final interaction. The normalized Euclidean
distance between zfinal and zMPS is used as a performance indicator to measure the closeness of zfinal to
zMPS:

d(zfinal, zMPS) =

√√√√
k∑

i=1

(
zfinali − zMPS

i

znadi − z∗i

)2

. (8)
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Table 4 Statistical results (Mean(Std.)) of the six algorithms over 30 independent runs in terms of distance

Problem iDMOEA-εC iTDEA PI-NSGA-II-PC iMOEA/D I-SIBEA ICB-MOEA/D

P1 6.418E−3(1.313E−2) 5.400E−2(3.398E−2)+ 5.809E−2(3.711E−2)+ 3.224E−3(2.216E−3)− 2.874E−2(4.201E−2)+ 1.257E−2(1.904E−2)+

P2 6.237E−3(1.280E−2) 3.186E−2(1.357E−2)+ 1.685E−1(7.640E−2)+ 3.977E−2(4.028E−2)+ – 8.030E−3(1.105E−2)+

P3 3.856E− 3(3.632E−3) 4.092E−2(2.101E−2)+ 2.376E−1(1.097E−1)+ 1.524E−2(1.578E−2)+ – 8.548E−3(2.979E−3)+

P4 2.533E−3(3.042E−3) 8.821E−2(5.946E−2)+ 1.335E−1(7.273E−2)+ 3.695E−2(4.871E−2)+ – 6.799E−3(1.996E−3)+

P5 8.385E−3(6.856E−3) 2.035E−2(1.387E−2)+ 1.473E−2(9.352E−3)+ 1.148E−2(1.120E−2)≈ 7.548E−2(6.863E−2)+ 9.427E−3(9.169E−3)≈

P6 1.901E−2(5.470E−2) 1.775E−1(1.408E−1)+ 4.302E−2(9.040E−2)+ 1.959E−1(2.510E−1)+ 1.123E−1(1.270E−1)+ 6.396E−2(1.191E−1)+

P7 6.252E−3(6.032E−3) 4.738E−2(3.106E−2)+ 4.367E−2(2.799E−2)+ 9.849E−3(1.051E−2)≈ – 1.113E−2(1.098E−2)+

P8 9.169E−3(3.256E− 2) 2.097E−1(1.491E−1)+ 2.548E−1(1.894E−1)+ 1.513E−2(1.769E−2)+ – 4.923E−3(1.382E−2)−

P9 2.359E−2(1.532E−2) 4.912E−2(2.219E−2)+ 4.824E−2(2.080E−2)+ 2.193E−2(8.582E−3)≈ 5.850E−2(1.740E−2)+ 2.530E−2(1.341E−2)≈

P10 4.803E−2(4.996E−2) 7.693E−2(3.127E−2)+ 1.191E−1(4.319E−2)+ 3.283E−2(1.706E−2)≈ – 6.574E−2(8.283E−2)+

P11 6.599E−3(8.388E−3) 8.988E−2(2.773E−2)+ 4.335E−2(1.807E−2)+ 1.964E−2(6.766E−3)+ 2.098E−1(3.938E−2)+ 2.164E−2(3.200E−2)+

P12 2.943E−2(2.285E−2) 1.342E−1(3.193E−2)+ 1.222E−1(4.028E−2)+ 3.652E−2(2.620E−2)≈ – 4.229E−2(3.971E−2)+

P13 8.091E−2(6.567E−2) 1.059E−1(7.447E−2)+ 1.255E−1(6.169E−2)+ 9.731E−2(7.343E−2)≈ 1.240E−1(8.919E−2)+ 9.308E− 2(6.873E−2)≈

P14 1.590E−1(1.861E−1) 2.535E−1(1.280E−1)+ 7.501E−2(4.086E−2)− 1.916E−1(2.337E−1)+ 2.180E−1(1.003E−1)+ 5.213E−2(1.407E−1)−

P15 3.252E−3(6.250E−4) 9.263E−3(2.875E−3)+ 5.493E−3(1.291E−3)+ 5.877E−3(1.747E−3)+ 1.404E−2(1.048E−2)+ 3.440E−3(1.111E−3)≈

P16 3.604E−3(6.781E−4) 1.849E−2(9.890E−3)+ 7.898E−3(3.340E−3)+ 9.620E−3(3.910E−3)+ 2.460E−2(3.540E−2)+ 7.219E−3(8.597E−4)+

P17 1.848E−2(3.171E−3) 1.815E−2(5.872E−3)≈ 1.067E−2(3.337E−3)− 2.386E−2(8.985E−3)+ 2.341E−2(1.974E−2)+ 2.107E−2(6.886E−3)+

P18 4.741E−3(1.578E−3) 1.048E−1(4.319E−2)+ 2.664E−2(1.086E−2)+ 3.975E−2(3.051E−2)+ 1.105E−1(5.659E−2)+ 6.986E−3(2.067E−3)+

P19 1.124E−2(5.157E−3) 9.221E−2(4.505E−2)+ 7.220E−2(2.059E−2)+ 2.922E−2(2.517E−2)+ 1.172E−1(6.550E−2)+ 1.000E−2(5.577E−3)≈

P20 4.923E−2(2.341E−2) 1.169E−1(3.752E−2)+ 7.337E−2(2.565E−2)+ 6.678E−2(2.002E−2)≈ 1.509E−1(7.038E−2)+ 4.995E−2(2.684E−2)≈

+/ ≈ /− – 19/1/0 18/0/2 12/7/1 13/0/0 12/6/2

For simplicity, we call this performance indicator “distance”. Define the maximum value of U on the
Pareto front and the minimum value of U as Umax and Umin, respectively. The following normalized
difference between Umin and U(zfinal) is also adopted as a performance indicator to measure the quality
of zfinal [16]:

difference =
U(zfinal)− Umin

Umax − Umin
. (9)

4.1.5 Parameter settings

Just like iDMOEA-εC, iTDEA, iMOEA/D, I-SIBEA, and ICB-MOEA/D all allow the DM to specify the
overall number of interactions and they terminate when the maximum allowable number of generations
is reached. Different from these algorithms, PI-NSGA-II-PC has its own stopping criterion, i.e., stopping
when no enough improvement of solutions can be achieved. Its total number of interactions H and overall
number of generations are not predefined. In order to test different algorithms under the same number of
interactions, here we modified PI-NSGA-II-PC to make it have the same interaction stages as the other
algorithms do. For all algorithms, H is set to 6 for two- and three-objective test problems and 8 for the
other test problems. The moments for interaction are the same as introduced in Section 3. Besides, in
each interaction, the number of nondominated solutions shown to the DM takes the value of P = 2(k+3).

A two-layer weight vector generation method [36] is used for iMOEA/D to generate weight vectors. The
population size N for each test problem is determined accordingly (see Table 3). The other algorithms
adopt the same population size except for I-SIBEA. As a small population size is recommended for I-
SIBEA [35], its population size is set to N/2. The two-stage upper bound vector generation procedure
proposed in [37] is used for iDMOEA-εC to generate initial upper bound vectors. For fair comparison, the
maximum number of function evaluations (NFE) is kept the same for all algorithms (see Table 3). The
|EP|max for iDMOEA-εC and PI-NSGA-II-PC is set to N . iTDEA also has an archive, but the size of
this archive is determined by a pair of parameters (τ0, τH). Based on some previous experiments on each
test problem, we have determined suitable parameter values for iTDEA on each problem to make the
mean size of its archive larger than N . These parameter values are (0.2, 0.02) for P1 and P12, (0.2, 0.05)
for P2–P4, (0.01, 0.0005) for P5 and P6, (0.1, 0.01) for P7 and P8, (0.1, 0.005) for P9 and P18, (0.1, 0.02)
for P10, P11, and P20, (0.0001, 0.000001) for P13 and P14, (0.01, 0.001) for P15, (0.01, 0.005) for P16
and P17, and (0.05, 0.01) for P19. For iDMOEA-εC, the compression rate α takes the value of 0.25 for
test problems with two and three objectives and 0.3 for the other problems.

4.2 Experimental results and analysis

Each of the six interactive MOEAs is run 30 times independently in MATLAB environment on a PC
with Intel(R) Core(TM) CPU i7-5557U 3.1 GHz, and 4 GB RAM. The means and standard deviations
of each algorithm in terms of the distance and the difference indicators are shown in Tables 4 and 5,
respectively. The numbers in parentheses represent the standard deviations. The value in bold means
that the corresponding algorithm has the smallest mean value as compared with the other algorithms.
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Table 5 Statistical results (Mean(Std.)) of the six algorithms over 30 independent runs in terms of difference

Problem iDMOEA-εC iTDEA PI-NSGA-II-PC iMOEA/D I-SIBEA ICB-MOEA/D

P1 1.510E−4(4.305E−4) 1.205E−2(9.582E−3)+ 6.850E−3(5.629E−3)+ 1.173E−5(1.113E−5)− 4.116E−3(3.670E−3)+ 3.960E−4(3.996E−4)+

P2 1.853E−5(7.408E−5) 1.367E−4(9.809E−5)+ 4.048E−3(2.885E− 3)+ 3.677E−4(8.880E−4)+ – 5.605E−5(5.275E−5)+

P3 3.005E−6(7.086E−6) 2.192E−4(2.002E−4)+ 4.897E−3(2.916E−3)+ 4.441E−5(7.385E−5)+ – 4.740E−5(2.604E−5)+

P4 2.340E−5(4.510E−5) 1.157E−2(1.156E−2)+ 2.786E−2(2.298E−2)+ 2.805E−3(5.069E−3)+ – 1.508E−4(2.804E−4)+

P5 6.596E−4(4.739E−4) 4.501E−3(1.274E−3)+ 5.551E−3(1.080E−3)+ 6.007E−3(2.440E−3)+ 1.995E−2(3.666E−2)+ 6.848E−4(6.796E−4)≈

P6 6.071E−3(1.985E−2) 1.057E−1(1.247E−1)+ 1.917E−2(6.106E−2)+ 1.965E−1(3.626E−1)+ 5.155E−2(1.055E−1)+ 2.940E−2(6.988E−2)+

P7 2.730E−5(3.547E−5) 2.167E−3(2.254E−3)+ 1.848E−3(1.794E−3)+ 1.105E−4(1.877E−4)≈ – 1.098E−4(2.042E−4)+

P8 7.530E−6(3.788E−5) 3.930E−4(3.594E−4)+ 7.504E−4(6.866E−4)+ 1.012E−5(1.876E−5)+ – 4.079E−6(4.483E−6)−

P9 2.377E−3(1.630E−3) 6.927E−3(2.725E−3)+ 9.619E−3(3.830E−3)+ 2.987E−3(8.235E−3)+ 6.888E−3(1.683E−3)+ 2.872E−3(1.921E−3)+

P10 9.700E−3(1.448E−2) 2.053E−2(1.339E−2)+ 3.446E−2(1.523E−2)+ 2.478E−3(1.843E−3)− – 1.340E−2(2.777E−2)≈

P11 1.139E−4(2.878E−4) 8.848E−3(4.852E−3)+ 2.206E−3(1.629E−3)+ 4.317E−4(2.776E−4)+ 4.557E−2(1.768E−2)+ 5.433E−4(1.639E−3)+

P12 1.157E−3(1.411E−3) 1.587E−2(7.089E−3)+ 1.379E−2(8.163E−3)+ 1.684E−3(2.557E−3)≈ – 2.253E−3(4.904E−3)+

P13 1.847E−2(2.576E−2) 3.093E−2(4.302E−2)+ 4.047E−2(2.737E−2)+ 2.869E−2(3.365E−2)+ 4.416E−2(7.291E−2)+ 2.327E−2(2.988E−2)+

P14 1.089E−1(1.738E−1) 1.751E−1(1.620E−1)+ 2.896E−2(1.671E−2)− 1.802E−1(2.752E−1)+ 1.371E−1(8.902E−2)+ 4.324E−2(1.483E−1)−

P15 2.519E−6(1.449E−6) 2.833E−5(7.542E−6)+ 2.174E−5(9.801E−6)+ 2.039E−5(2.444E−5)+ 5.276E−4(6.821E−4)+ 3.288E−6(2.311E−6)≈

P16 4.290E−6(2.735E−6) 1.167E−3(9.415E−4)+ 6.841E−5(5.304E−5)+ 4.654E−5(2.094E−5)+ 2.532E−3(8.529E−3)+ 4.085E−5(8.392E−5)≈

P17 3.241E−4(1.724E−4) 1.729E−3(8.189E−4)+ 1.022E−4(4.852E−5)− 2.952E−4(1.489E−4)≈ 1.581E−3(2.494E−3)+ 3.022E−4(3.163E−4)≈

P18 2.586E−6(1.520E−6) 3.661E−3(3.368E−3)+ 7.038E−4(7.227E−4)+ 1.225E− 3(1.591E−3)+ 9.800E−3(6.550E−3)+ 4.119E−6(6.708E−6)+

P19 1.934E−5(2.309E−5) 3.823E−3(2.930E−3)+ 2.061E−3(9.092E−4)+ 2.639E−4(3.122E−4)+ 3.401E−3(1.823E−3)+ 1.241E−5(1.695E−5)−

P20 6.048E−4(7.512E−4) 6.027E−3(3.618E−3)+ 1.869E−3(6.522E−4)+ 1.319E−3(1.190E−3)+ 2.054E−2(1.479E−2)+ 9.192E−4(1.307E−3)+

+/ ≈ /− – 20/0/0 18/0/2 15/3/2 13/0/0 12/5/3
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Figure 6 (Color online) The average runtime (s) of iDMOEA-εC, iTDEA, PI-NSGA-II-PC, iMOEA/D, and ICB-MOEA/D on

each test problem.

In order to compare the significance of the differences between iDMOEA-εC and each of the other
algorithms, the Wilcoxon rank sum test at a significance level of 0.05 is conducted. The three symbols,
+,≈, and −, represent that iDMOEA-εC performs statistically better than, similar to, or worse than its
competitors, respectively. The numbers of them are listed in the last rows of Tables 4 and 5.

From Tables 4 and 5, iDMOEA-εC can approximate the DM’s real MPS effectively. Compared with
the other five algorithms, iDMOEA-εC has the minimum mean values on 14 out of 20 instances in terms
of both the distance and the difference indicators, reflecting the superiority of iDMOEA-εC over its
competitors in approximating the MPS. According to the results of the Wilcoxon rank sum test, no
matter which indicator is used, iDMOEA-εC is significantly better than I-SIBEA on all test instances.
In addition, iDMOEA-εC outperforms iTDEA and PI-NSGA-II-PC on all test problems except for P14
and P17. Compared with iMOEA/D and ICB-MOEA/D, iDMOEA-εC has significantly better or similar
performance on most test problems. To sum up, iDMOEA-εC exhibits remarkable advantages over its
competitors in finding the DM’s MPS.

As the DM is involved in the solution process, the ability of assisting the DM to find the MPS quickly
is important for an interactive algorithm. Figure 6 displays the average runtime of iDMOEA-εC, iTDEA,
PI-NSGA-II-PC, iMOEA/D, and ICB-MOEA/D on each test problem2). It can be seen that the runtime
of the five algorithms has little difference on P1–P8 and P15–P17. On the other test problems, it is
obvious that iMOEA/D and ICB-MOEA/D have smaller runtime. This is mainly because iMOEA/D

2) The runtime of I-SIBEA is much longer than that of the other algorithms and is not considered here.
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and ICB-MOEA/D do not use EP to save elite solutions while the other three algorithms update EP at
each generation. The population size used on P9–P14 and P18–P20 is larger than that used on the other
test problems, and the differences between the runtime of different algorithms become evident. On all
test problems, iDMOEA-εC’s runtime is less than 3 min. This means that the waiting time of the DM
between two adjacent interactions is usually a few seconds, which is acceptable in practice.

5 Further discussion

This section is devoted to a further study of iDMOEA-εC’s behavior. Firstly, the influences of the overall
number of interactions H and the compression rate α are analyzed. Secondly, the effects of the two-stage
selection procedure and the adaptive adjustment mechanism of upper bound vectors are investigated.

5.1 Parameter sensitivity analysis on H and α

The total number of interactions H is closely related with the DM’s burden. The DM will feel tired if
too many interactions are carried out. For practical purposes, it is of great importance that iDMOEA-εC
can get good performance within a small number of interactions. The compression rate α is also an
important parameter which may affect the accuracy of the final solution. In this subsection, we study
how iDMOEA-εC is sensitive to H and α.

For each k (k = 2, 3, 4, 5, 7), we take at most two test problems as examples and conduct 20 groups
of tests on each selected problem by using iDMOEA-εC. The selected test problems are P1, P2, P4,
P5, P7, P8, P9 and P10. H takes values of 4, 6, 8, 10, and α varies among {0.15, 0.2, 0.25, 0.3, 0.35}.
Each group of tests corresponds to a pair of H and α and contains 30 independent runs. All the other
parameters are kept the same as Section 4. The mean distance and mean difference values for each test
group are calculated. For the convenience of observing and analyzing the results, the histograms of the
mean distance and mean difference values are displayed in Figures 7 and 8, respectively. Each figure has
eight subfigures corresponding to eight problems. The subtitle of each subfigure gives the name and the
number of objectives of the problem.

Firstly, we analyze the influence of H . For P7 and P10, there are no remarkable differences when
different values of H are used. On P5, iDMOEA-εC performs rather similar no matter which value of
H is taken according to the distance indicator, while its performance in terms of the difference indicator
has obvious difference between H = 4 and H > 4. As for P1, P2, P4, P8 and P9, iDMOEA-εC
performs obviously better when H > 4 than H = 4 in terms of both indicators. This means that for some
problems, the performance of iDMOEA-εC can be improved sufficiently when more than four interactions
are allowed. Meanwhile, on P1 and P2, iDMOEA-εC has better mean values when H > 6 than H = 6,
while H = 8 and H = 10 do not bring a significant difference. With regard to the other six problems,
iDMOEA-εC performs similarly under H = 6, 8, 10. This reveals that six or eight interactions are enough
for iDMOEA-εC, and more interactions may not bring significantly better results.

Next, the effects of α are discussed. From Figures 7 and 8, the influence of α varies with different
H and different problems. For example, for the same problem P1, α = 0.35 causes the largest mean
distance value when H = 8, while α = 0.15 leads to the the largest mean value when H = 4. While on
P7, α = 0.15 brings the smallest mean value when H = 4. Generally speaking, iDMOEA-εC is more
sensitive to the change of α when H = 4. For other values of H , the results of iDMOEA-εC usually do
not change a lot when using different α. Occasionally, some values of α lead to an obvious performance
degradation. Since the worst mean values are often caused by α = 0.15 or α = 0.35, it can be claimed
that iDMOEA-εC is more stable when α varies from 0.2 to 0.3.

5.2 Effects of the two-stage selection procedure and the adaptive adjustment of upper

bound vectors

For the purpose of verifying the effectiveness of the proposed two-stage selection procedure, we compare
iDMOEA-εC with its variant, named iDMOEA-εC-1Stage. This variant presents P solutions to the DM
all at once. In addition, to exhibit the necessity of adaptively adjusting the upper bound vectors, another
variant called iDMOEA-εC-NoAda is also formed. It uses the evenly spread upper bound vectors all the
time. P1–P12 are used as examples. Following the same parameter setting in Section 4, iDMOEA-εC
and its variants are run 30 times independently on each test problem. The experimental results in terms
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Figure 7 (Color online) Histograms of mean distance values for the 20 test groups on each problem.
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Figure 8 (Color online) Histograms of mean difference values for the 20 test groups on each problem.

of the mean distance values and the mean difference values are given in Tables 6 and 7, respectively. The
smallest mean value for each problem is in bold. The Wilcoxon rank sum test at a significance level of
0.05 is conducted to test the significance of the differences between iDMOEA-εC and each of its variants.

From Tables 6 and 7, iDMOEA-εC outperforms its variants on all the 12 test problems in terms of
the distance indicator and on 11 out of 12 instances in terms of the difference indicator. In addition,
according to the Wilcoxon rank sum test, iDMOEA-εC performs significantly better than or similar to its
variants on all test problems in terms of both indicators. This validates the effectiveness of the proposed
two-stage selection procedure and the adaptive adjustment mechanism for the upper bound vectors.

6 Conclusion

This paper presented an interactive MOEA involving a decomposition framework and progressive and
explicit compression of the DM’s preferred region. Both decomposition and compression act on the
objective space, which reflects the DM’s preferences more directly than other spaces such as the weight
space. The proposed algorithm employs a state-of-the-art MOEA to search for solutions. Furthermore, it
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Table 6 Statistical results (Mean(Std.)) of iDMOEA-εC and its two variants in terms of the distance indicator

Problem iDMOEA-εC iDMOEA-εC-1Stage iDMOEA-εC-NoAda

P1 6.418E−3(1.313E−2) 1.106E−2(1.741E−2)+ 1.633E−2(2.415E−2)+

P2 6.237E−3(1.280E−2) 1.165E−2(1.674E−2)+ 1.085E−2(1.483E−2)+

P3 3.856E−3(3.632E−3) 5.513E−3(4.088E−3)+ 4.353E−3(3.444E−3)≈

P4 2.533E−3(3.042E−3) 2.969E−3(1.863E−3)+ 3.427E−3(3.887E−3)+

P5 8.385E−3(6.856E−3) 1.452E−2(1.114E−2)+ 1.500E−2(9.872E−3)+

P6 1.901E−2(5.470E−2) 8.618E−2(2.550E−1)+ 4.381E−2(1.335E−1)+

P7 6.252E−3(6.032E−3) 2.943E−2(9.690E−2)+ 9.072E−3(8.030E−3)+

P8 9.169E−3(3.256E−2) 1.081E−2(3.333E−2)+ 1.964E−2(9.957E−2)≈

P9 2.359E−2(1.532E−2) 2.519E−2(1.621E−2)≈ 3.573E−2(1.999E−2)+

P10 4.803E−2(4.996E−2) 5.344E−2(7.157E−2)≈ 7.383E−2(8.257E−2)+

P11 6.599E−3(8.388E−3) 1.724E−2(2.063E−2)+ 1.411E−2(1.777E−2)≈

P12 2.943E−2(2.285E−2) 3.191E−2(3.615E−2)≈ 2.952E−2(2.842E−2)≈

Table 7 Statistical results (Mean(Std.)) of iDMOEA-εC and its two variants in terms of the difference indicator

Problem iDMOEA-εC iDMOEA-εC-1Stage iDMOEA-εC-NoAda

P1 1.510E−4(4.305E−4) 2.997E−4(5.602E−4)≈ 5.975E−4(1.236E−3)+

P2 1.853E−5(7.408E−5) 3.865E−5(1.279E−4)+ 3.025E−5(7.000E−5)+

P3 3.005E−6(7.086E−6) 4.866E−6(6.517E−6)+ 3.497E−6(4.645E−6)≈

P4 2.340E−5(4.510E−5) 5.107E−6(8.761E−6)≈ 3.876E−5(6.723E−5)≈

P5 6.596E−4(4.739E−4) 1.055E−3(9.467E−4)+ 5.192E−3(3.156E−3)+

P6 6.071E−3(1.985E−2) 1.323E−1(5.959E−1)+ 3.791E−2(1.490E−1)+

P7 2.730E−5(3.547E−5) 3.572E−3(1.869E−2)+ 8.063E−5(1.141E−4)+

P8 7.530E−6(3.788E−5) 1.090E−5(5.333E−5)+ 4.187E−5(2.252E−4)+

P9 2.377E−3(1.630E−3) 2.736E−3(1.848E−3)≈ 5.313E−3(5.422E−3)+

P10 9.700E−3(1.448E−2) 1.155E−2(2.355E−2)≈ 1.939E−2(2.836E−2)+

P11 1.139E−4(2.878E−4) 7.227E−4(1.494E−3)+ 5.149E−4(1.503E−3)+

P12 1.157E−3(1.411E−3) 1.938E−3(4.176E−3)+ 2.323E−3(2.219E−3)≈

+/ ≈ /− 8/4/0 9/3/0

includes an adaptive adjustment mechanism of subproblems and two-level feasibility rules to control the
spread of the population and guide the search process toward the preferred region. Finally, the proposed
algorithm employs a two-stage selection procedure to elicit the DM’s preferences on a small representative
set of solutions. The algorithm was compared to other interactive MOEAs in a set of experiments. The
experimental results demonstrated that the proposed algorithm can approximate the DM’s MPS better
than its competitors.

In the future, we intend to further improve the ways of eliciting the DM’s preferences and compressing
the objective space to capture the DM’s preferences more precisely.
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