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Appendix A The Algorithms

Appendix A.1 Algorithm A1

Algorithm A1 FISTA

Input: recovered data x, learned dictionary D, regularization parameters λ, α, Lipschitz constant L of ∇f (f(s) := λ
2
‖x−

Ds‖22 in our algorithm)

Output: s

1: initialize z1 = s0 = DTx, t1 = 1

2: for k = 1, 2, . . . do

3: sk = arg min
s

{
α‖s‖1 +

L

2

∥∥∥∥s− (zk −
1

L
∇f(zk))

∥∥∥∥2

2

}

4: tk+1 =
1 +

√
1 + 4(tk)2

2

5: zk+1 = sk +
tk − 1

tk+1

(
sk − sk−1

)
6: end for

Appendix A.2 Algorithm A2

Algorithm A2 S-BCS

Input: prior sparsity basis D0, observed measurements Y = (y1, . . . ,yn), measurement matrices Φi, i = 1, . . . , n, hyper-

parameter α, β, λ

Output: task-dependent dictionary DT , final recovery of the data XT

1: Initialize S0, t = 0

2: while not converged do

3: Learn the intermediate recovery Xt and the sparse representation St by solving optimization problem (5)

4: Learn the gradual transition ∆Dt using equation (8)

5: Update the dictionary Dt+1 using equation (9)

6: t = t+ 1

7: end while
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Appendix B Extension of the Proposed Method

In the previous section, we give our algorithm for adaptively transferring the prior sparsity basis to the task-dependent

one when all the compressive measurements have been acquired. Benefiting from the prior knowledge and the incremental

learning strategy, our method can be adapted to address online tasks with mini-batch such that the memory cost for large

scale problem can be further reduced. In this section, we extend our method to an one-pass online version to adaptively

learn a task-dependent dictionary for the above mentioned data types, termed as OS-BCS. Without loss of generality, we

formulate the online version with data coming one by one.

The optimization problems about the intermediate recovery Xt and the sparse representation St can be easily decoupled

for each data point. At the arrival of the t-th compressive measurements, let Dt = Dt−1 where Dt−1 denotes the learned

dictionary before the t-th sample arrival. The optimization problems of xt and st can be written as

{xt, st} = arg min
x,s

1

2
‖yt −Φtx‖22 +

λ

2
‖x−Dts‖22 + α‖s‖1 (B1)

The update of the next dictionary is different from that of xt and st. Specifically, after the arrival of the t-th compressive

measurements, we use the previously learned intermediate recovery {xi}ti=1 and the sparse representation {si}ti=1 to

establish a surrogate cost function and minimize it to obtain a gradual transition of the dictionary. The corresponding

optimization problem is as follows

∆Dt = arg min
∆D

1

t

t∑
i=1

‖xi −Dtsi −∆Dsi‖22 + β‖∆D‖2F (B2)

Then the next dictionary can be updated by using

Dt = Dt + ∆Dt (B3)

The whole process of the one-pass online version is summarized in Algorithm B1. Here, to improve the convergence, we

update ∆D with a warm restart using Algorithm B2 [1].

Algorithm B1 OS-BCS

Input: prior sparsity basis D0, a sequence of observed measurements Y = (y1, . . . ,yT ), measurement matrices Φi, i =

1, . . . , T , hyperparameter α, β, λ

Output: task-dependent dictionary DT , final recovery of the data XT

1: for t = 1 to T do

2: Initialize st, Dt = Dt−1

3: while not converged do

4: Learn the intermediate recovery xt and the sparse representation st by solving optimization problem (B1)

5: At ← t−1
t

At−1 + 1
t
stsTt , Bt ← t−1

t
Bt−1 + 1

t
xtsTt

6: Learn the gradual transition ∆Dt using Algorithm B2

7: Update the dictionary Dt using equation (B3)

8: end while

9: end for

Algorithm B2 The Basis Update

Input: D, ∆D = [∆d1, . . . ,∆dr] ∈ Rd×r,A = [a1, . . . ,ar] ∈ Rr×r,B = [b1, . . . ,br] ∈ Rd×r
Output: ∆D

1: Ã = A + βI, B̃ = B−DA

2: for j = 1 to r do

3: ∆dj ←
1

ãjj
(b̃j −∆Dãj) + ∆dj

4: end for

Appendix C Experiments

In this section, we conduct experiments on six real-world datasets, including two hyperspectral datasets, Cuprite and

Jasper [2], and four publicly available datasets, SensIT [3], USPS [4], madelon [5] and isolet [6], to demonstrate the

effectiveness of our proposed method. The description of the datasets used in our experiments are summarized in Table C1.

We compare our method with several conventional algorithms of CS and BCS, including FISTA [7], Laplace [8] and CBK-

SVD [9]. For the algorithms based on Bayesian framework, no parameter is tuned. For the rest algorithms, FISTA and

our method have parameters to control the sparse regularization, thus we tune them and present the results corresponding

to the optimal parameter. Concretely, the parameter α for FISTA and our method are both tuned from {10−3, 5 ×
10−3, 10−2, . . . , 102, 5 × 102, 103} via limited validation on a validation set. In our experiment, we fix the size of the

validation set as nval = 100 and vary the size of the testing set ntst according to different settings of the experiments. The
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Table C1 Details of the datasets.

Datasets # features # samples

Cuprite 224 10000

Jasper 224 10000

SensIT 100 1500

USPS 256 3300

madelon 500 2600

isolet 617 1560

validation samples are randomly chosen for each dataset and the testing samples are accordingly chosen randomly from the

rest of the dataset. To reduce the difference brought by different partitions of the validation and testing sets, we present

the averaged results over five different runs for each dataset. For avoiding the exhaustive search for the optimal parameters,

the additional regularization parameter λ in our method is empirically set as λ = 1, which implies a trade-off that the

two terms, i.e., the error term of the compressive measurements
∑n
i=1 ‖yi − Φixi‖22 and the penalty term of dictionary

representation ‖X−DS‖2F , are of the same importance for the recovery of X. Besides, we set β > 10−4 to prevent abrupt

change of ∆D. Besides, for CS and S-BCS algorithms, we consider the commonly used DCT as the prior sparsity basis if

not additionally mentioned. The measurement matrices involved are generated via the sparse Bernoulli distribution [10] for

storage saving. Normalized mean squared error (NMSE) is used to evaluate the reconstruction performance,

NMSE =
1

n

n∑
i=1

‖x̂i − xi‖22
‖xi‖22

(C1)

Appendix C.1 Hyperspectral Datasets

In this subsection, we compare the reconstruction performance of the algorithms on hyperspectral datasets. In the first

experiment, we evaluate the performance of S-BCS under various measurement ratios. We randomly choose nval = 100

and ntst = 2000 samples from each hyperspectral dataset as the validation and testing sets respectively. We repeat such

partition five times and Figure C1 shows the NMSEs averaged over five runs on these testing sets with measurement ratios

varying from 0.1 to 0.5. We can see that S-BCS always outperforms other algorithms with varying measurement ratios.

In particular, even with very small measurement ratio p/d = 0.1, S-BCS still obtains favorable performance while other

algorithms totally fail to recover the data. In fact, using as much information as possible is very important at very small

compression while our method can exactly borrow strength from both prior sparsity basis and data.
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Figure C1 Comparisions on hyperspectral datasets with different measurement ratios.

From the view point of BCS, the above experiment shows that using prior knowledge about the sparsity basis indeed

helps data recovery. However, whether the performance improvement of S-BCS relies heavily on the choice of prior sparsity

basis has not been discussed. In the next experiment, we evaluate the prior sensitivity of S-BCS with respect to four different

sparsity bases, including DCT, DWT using Haar basis and length-4 Daubechies basis, and random matrix generated from

Gaussian distribution. The validation and testing sets are still chosen as the above experiment. Figure C2 shows the averaged

NMSEs of S-BCS over five runs on different prior sparsity bases with varying measurement ratio. From Figure C2, we see

that S-BCS relies more on the prior sparsity basis at smaller measurement ratio while gains comparable performance on all
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four sparsity bases at larger measurement ratio. Such behavior can be explained by the fact that when the measurement

ratio is sufficiently large, the available information from the measurements is enough to learn an appropriate sparsity

basis whereas for smaller measurement ratio, the prior information plays a bigger role to compensate the lack of sufficient

measurements.
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Figure C2 Results on different prior sparsity bases with different measurement ratios.

In [11], it has been demonstrated that the success of compressive dictionary learning depends on sufficient samples

whereas the bound on n is less practical. Thus, we empirically examine the performance of S-BCS on different sample

sizes. Specifically, we randomly choose validation set with fixed size nval = 100 and testing set with varied size ntst =

{100, 200, 500, 1000, 2000, 5000}. The measurement ratio p/d is fixed as 0.3. Figure C3(a) and C3(b) show the averaged

NMSEs of the algorithms over five runs on each dataset respectively. Meanwhile, in order to intuitively compare the

computational complexity of these methods, we present the CPU time of these methods against the corresponding sample

sizes in Figure C3(c) and C3(d). It is obvious that the increasing number of data samples brings performance gain for the

BCS while no effect on CS. Besides, S-BCS can achieve smaller recovery error than CS by using much smaller number

of samples (e.g. n = 100) than CBK-SVD required (e.g. n > 1000). Such superiority makes it possible to adapt S-BCS

to online tasks with mini-batch. Moreover, our method achieves higher computational efficiency than BCS especially for

relatively larger sample sizes.

To evaluate the ability of the one-pass online version, OS-BCS, we compare its performance with S-BCS on different batch

sizes. The sample sizes of validation and testing are fixed as nval = 100 and ntst = 2000 respectively, the measurements

ratio p/d is fixed as 0.3. Figure C4 shows the averaged NMSEs of OS-BCS over five runs with the batch size varying from

{1, 5, 10, 50, 100}. We see from Figure C4 that with increasing number of visited samples, the NMSE of S-BCS smoothly

decreases on all batch sizes. This experimentally reflects the convergence of OS-BCS. Besides, with increasing batch size,

the NMSE of OS-BCS is comparable to that of S-BCS.

The above experiments verify the superiority of the semi-blind learning strategy combined with FISTA. To ensure a

convincing experimental verification on such superiority, we conduct the following experiments to show the recovery perfor-

mance of another five commonly-used CS algorithms, OMP [12], CoSaMP [13], L1LS [14], SpaRSA [15] and Homotopy [16],

with or without semi-blind learning. According to Figure C3(a) and Figure C3(b), sample size ntst = 1000 is enough to ensure

good performance of S-BCS while continuing to increase will not bring obvious improvement. Hence, in this experiment, we

fix nval = 100 and ntst = 1000 as the sample sizes of the validation and testing sets respectively. The measurement ratio

is fixed as p/d = 0.3. Figure C5 shows the averaged NMSEs of the algorithms over five runs on each dataset respectively.

From the results, we find that the semi-blind learning strategy enjoys the same superiority when combined with other CS

algorithms.

Appendix C.2 Other Public Datasets

In this subsection, we conduct experiments on the other four public datasets to examine the reconstruction performance of

S-BCS on different types of data. For each dataset, the number of dictionary atoms is chosen as around one fifth of the

data dimensionality. On one hand, such choice can reduce the computational complexity. On the other hand, it has been

demonstrated that the more atoms we choose, the more data samples required by BCS for successful recovery [11]. The

sample size of the validation set is fixed as nval = 100 and the testing set consists of the rest data samples. Figure C6 shows

the NMSEs of the algorithms averaged over five runs with various measurement ratios. Clearly, S-BCS still outperforms

the other algorithms on different data types used here.

To further evaluate our method, we visualize some of the recovery results of USPS dataset and the corresponding

dictionaries learned/used for the compared algorithms in figure C7 and figure C8 respectively. The measurement ratio is

fixed as p/d = 0.5. As can be seen from figure C7, both BCS algorithms yield better visual effect than CS algorithms while
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Figure C3 Comparisons on hyperspectral datasets with different sample sizes.
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Figure C4 Results of OS-BCS with different batch sizes.
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Figure C5 Comparisons on hyperspectral datasets with different sample sizes.
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Figure C6 Comparisions on four public datasets with different measurement ratios.
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our method produces visually clearer recovered images than CBK-SVD. By comparing subfigure C8(a) with subfigures C8(b)
and C8(c), we see that S-BCS has adaptively transferred some prior dictionary atoms to specific digit recovery task (as

indicated by the red box in subfigure C8(a)) while preserving the rest almost unchanged (as indicated by the green box

in C8(a)). In fact, such results also verify the sparsity of S since the zero/negligible-valued rows in S tend to make the

corresponding columns of ∆D zero, implying that these columns in D remain almost unchanged. Moreover, we gain an

insight that the dictionary transfer occurs much more on low frequency bases (as shown by the red box in subfigure C8(c))
than high frequency bases (as shown by the green box in subfigure C8(c)), which is basically consistent with a fact that the

high frequency components of most images under our consideration are indeed fewer than their low frequency counterparts.

It is such a mechanism that our algorithm can naturally adapt the low frequency bases to specific tasks, where such

adaptively transferred bases still comprise most information of the images.

Figure C7 Visual comparisons on USPS datasets. The first column is the ground-truth images of digits ’6’, ’8’ and ’9’,

the other columns are the recovered images corresponding to S-BCS, CBK-SVD, FISTA and Laplace, respectively.

For further supporting such an insight, we conduct an experiment on another visual dataset, Caltech-101, from which

we choose two classes of vehicles, i.e., motorbikes and airplanes, that totally contains 1598 images. Following, we resize

these images into 16× 32 pixels and refer to this subset as Caltech-2. Figure C9 shows the dictionary learned by S-BCS on

Caltech-2 and its prior dictionary. From figure C9, we can gain a similar insight to the previous experiment except that the

number of the transferred low frequency bases is also task-dependent. Specifically, since the individual differences between

images from Caltech-2 are smaller than those from USPS (e.g., the airplanes from Caltech-2 look more like each other than

the digits of ‘6’ from USPS), thus the images from Caltech-2 are expected to be represented via fewer dictionarie atoms

than those from USPS.

The above experiments verify our insight from the viewpoint of data itself, i.e., adopting the same prior sparsity basis

for different datasets. Next, we investigate from another viewpoint that adopts different prior sparsity bases for the

same dataset. Concretely, we perform experiments on another two prior sparsity bases, DWT using Haar and db4 bases

respectively. Figure C10 shows the dictionaries learned by S-BCS on USPS dataset. This result further supports our insight

that the low-frequency bases have been transferred to specific task while most high-frequency bases still remain nearly

unchanged.

The insights from the above three experiments show that S-BCS can adapt the prior sparsity basis to a task-dependent

one that comprises both the frequency characteristic of images and the task-dependent information for specific tasks. In

contrast, CS and BCS can not enjoy such a mechanism since the dictionary used/learned by them can only reflect the fre-

quency characteristic and task-dependent information respectively. In this sense, our model achieves greater interpretability.

Consequently, the dictionary learned by S-BCS indeed builds a bridge at middle of the ‘spectrum’, where the two ends of

the ‘spectrum’ are the dictionary used/learned by CS and BCS respectively.
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(a) Dictionary learned by S-BCS

(b) Dictionary learned by CBK-SVD

(c) DCT

Figure C8 Comparisons on the dictionaries learned/used for USPS dataset.
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(a) Dictionary learned by S-BCS

(b) DCT

Figure C9 Comparisons on the dictionaries learned/used for Caltech-2 dataset.

(a) Dictionary learned by S-BCS using Haar (b) Dictionary learned by S-BCS using db4

(c) DWT using Haar basis (d) DWT using db4 basis

Figure C10 Comparisons on the dictionaries learned/used for USPS dataset.
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