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Abstract This paper considers beamforming techniques for covert communication over multiple input sin-

gle output (MISO) channels with finite blocklength. We first show that the optimal input distribution for

covert communication over complex Gaussian channels is circular symmetric complex Gaussian. By review-

ing our previous results on the throughput of Gaussian random coding over additive white Gaussian noise

(AWGN) channels, the achievability and converse bounds on the attainable throughput over MISO channels

are analyzed. Then, the optimal beamforming strategies and their relationship with the transmitting power

are thoroughly investigated in a variety of situations in terms of several types of channel state information

available at both ends of the system. We reveal the fact that the maximal allowable transmit power is not

constrained by covertness requirement when there is full channel information of the adversary, while there

is an upper bound of the transmit power which is based on beamforming and an outage-based covertness

criterion if there is only partial channel information of the adversary. Finally, numerical results are pre-

sented to show that the throughput of covert communication can be increased notably by adopting a proper

beamforming strategy in MISO channels in comparison with the single antenna case.
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1 Introduction

1.1 Background and related work

As multi-antenna systems became more and more prevalent in the past decade, a lot of research has
been done on Gaussian multiple input multiple output (MIMO) wiretap channels, such as [1–5]. In
these results, the transmitters are all assumed to have full channel state information (CSI) about the
legitimate receiver and the eavesdropper. Through the feedback channel, the transmitter is assumed to
be able to track the channel variations. When the transmitter is assumed to have only partial CSI for the
legitimate receiver or the eavesdropper, the results can be found in [6–8]. Although beamforming is widely
discussed in various wiretap channel models, their application in covert communication has not received
much attention. In this paper, we are interested in the application of beamforming techniques in covert
communication, in which the adversary cannot effectively detect the transmission between the sender
and the legitimate receiver. The theoretical limit of covert communication was first investigated in [9]
over additive white Gaussian noise (AWGN) channels and in [10, 11] over discrete memoryless channels
(DMCs), and later in [12] over MIMO channels. It has been shown that covert communication has square
root law (SRL): the transmitter is allowed to send O(

√
n) information bits with n channel uses when a

lower bound of the noise level of the adversary is known, and the quantity decreases to o(
√
n) when the

lower bound is unknown. That is, the channel coding rate is asymptotically zero. Other discussions on
covert communication systems can be found in [13, 14]. As the conclusion of SRL is pessimistic, a lot of
proposals have been put forward to improve the transmission efficiency and even a positive rate can be
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obtained in some scenarios. For example, in [15,16], the covert communication was discussed in a scenario
where the adversary has uncertainty about his noise variance over AWGN and MIMO channels, and it is
possible to achieve O(n) bits with n channel uses. In [17,18], the transmitter’s uncertainty about the noise
level and the channel of the adversary were investigated. The authors in [19] investigated jammer-aid
covert communication and also proved that a positive rate is achievable. In [20], the transmitter has an
alliance that produces artificial noise to aid covert communication when there are a group of uniformly
distributed adversaries. Under a random network situation, a comprehensive analysis and optimization
framework for the covert throughput of the system from the stochastic geometry theory is provided in [21]
by considering both centralized and distributed antenna systems.

The first and second order asymptotics of covert communication is firstly characterized in [22,23] over
a discrete memoryless channel. In [24], the throughput and maximal allowable power are investigated
over a slow fading channel. The upper bound of the transmit power of each symbol as a linear function of
1√
n
and the channel throughput have been determined, both of which incorporate the channel coefficient

and follow SRL. The achievability and converse bounds on the throughput of covert communication over
AWGN channels are investigated by us in [25, 26] by revisiting the techniques in [27]. Based on these
results, we go a step further to consider the achievability and converse bounds of covert communication
over multiple input single output (MISO) channels in this work by considering beamforming technologies,
which will decrease or even remove the effect of SRL depending on the quality of channel state information
(of the adversary) available at the transmitter.

1.2 Main contributions

The main contributions of our work are listed as follows.
• To maximize the mutual information of the legitimate channel under a covert constraint, which

is imposed in terms of K-L divergence between distributions perceived at the adversary depending on
transmitter’s states, we prove that the optimal signaling for covert communication over complex Gaussian
channel is circular symmetric complex Gaussian.

• The application of our previous results over AWGN channels on the bounds of the throughput
of covert communication over MISO channels is briefly introduced, which is important for numerical
testification.

• When the transmitter has full CSI for both the legitimate receiver and the adversary, an optimal
beamforming strategy is proposed to maximize the transmission efficiency in terms of the throughput
with finite blocklength at the expense of some amount of covertness in order to attain better transmission
efficiency than that of the zero-forcing strategy. The throughput is surprisingly not constrained by SRL.

• When the transmitter has partial CSI of the adversary but full CSI of the legitimate receiver, a
sharp upper bound on the transmit power per channel use is determined with an outage-based covertness
criterion. Under this bound, the optimal beamforming strategy is further investigated for maximizing the
transmission efficiency with the corresponding covertness criterion. As a special case, when there is only
statistical information of the adversary’s channel state, it is shown that the unique choice of beamforming
strategy is maximal ratio transmission.

• Numerical results are presented to testify the superiority of the optimal beamforming over the zero-
forcing beamforming and the single antenna scenario in terms of achievability and converse bounds of the
throughput. In addition, when there is only partial information of the adversary’s channel, the available
regions for beamforming with varying parameters are also illustrated.

1.3 Notations

Throughout the paper, the following notations are utilized if not stated otherwise. X,Y, Z are generic
random variables of Xn, Y n, Zn, and x, y, z are the sample values of X,Y, Z, respectively. We use bold
lower and upper letters to denote vectors and matrices. Vectors are always column vectors. R and C

represent the field of real numbers and the field of complex numbers. We denote AH and AT as Hermitian
transpose and the transpose of a matrix A, respectively. | · | and ‖ ·‖ denote the absolute value of a scalar
and the L2-norm of a vector, respectively. I stands for the identity matrix. Π⊥

A is the orthogonal projector
onto the orthogonal complement of the column space of A, i.e., Π⊥

A = I−ΠA with ΠA = A(AHA)−1AH.
We denote E as the expectation of random variables. H(·) describes the entropy function. The relative
entropy or K-L divergence between two distributions P0 and P1 (or between P1 and P0) is denoted by
D(P0||P1) (or D(P1||P0)). The log function in this paper is of base 2.
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Figure 1 MISO channel model of covert communication in Subsection 2.1.

2 Channel model and the adversary’s hypothesis testing

2.1 Channel model

In this subsection, we present the channel model of covert communication over MISO channels as shown in
Figure 1. The transmitter is communicating to a legitimate receiver Bob in the presence of an adversary
Willie. The adversary is assumed to be passive, which means that it only receives signals but does not
transmit. An (n, 2nR) code for covert communication systems consists of a message set W = {1, . . . , 2nR},
an encoder at the transmitter Alice, a decoder at the legitimate user Bob and a detector is at the adversary
Willie. The encoder is defined as fn : W → Cm×n, w 7→ wxT, where w is a beamforming vector:

w ∈ C
m, ‖w‖ = 1, (1)

and x is a column vector which represents a codeword [x1, x2, . . . , xn]
T. The decoder is defined as

gn : Cn → W , yn → ŵ. The detector is defined as hn : Cn → {0, 1}, zn → 0/1. Bob wants to
decode the message ŵ with a small error probability Pn

e and Willie wants to determine whether Alice
is communicating (hn = 1) or not (hn = 0) by statistical hypothesis test. Note that the adversary in
covert communication is different from that of secret communication scenarios. In the latter case, the
adversary always wants to decode the message transmitted by Alice, but here the adversary Willie’s aim
is to detect Alice’s communication. Alice is equipped with m antennas while both Bob and Willie are
equipped with a single antenna. The channel gain vector between Alice and Bob is h, while the channel
vector between Alice and Willie is g. Both of them are complex vectors with length m. When the effect
of path-loss is omitted, the channel model is formulated by

yj =
√
PhHwxj + ξj , j = 1, . . . n, (2)

zj =
√
PgHwxj + νj , j = 1, . . . n. (3)

In the above equations, P denotes the power of the transmitting signal, xj ∈ X is the complex-valued
input signal with unit power. yj and zj are the complex channel outputs at Bob and Willie. The scalars ξj
and νj are the white Gaussian noises at Bob and Willie, which are independent and identically circularly
symmetric distributed with zero mean and variances δ2b and δ2w, respectively. In the following analysis,
we denote ρb =

P
δ2
b

and ρw = P
δ2w

.

2.2 Assumptions and Willie’s hypothesis testing

Firstly, it is assumed that the channels considered here are under quasi-static block flat fading, so the
same channel realization and beamforming vector w appear in the same codeword. Thus, information-
theoretic analysis can be deployed within each block. The second assumption is that the adversary node
runs an optimal binary hypothesis test to minimize its detection error probability about the presence or
absence of legitimate transmission. It is also assumed that the transmitter has full knowledge of the limit
of the adversary’s ability, and is active about her choice of transmitting strategy. Finally, the adversary
is known about the coding scheme being Gaussian random coding [26], but she does not have the specific
codebook. In addition, we assume that the vector h has different values in different blocks, which are
independent of each other. The same assumption is applicable for g. Each of these two receivers, Bob
and Willie, has full knowledge of his own channel realizations, i.e.,h and g. The transmitter has full
knowledge of h, while the knowledge of g depends on different situations. The details will be illustrated
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later. The aim of Alice is to optimize the transmission of the main channel and at the same time to
confuse Willie successfully.

For computational convenience, the relative entropy (K-L divergence)D(P1‖P0) is employed as a covert
metric in this paper as in the literature. Alice is certain that once she obtains the covertness criterion
D(P1‖P0) 6 δ, it is impossible for Willie to distinguish between the two states of her.

3 The optimal signaling and problem formulation

3.1 The optimal signaling

In this subsection, we concern a basic problem — the optimal signaling for covert communication over
MISO channels. After the introduction of these preliminaries, the major concerns of this paper on beam-
forming strategy and power selection will be presented in Section 4. The optimal signaling for covert
communication has been investigated in [10,28] over AWGN channels and has been shown to be Gaussian.
This problem was also discussed in [12] over MIMO channels where circular symmetric Gaussian distri-
bution was proved to minimize the K-L divergence at the adversary. Here, for covert communication over
MISO channels, we provide a detailed proof about the optimality of circular symmetric complex Gaussian
signaling in the maximization of the mutual information over the MISO channel under the constraint
D(P1||P0) 6 δ.

As the channels are under quasi-static block flat fading, the assumption of memoryless channel is
applicable. In fact, the study of blocklength n can be reduced to the study of each component. The
channel model is represented by

y =
√
PhHwx+ ξ, (4)

z =
√
PgHwx + ν. (5)

Therefore, the channels defined above can be reduced to complex Gaussian channels, and we seek
for a distribution of x which both maximizes the mutual information between x and y, and meanwhile
minimizes K-L divergence between x and z. For the first maximization problem, we have the following
fact.

Fact 1. Givenw, g and P , circularly symmetric complex Gaussian input distributions maximize I(X ;Y )
over complex Gaussian channels.

The proof of the above fact can be found in [29] and is not included here. For the second minimization
problem, we have the following lemma.

Lemma 1. Fix w, g and P . Let the second moment of X be 1. X ∼ CN (0, 1) minimizes D(f1||f0),
where f1 is the pdf of Z and f0 is the pdf of ν.
Proof. From (4), we have f0 ∼ CN (0, δ2w). Since the signal x and the noise ν are independent, and the

second moment of X is 1, we have E(|Z|2) = δ2w+P |gHw|2. The K-L divergence is formulated as follows:

D(f1||f0) = Ef1

[

log
f1
f0

]

= −H(Z) + EZ

(

logπδ2we
|Z|2

δ2w

)

= −H(Z) + EZ(logπδ
2
w) + EZ

( |Z|2
δ2w

log e

)

= −H(Z) + logπδ2w +
P |gHw|2 + δ2w

δ2w
log e

> − log
(

πe
(

P
∣

∣gHw
∣

∣

2
+ δ2w

))

+ logπδ2w +
P |gHw|2 + δ2w

δ2w
log e

= ρw
∣

∣gHw
∣

∣

2
log e− log

(

ρw
∣

∣gHw
∣

∣

2
+ 1

)

, (6)

where e is the Euler number. Note that the third equality holds because the noise and the signal are
independent and both of them follow zero mean circular complex Gaussian distribution. The inequality
follows from the fact that the circularly symmetric complex Gaussian distribution maximizes differential
entropy among distributions of the same covariance matrix [29].
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3.2 The bounds on the throughput over MISO channels

In this subsection, we review some thorough analysis over AWGN channels carried out by us in [25,26]1)

on the coding scheme with maximal power constraint where we have obtained both achievability and
converse bounds on the throughput when Gaussian codewords are adopted. With given transmitting
power and beamforming strategy, these results are further applied in MISO channels. In this way, the
throughput of MISO systems can be sufficiently estimated once the power and beamforming vector are
determined. Since the throughput is discussed in the finite blocklength regime (the asymptotic capacity
is zero), the testification of the optimality of these beamforming strategies in numerical results depends
heavily on the results in this part.

3.2.1 Codebook generation and bounds over AWGN channels

The generation of our codebook is described as follows. Firstly, a set of candidates are generated. Each
coordinate of these candidates is drawn from i.i.d normal distribution of variance µP (n). Secondly, each
codeword is randomly chosen from a subset of these candidates: µ2nP (n) 6 ‖x‖2 6 nP (n). It is obvious
that each element of the subset satisfies the maximal power constraint P (n). The resulting codebook
can be regarded as Gaussian generated if µ is properly chosen with moderate blocklength. Especially, we
have the following achievability and converse bounds for the attainable throughput.

• When n is sufficiently large,

logM∗
m(n, ǫ, P (n)) > nCµ(n)−

√

nVµ(n)Q
−1(ǫ) +

1

2
logn+O(1) (7)

with Cµ(n) =
1
2 log(1 + µP (n)), Vµ(n) = V (n) · (2µP+P 2

2P+P 2 ) where V (n) = ( P (n) log e

2(1+P (n)) )
2( 4

P (n) + 2) denotes

channel dispersion with power P (n).
•

logM∗
m(n, ǫ, P (n)) 6 nC(n)−

√

nV (n)Q−1(ǫ) +
1

2
logn+O(1). (8)

The power P (n) can be selected under the covert constraint.

3.2.2 Random Gaussian coding over MISO channels and bounds on throughput

From previous analysis, the covertness constraint can be quantized as nD(f1‖f0) 6 δ with finite block-
length n over MISO systems. Under MISO channels, the above inequalities (7) and (8) can be applicable
to bound the maximal throughput by n channel uses under covert constraints D(f1||f0) 6 δ with finite
blocklength n and decoding error probability ǫ. We shall explain it as follows. First, as we have proved,
circular symmetric complex Gaussian signaling is optimal for covert communication over MISO systems.
Second, since a circular symmetric Gaussian random variable has i.i.d zero-mean real and imaginary
components (Appendix 1.3 in [31]), the real and imaginary parts of both the signal and the noise can
be regarded independently and the complex channel is divided into two AWGN channels with the same
signal-to-noise ratio (SNR). Therefore, our above random Gaussian coding scheme is applicable for both

the real and imaginary parts of the complex signals. In this way, the only concern is SNR at Willie P |gHw|2
δ2w

or the power of the received signal. If we denote PR(n, δ) = P |gHw|2
δ2w

, we just need to maximize PR(n, δ)

under the covert constraint nD(f1‖f0) 6 δ to maximize the throughput. In the follow-on analysis, we
shall investigate the optimal transmission strategy of beamforming that maximizes PR(n, δ) = ρb|hHw|2
with given n and δ.

3.3 Transmission optimization

Under the assumption that each component of the signal adopts Gaussian random coding, what Alice can
do is to choose an optimal transmission strategy under which the SNR of the main channel is maximal
and the K-L divergence at the adversary is under a given threshold at the same time. From the analysis
of Subsection 3.2, the optimization problem is as follows:

max
w∈Cm,‖w‖=1

ρb|hHw|2 s.t. n ·D(f1||f0) 6 δ, (9)

1) The interested reader can refer to [30] as a full version including these two studies.
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where ρb = P
δ2
b

is the ratio of the power of the sending signal and the noise at the legitimate receiver.

Note that there are n channel uses in the constraint inequality because a quantitative covertness criterion
should be defined with finite blocklength. In practice, the transmitter has her choice to determine the
vector w and P to decrease the quantity D(f1||f0). However, it will also affect the throughput for the
legitimate receiver at the same time. Thus, the power P and the direction of w should be considered
together in the transmission strategy.

4 Optimal transmission for MISO channels

In this section, an optimal transmission including several beamforming & power selection strategies for
covert communication over MISO channels is characterized. With respect to different channel feedback
models including full CSI model and partial CSI model, different covert metrics are adopted. As we shall
see, the covert metrics in different channel state models put forward different power requirements and
corresponding beamforming strategies. When there is full channel information for both the legitimate
receiver and the adversary, the beamforming is characterized in Theorem 1. When there is only partial
information of the adversary, the main conclusion can be found in Theorems 2 and 3.

4.1 Full CSI for Bob and Willie

The assumption that the full CSI of both Bob and Willie is available at the transmitter is widely used for
the calculation of secrecy capacity over wiretap channels. In the scenario of covert communication, it is
also assumed that the channel states between the transmitter and the two receivers are perfectly attainable
for the former, which is reasonable in the situation where the adversary is part of the communication
system.

As mentioned before, the major difference between the MISO channel and single input single output
(SISO) channel is the impact of beamforming. Consequently, the transmitter has an alternative choice
other than reducing the transmit power directly to decrease the signal power at the adversary. This will
decrease or even remove the effect of SRL according to the channel information of the adversary at the
transmitter. As a result, a positive rate can be obtained by zero-forcing beamforming. Furthermore, if
some allowable covert leakage is sacrificed, an even larger rate is achievable by optimal beamforming.

We first define three beamforming vectors as follows:

wMRT =
h

‖h‖ , wZF =
Π⊥

g h

‖Π⊥
g h‖

, w⊥
ZF =

Πgh

‖Πgh‖
. (10)

The first vector is the maximal ratio transmission (MRT) beamforming vector. The second vector is
the zero-forcing (ZF) beamforming vector. The third one lies in the same two-dimensional subspace of
wMRT and wZF, but it is orthogonal to wZF. As any vector w that satisfies w ⊥ g will null out the
signal at the adversary, the transmission power per channel use can be arbitrarily large. In the following
analysis, we assume that the average transmitting power is a constant P and the attention is on the
beamforming. With the above assumptions, the problem is formulated in (9). Note that from (6), the
covertness constraint inequality could be formulated as

ρw
∣

∣gHw
∣

∣

2
log e− log

(

ρw
∣

∣gHw
∣

∣

2
+ 1

)

6 δ/n. (11)

Optimal beamforming. Letting x denote ρw|gHw|2, the above inequality is reformulated as

x− ln(1 + x) 6 δ ln 2/n. (12)

The derivative of the left part is 1 − 1
1+x

, which means the function x − ln(1 + x) is monotonically
increasing when x > 0. Hence Eq. (12) has solution x 6 x̃(δ) with x̃(δ) > 0 being the solution of
the above inequality with equality x − ln(1 + x) = δ ln 2/n. Therefore, the covert constraint can be
rewritten as

∣

∣gHw
∣

∣ 6

√

x̃(δ)

ρw
. (13)

The following theorem characterizes the optimal beamforming vector.
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Theorem 1. The optimal solution w for the problem (9) is given by

w(γ) =
√

1− γwZF +
√
γw⊥

ZF (14)

with some γ ∈ (0, 1).

Proof. Expand the vectors wZF and w⊥
ZF in their orthogonal complement space to get an orthonormal

basis wZF,w
⊥
ZF,w3, . . . ,wm for Cm. A beamforming vector v is expressed as

v = γ1wZF + γ2w
⊥
ZF +

m
∑

i=3

γiwi (15)

with
∑m

i=1 |γi|2 = 1, γi ∈ C. The power allocated to the directions other than wZF and w⊥
ZF has

no impact on the quantities |hHv|2 and |gHv|2 because they are orthogonal to the subspace spanned
by h and g, so γi = 0 for i = 3, . . . ,m. From

∑m
i=1 |γi|2 = 1, the vector w is expressed as w =√

1− γeiφ1wZF +
√
γeiφ2w⊥

ZF with γ ∈ (0, 1) and φ1, φ2 ∈ [0, 2π]. The values of φ1, φ2 need to be solved.
Since these vectors are in a complex vector space, the values of φ1, φ2 have no impact on the value of
|hHw| and |gHw|. Consequently, φ1 = 0, φ2 = 0 are assigned and the conclusion is obtained.

From the above conclusion, the optimal beamforming vector lies in the same two-dimension subspace
of h and g, and could be expressed as a linear combination of any two of the three beamforming vectors.
Now consider the formula for the beamforming vector w. There are two cases, based on the relationship
between the vectors h and g. Denote |hHg| = ‖h‖‖g‖ cos θ, 0 6 θ 6 π/2.

(1) When θ = π/2, the optimal beamforming vector should be w = h
|h| . That is, MRT beamforming is

adopted. Meanwhile, we have gHw = 0 and wMRT = wZF. The K-L divergence requirement is naturally
satisfied.

(2) When θ 6= π/2, from (13) and (14),

|gHw(γ)| = √
γ · gHw⊥

ZF 6

√

x̃(δ)

ρw

(a)⇐⇒ √
γ · ‖g‖ 6

√

x̃(δ)

ρw
⇐⇒ γ 6 γ0 =

x̃(δ)

ρw‖g‖2
, (16)

where (a) follows from w⊥
ZF = g

‖g‖ . The above γ will make the K-L divergence of the adversary satisfy the

requirement. The objective function is to maximize log(1+ρb|hHw|2), which is equivalent of maximizing
|hHw|2. Hence, the optimization problem is reformulated as

max
w∈Cm,‖w‖=1

|hHw|2 s.t. w =
√

1− γwZF +
√
γw⊥

ZF, γ 6 γ0. (17)

There is the following conclusion from Appendix D of [6]:
(a)

|hHw(γ)|2 = γ‖Πgh‖2 + (1 − γ)‖Π⊥
g h‖2 + 2

√
γ
√

1− γ‖Πgh‖‖Π⊥
g h‖; (18)

(b)

∂2

∂2γ
‖hHw‖2 = −1

2

‖Πgh‖‖Π⊥
g h‖

√

γ3
√

(1− γ)3
; (19)

(c) ∂
∂γ

‖hHw(γ)‖2 = 0 has solution γ∗ =
‖Πgh‖2

‖h‖2 , which corresponds to the MRT beamforming w(γ∗) =
wMRT.

From the above facts, |hHw|2 is a strictly concave function in γ and obtains its maximum at γ∗ =
‖Πgh‖2

‖h‖2 . Consequently, the value of γ could be determined by comparing γ∗ and γ0.

• If γ∗ > γ0, γ0 = x̃(δ)
ρw‖g‖2 is the optimal solution for the above problem, so w = w(γ0).

• If γ∗ 6 γ0, γ
∗ is the optimal solution. The optimal beamforming vector is expressed as w(γ∗) =

wMRT.
Zero-forcing beamforming. If we sacrifice some transmission efficiency by letting γ = 0, then we

get wZF. The power of the received signal with zero-forcing beamforming is expressed as follows:

PZF = ρb|hHwZF|2. (20)



Yu X C, et al. Sci China Inf Sci September 2021 Vol. 64 192303:8

Note that in above equation, ρb =
P
δ2
b

can be arbitrarily large since the covertness constraint is satisfied

by |gHw| = 0 in (11).
From the above analysis, it is obvious that the covertness criterion δ = 0 in (11) will imply the zero-

forcing beamforming is the only solution. However, the optimal beamforming maximizes the received
SNR at the legitimate receiver under a positive covertness criterion δ by allocating more power to the
legitimate receiver’s antenna with better gain. Alice is able to extract larger transmission efficiency
from the covertness threshold δ by the optimal beamforming than zero-forcing beamforming when there
is perfect channel feedback of the receiver and the adversary. Hence, zero-forcing beamforming is a
suboptimal strategy. The transmission efficiency of optimal beamforming will also not conform with SRL
since the power can be arbitrarily large.

4.2 The mean estimate of g for Willie

In this subsection, we consider the situation that perfect CSI is available for the main channel, but only
partial CSI of the adversary’s channel, i.e., the mean estimate of the channel vector, is available at the
transmitter. This is the most common situation in practice. In addition, an initial value of the sending
signal’s average power is given as P and it can be adjusted if necessary. In this case, the transmitter can
cancel out only a part of the transmit power by choosing a beamforming vector orthogonal to the mean
estimate of g. Therefore, SRL will still be effective with an upper bound of the transmit power, which is
similar as the conclusion in [24].

The mean feedback model corresponds to the situation where the transmitter has a rough estimate of
the adversary’s channel. In this study, we adopt the mean feedback model in [6, 8], which is written as

g =
√
1− αĝ +

√
αg̃, (21)

where ĝ is the estimate of the channel vector g, g̃ represents the estimation error and α ∈ (0, 1) indicates
the accuracy of the estimation. It is assumed that g̃ follows from CN (0, δ2gI) and ĝ and g̃ are independent
of each other. The transmitter is aware of the values of the vectors ĝ, h, the scale α and the estimation
error variance δ2g. In this situation, the received signal of the adversary is formulated as follows if the
beamforming vector w is determined:

z =
√
PgHwx+ ν =

√

(1 − α) · P ĝHwx+
√
α · P g̃Hwx+ ν. (22)

Now we analyze the terms of the above formula. Since x ∼ CN (0, 1), the first term of the right hand side
is from CN (0, (1−α)P |ĝHw|2). For the second term, since g̃ is a zero-mean complex circular symmetric
Gaussian vector, the inner product between g̃ and a constant vector w with ‖w‖ = 1 is also complex
circular symmetric Gaussian variable. The second term is thus the product of two zero-mean complex
circular symmetric Gaussian random variables. The third term represents the noise. As mentioned above,
we denote the pdfs of ν and z as f0 and f1, respectively.

Now let us consider the covertness criterion, i.e., the K-L divergence between the distribution of Willie’s
received signal z and the noise ν. From the definition of the K-L divergence, it seems that we should
calculate it between the distribution of the variables z and ν. However, it is complicated and involves the
distribution of the product of two complex Gaussian random variables. In fact, the channel is assumed
to be under quasi-static block flat fading, so the channel vectors h and g can be viewed as constant
vectors. In other words, the difference between the distributions of Willie’s received signal and the noise
is independent of the estimation error. Therefore, on one hand, the K-L divergence is irrelative with the
estimation error from the adversary’s perspective; on the other hand, from the transmitter’s viewpoint,
she is aware of the existence of the estimation error, and what she should do is to make the probability
of a large K-L divergence at the adversary small enough. Hence the covertness criterion is expressed as

P{nD(f1||f0) > δ} 6 κ, (23)

where there is randomness in pdf f1 and κ is a small constant satisfying 0 6 κ < 1. Therefore, the
security criterion is that the probability that the K-L divergence is greater than a lower bound should be
kept small. The optimization problem is formulated as follows:

max
w∈Cm,‖w‖=1

ρb|hHw|2, s.t. ρb =
P

δ2b
, P{nD(f1||f0) > δ} 6 κ. (24)
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Figure 2 The model to compute the random variable |gHw|2.

The probability P{nD(f1||f0) > δ} is denoted as the outage probability on covertness. It is obvious that
smaller δ and κ will lead to more covertness. From the analysis about (11) and (12), the inequality in
(23) can be reformulated as

P

{

∣

∣gHw
∣

∣

2
>

x̃(δ)

ρw

}

6 κ, (25)

where x(δ) is the solution of (12) with equality.
Now assume the beamforming vector w is determined, we focus on the random variable |gHw|. From

gHw =
√
1− αĝHw +

√
αg̃Hw, (26)

we plot the relationship of these variables in Figure 2. Denote
−→
OA as the complex constant

√
1− αĝHw

and its magnitude as c. From Lemma A1 in Appendix A, the second term
√
αg̃Hw in (26) is a circular

symmetric complex Gaussian random variable, which is denoted as the vector
−→
AB in the complex plane.

The angle θ is uniformly distributed in (0, 2π] from the property of circular symmetry. Then,
−→
OB is the

random variable gHw and the equality |OB|2 = |OA|2 + |AB|2 − 2 |OA| |AB| cos θ is valid by the law of
cosines. Let |AB| = r, which is a Rayleigh distributed random variable. We have

P{|OB|2 < y} = P{c2 + r2 − 2cr cos θ < y} = P

{

cos θ >
1

2c

(

r +
c2 − y

r

)}

. (27)

Note that the parameter r has pdf

f(r) =











r

αδ2g
e

−r2

2αδ2
g , r > 0,

0, otherwise.

(28)

Hence the probability in (27) can be rewritten as

P

{

cos θ >
1

2c

(

r +
c2 − y

r

)}

(a)
= Er

[

arccos 1
2c (r +

c2−y
r

)

π

]

=

∫ ∞

0

arccos 1
2c (r +

c2−y
r

)

π

r

αδ2g
e

−r2

2αδ2
g dr,

(29)

where equation (a) is from the fact that θ is uniformly distributed in (0 2π]. From the security criterion
in (25), a proper beamforming vector w should satisfy the following inequality:

∫ ∞

0

arccos 1
2c (r +

c2− x̃(δ)
ρw

r
)

π

r

αδ2g
e

−r2

2αδ2
g dr > 1− κ. (30)

• The situation κ = 0 should be paid attention, which corresponds to that the variable
∣

∣gHw
∣

∣ is

definitely less than x̃(δ)
ρw

. We further have that α = 0 and |ĝHw| < x̃(δ)
ρw

, i.e., Alice has full CSI about
Willie’s channel and the power is low enough. In this case, the attainable throughput will conform with
SRL.
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• In the covertness criterion pair (δ, κ), κ < 1 is necesary since the inequality (25) with κ = 1 is
naturally satisfied.

Now we focus on beamforming and define the following vectors:

ŵZF =
Π⊥

ĝ h

‖Π⊥
ĝ h‖

, ŵ⊥
ZF =

Πĝh

‖Πĝh‖
. (31)

Note that the above vectors are similar to (10) except that g is replaced by ĝ. Consider zero-forcing
beamforming with arbitrary power P in this case. As Alice only knows an estimation of the adversary’s
channel vector, the zero-forcing vector ŵZF will eliminate the estimation part of ĝ but not the error part
g̃. Therefore, it is very probable that the latter part will lead to the excess of the K-L divergence to the
covertness criterion.

Theorem 2. In covert communication with covert criterion (δ, κ) over MISO channels, if the transmitter
has a mean estimation of the adversary’s channel and full CSI of the legitimate receiver’s channel, then
there is some threshold P0 depending on κ and δ such that if the average power P of the signal is larger
than P0, the transmitter cannot obtain effective beamforming based on the known channel information
to satisfy the covertness criterion.

Proof. The transmitter has the information of α, ĝ and δg . From Alice’s perspective, the direction of w
has no effect on g̃Hw because of the circular symmetry of g̃, so the direction of the beamforming vector
w only affects the constant term ĝ. To decrease the K-L divergence at the adversary, the best strategy
for Alice is adopting zero-forcing beamforming ŵZF which satisfies ĝHŵZF = 0, which will eliminate the
effect of the known channel vector ĝ. Now we have gHŵZF =

√
αg̃HŵZF. As a function of the random

variable |g̃HŵZF|2, the K-L divergence of one-shot at the adversary is D(f1||f0) = ρwα|g̃HŵZF|2 log e −
log(ρwα|g̃HŵZF|2 + 1), which is a random variable from Alice’s perspective. The covertness criterion

P{nD(f1||f0) > δ} < κ is equivalent to the inequality P{|g̃HŵZF|2 > x̃(δ)
αρw

} < κ. From Corollary A1 in

Appendix A, the random variable |g̃HŵZF|2 is exponentially distributed, so there is a τ0(κ) which satisfies

P
{

∣

∣g̃HŵZF

∣

∣

2
> τ0(κ)

}

= κ. (32)

If the average power P satisfies x̃(δ)
αρw

< τ0(κ), then the covertness criterion is not satisfied by zero-forcing
beamforming, and it will not be satisfied by any other beamforming strategies since the zero-forcing is
the best strategy Alice could do to merely decrease the K-L divergence at the adversary based on the
known information. From (32), if the transmitter wants to satisfy the covertness criterion, he should
limit the average power of the signal as follows:

x̃(δ)

αρw
> τ0(κ)

which results in P 6
x̃(δ)δ2w
ατ0(κ)

. Therefore, the upper bound of the transmit power is

P0 =
x̃(δ)δ2w
ατ0(κ)

. (33)

When the average power of the signal satisfies P < P0, the transmitter could adjust w to ensure the
security requirement and increase the attainable throughput further more. In addition, as α indicates the
accuracy of the estimation vector, a larger α will lead to a smaller P0 and hence larger communication
efficiency of the main channel. Especially, if α = 0, there will be no upper bound of the power, which is
just the conclusion of Subsection 4.1.

We will discuss the problem in the following three cases.

• When P >
x̃(δ)δ2w
ατ0(κ)

, the transmitter could not ensure that the K-L divergence of the adversary satisfies

the covert requirement no matter what beamforming vector is adopted. The only solution is to decrease

the power of the sending signal P until P 6
x̃(δ)δ2w
ατ0(κ)

is satisfied. Thus, power control is necessary.

• When P =
x̃(δ)δ2w
ατ0(κ)

, the K-L divergence requirement can be satisfied by w⊥ĝ = 0. The measured

part ĝ makes no contribution to the K-L divergence, and only the uncertain part g̃ of g contributes to it.



Yu X C, et al. Sci China Inf Sci September 2021 Vol. 64 192303:11

• When P <
x̃(δ)δ2w
ατ0(κ)

, it means the power P and the covertness criterion (δ, κ) permit an optimal

beamforming w. The optimal beamforming vector w will be characterized in the following theorem.

Theorem 3. When there is a mean estimation of the adversary’s channel g, the optimal beamforming
vector w with proper power P < P0 and covertness criterion (δ, κ) is given by

w =
√

1− γ̂ŵZF +
√

γ̂ŵ⊥
ZF, γ̂ ∈ (0, 1). (34)

Proof. We consider the problem directly from the inequality (30), the inequality is directly related to
c = |

√
1− αĝHw| but not r = |√αg̃Hw|, whose distribution is fixed. Hence, the security criterion is

related to the direction of the vector ĝ but not the direction of g̃. The remainder of the proof is similar
to Theorem1 and is not included here owing to space limitation.

From the above theorem, the optimal beamforming in the third case above is calculated as follows.
First, solve the equation with the variable c:

∫ ∞

0

arccos 1
2c (r +

c2− x̃(δ)
ρw

r
)

π

r

αδ2g
e

−r2

2αδ2
g dr = 1− κ. (35)

Note that the integrand is the product of a variable in [0, 1] and the pdf of a Rayleigh distributed random
variable, a solution c0 is obtainable from the analysis before (27) since the power P and the covertness
criterion (δ, κ) are proper determined. Second, solve the equations with variable γ:

{

c0 =
√
1− αĝHw,

w =
√
1− γ̂ŵZF +

√
γ̂ŵ⊥

ZF

(36)

to get γ̂0. Thus, from the covertness criterion, γ̂ should satisfy γ̂ 6 γ̂0. Third, consider the transmission
efficiency of the main channel, and the optimization problem is rewritten as

max
w∈Cm,‖w‖=1

|hHw|2 s.t. w =
√

1− γ̂ŵZF +
√

γ̂ŵ⊥
ZF, γ̂ 6 γ̂0, (37)

which is almost the same as (17). Note that the covertness criterion is in the form of probability, and it
is possible that the covertness criterion is violated at the adversary. However, the probability could be
limited by setting proper parameters κ.

4.3 Statistical information about g

In this subsection, it is assumed that perfect CSI of the main channel is available. However, only statistical
information, i.e., the covariance matrix Σg of the complex Gaussian random vector g is available at the
transmitter. The covertness criterion is defined by P{nD(f1||f0) > δ} < κ as before.

An intuition for this situation is that the direction of the beamforming vector will have little effect on
the adversary’s K-L divergence because the adversary’s channel vector could be arbitrary. In fact, if it is
further assumed that Σg = δ2gI, the above conclusion can be checked from (26) and (27). When α = 1,
i.e., only the distribution of the channel vector g is known, the point A will be located at O in Figure 2.
Therefore, the inequality (27) could be rewritten as

P
{

|OB|2 < y
}

= P{r2 < y}.

From Corollary A1 in Appendix A, r2 is exponentially distributed. Therefore, the covertness criterion is
expressed as

∫
x̃(δ)
ρw

0

r

δ2g
e
− r2

2δ2
g dr > 1− κ. (38)

From the above inequality, it is obvious that beamforming will have no effect on covertness. The only
solution is to decrease the power P so that the quantity ρw is decreased and the upper limit of the integral
is increased. Thus, the inequality (38) implies an upper bound on the transmit power. This strategy will
permit a covert outage probability of κ, which is the consequence of the uncertainty about the vector g.
For the main channel, the MRT beamforming wMRT is the optimal solution to maximize the throughput
of the main channel.
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Figure 3 (Color online) Comparison of the bounds with different beamforming strategies. (a) δ = 0.2; (b) n = 1000.

5 Numerical results

In this section, numerical results are presented to examine the effect of beamforming and illustrate the
proper region for beamforming. In the following experiments, the number of antennae at the transmitter
is 4 and the variances of the background noise at Bob and Willie are both 1 (δ2w = δ2b = 1,m = 4).

Firstly, the situation when the transmitter has full CSI about the legitimate receiver and the adversary
is illustrated. We generate 5000 pairs of complex Gaussian vectors randomly to represent channel vectors
h and g and calculate these beamforming vectors following the methods in Subsection 4.1. In general,
the vectors h and g are randomly generated, and it is probable that γ0 > γ∗, and then w = wMRT is
obtained. Whatever the case is, our method ensures that the power of the received signal is maximal and
meanwhile the covertness criterion is not violated, which is especially better than the rate obtained by the
zero-forcing strategy. The average numbers of the throughput in different situations are compared. The
right picture in Figure 3 illustrates the achievability and converse bounds of the throughput logM(n, ǫ, δ)
of the main channel versus the covertness criterion δ when the power of the signal is set to be 2PMRT

with fixed blocklength n. The left hand side of Figure 3 illustrates logM(n, ǫ, δ) versus n with fixed
δ = 0.2 and ǫ = 0.01. The average number of throughput obtained by optimal beamforming exceeds that
of zero-forcing beamforming by more than dozens in Figure 3 when the covertness criterion δ is more
than 0.2 and the blocklength is more than 1000, respectively. When there is only a single antenna at
the transmitter, no beamforming strategy is available. The covertness should be granted by decreasing
the signal power. In this situation, the attainable throughput follows from SRL and is far less than the
situations with multiple antennae.

Secondly, we illustrate the availability of these beamforming strategies when there is only partial
information of g. The availability depends on the feedback parameters α, δg and the covertness criterion
pair (δ, κ). In our setting, the parameter δg is always 1. To get the critical value of P0, Eq. (12) for a given
δ is solved. Then τ0(κ) is computed by resolving (32). Finally, the critical P0 is calculated by (33). The
critical power P0 for different values δ are plotted in Figure 4, in which the regions available for optimal
and zero-forcing beamforming are illustrated. The line is the boundary of the region and only zero-forcing
beamforming is available on the line. If the pair (δ, P ) lies above the line, power control is necessary to
ensure the covertness. If the pair (δ, P ) is under the line, optimal beamforming is available. The regions
corresponding to different values of α, δ and κ are depicted in Figure 5. From these figures, we can see
that if the transmitter has less accurate information about g, it is more probable that beamforming is
unavailable and the power should be adjusted. Moreover, if the covertness requirement is stricter, then
it is more likely that the power should be adjusted.

Finally, the achievability and converse bounds with optimal beamforming and zero-forcing beamforming
are compared with a proper signal power P , the blocklength n = 1000 and covertness parameter pair

(δ, κ) = (0.5, 0.2) which satisfy P < P0 =
x̃(δ)δ2w
ατ0(κ)

. Zero-forcing beamforming only eliminates the effect of

the mean estimation of the adversary’s channel vector, and we compare these two strategies in Figure 6. It
is shown that the optimal beamforming obtained by Subsection 4.2 has better behavior than zero-forcing
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Figure 6 (Color online) Comparison of different beamforming strategies. (a) (δ, κ) = (0.5, 0.2); (b) n = 1000 and κ = 0.2.

beamforming. More accurate information will lead to more gain for zero-forcing beamforming, while the
gain is less than that of optimal beamforming.
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6 Conclusion

In this study, we investigated the throughput of finite blocklength with optimal beamforming which
utilizes the covertness criterion and the channel feedback information to maximize the throughput and
meanwhile satisfy the covert requirement. The achievability and converse bounds under optimal beam-
forming are shown to be better than zero-forcing beamforming over MISO channels.
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Appendix A

Lemma A1. If g̃ is subject to CN (0, δ2
g
I) and w is a constant vector with the same dimension, g̃Hw is a zero-mean complex

circularly symmetric Gaussian random variable with variance ‖w‖2δ2
g
.

Proof. Since g̃ follows CN (0, δ2
g
I), the complex conjugate g̃∗

i (i = 1, . . . , n) are zero-mean complex circularly symmetric Gaussian

with variance δ2
g
and independent of each other. g̃Hw =

∑n
i=1 g̃∗

i wi is a linear combination of these g̃∗
i . The ith term in the right

side of the equation is zero-mean complex Gaussian with variance |wi|2δ2g . Hence, the sum of them is zero-mean complex circularly

symmetric Gaussian with variance ‖w‖2δ2
g
.

Corollary A1. With the same condition as Lemma A1, |g̃Hw| is subject to Rayleigh distribution with probability density

function:

f(x) =
x

‖w‖2δ2
g

e
− x2

2‖w‖2δ2
g , x > 0.

|g̃Hw|2 is subject to chi-squared distribution with two degrees of freedom, i.e., exponential distribution with pdf

g(x) =
1

2‖w‖2δ2
g

e
− x

2‖w‖2δ2
g , x > 0.
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