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Abstract The classical proportional-integral-derivative (PID) controller is ubiquitous in engineering sys-

tems that are typically nonlinear with various uncertainties, including random noise. However, most of the

literature on PID control focused on linear deterministic systems. Thus, a theory that explains the rationale

of the linear PID when dealing with nonlinear uncertain stochastic systems and a concrete design method

that can provide explicit formulas for PID parameters are required. Recently, we have demonstrated that the

PID controller can globally stabilize a class of second-order nonlinear uncertain stochastic systems, where

the derivative of the system output is assumed to be obtainable, which is generally unrealistic in practical

applications. This has motivated us to present some theoretical results on PID control with a state observer

for nonlinear uncertain stochastic systems. Specifically, a five-dimensional parameter manifold can be explic-

itly constructed, within which the three PID parameters and two observer gain parameters can be arbitrarily

selected to globally stabilize nonlinear uncertain stochastic systems, as long as some knowledge about the

unknown nonlinear drift and diffusion terms is available.
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1 Introduction

Over the past 60 years, remarkable progress in modern control theory has been made; however, the clas-
sical proportional-integral-derivative (PID) controller still plays a dominating role in various engineering
systems [1, 2].

Thus, it is natural and necessary to ask why the linear PID controller is so effective in practice. Some
common answers include the following: (1) it has a simple controller structure and does not require
precise mathematical models of controlled dynamical systems; (2) it can reduce the influence of various
uncertainties, including internal structure uncertainties and external disturbances through the linear
feedback mechanism; (3) it can eliminate steady state offsets through the integral action and predict the
future tendency through the derivative action.

A critical issue for engineers in PID controller implementation is the selection of the three PID param-
eters. The PID controller has been extensively investigated by various engineers and scientists; however,
most existing studies have focused on linear deterministic dynamic systems [3–8]. To justify the remark-
able effectiveness of the PID controller in real-world systems and understand its rationale when dealing
with nonlinearity, uncertainty, and randomness, we have to face with uncertain nonlinear stochastic
dynamical systems [9, 10].

Recently, Zhao and Guo [11,12] presented a mathematical theory of PID control for a class of second-
order uncertain nonlinear deterministic systems. They demonstrated that a simple three-dimensional
manifold can be constructed such that whenever the three PID parameters are selected from this manifold,
the closed-loop system will be globally stable, and the system’s regulation error will asymptotically
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converge to zero. Then, Cong and Guo [13] extended this theory to stochastic uncertain nonlinear
systems because nearly all practical systems are subject to random influences, e.g., external fluctuations,
internal agitation, and fluctuating initial conditions. Note that the abovementioned results assume the
availability of the derivative of the regulation error, which is unrealistic in practice. These facts have
inspired us to investigate the rationale of PID control for stochastic uncertain nonlinear dynamical systems
and construct a state observer to replace the derivative terms in the PID controller. Therefore, we need
to construct a state observer for nonlinear uncertain stochastic systems and determine whether a state
observer-based PID controller can globally stabilize and regulate the system. These are important and
challenging issues for both control practitioners and theorists.

In this paper, we consider a basic class of uncertain nonlinear stochastic systems under state observer-
based PID control. We demonstrate that a concrete five-dimensional manifold can be constructed, from
which the three PID parameters and two observer gain parameters can be selected arbitrarily to globally
stabilize the considered systems, under the condition that the upper bounds of the Lipschitz constants of
both the nonlinear drift and diffusion terms are known. In addition, the second moment of the regulation
error converges to zero asymptotically simultaneously.

The remainder of this paper is organized as follows. Section 2 states the problem formulation. Section 3
presents the main results with mathematical proofs, and Section 4 concludes the paper. Auxiliary results
are presented in Appendixes A and B.

2 Problem formulation

Stochastic differential equations are generally appropriate models of randomly influenced systems [14–19].
Assume that {B(t)}t>0 is standard Brownian motion defined on a complete probability space (Ω,F , P )

with natural filtration {Ft}t>0 satisfying the usual conditions (Definition A1 in Appendix A). We consider
the following basic class of nonlinear uncertain stochastic systems:











dx1 = x2dt,

dx2 = f(x1, x2, t)dt+ u(t)dt+ σ(x1, x2, t)dB(t), x1(t) ∈ R
d,

y(t) = x1(t),

(1)

where u(t) and y(t) denote the input and output signals, respectively, and f(x1, x2, t) and σ(x1, x2, t) are
uncertain nonlinear functions.

The control objective is to design a PID feedback controller such that for any initial state (x1(0), x2(0)) ∈
R

2d, the output y(t) converges to a given setpoint y∗ ∈ R
d.

The classical PID controller has the following standard form:

u(t) = k1e(t) + k0

∫ t

0

e(s)ds+ k2ė(t), e(t) = y(t)− y∗,

where e(t) is the regulation error, and k0, k1, k2 are the three PID parameters.
From the definition of the classical PID control, we know that PID implementation requires the deriva-

tive of the regulation error. However, in most practical situations, the derivatives may not be available
directly. Therefore, we need to construct a state observer to obtain an online estimation of the derivative
of the regulation error.

Thus, a natural question is how to design the state observers for uncertain stochastic systems (1).
Can a state observer-based PID controller globally stabilize the system and achieve the desired control
objective?

In this paper, we construct the following state observer to estimate the state (x1, x2):

{

dx̂1 = x̂2dt+ β1(y(t)dt− x̂1dt),

dx̂2 = β2(y(t)dt− x̂1dt) + û(t)dt,
(2)

where β1, β2 are observer gain parameters, and

û(t) = k1e(t) + k2x̂2(t). (3)
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Note that ė(t) = x2(t), and x2(t) is not obtainable for feedback. Thus, we use x̂2(t) to replace the D-term
ė(t). Then, the state observer-based PID controller u(t) has the following form:

u(t) = k1e(t) + k0

∫ t

0

e(s)ds+ k2x̂2(t). (4)

The goal of this paper is to demonstrate that the ubiquitous PID can stabilize and regulate the above
stochastic uncertain nonlinear dynamical systems globally under suitable conditions on the system’s
unknown functions. In addition, a quantitative design method for the PID and observer gain parameters
is also provided.

3 The main results

Note that the unknown functions f(x1, x2, t) and σ(x1, x2, t) are defined on R
2d ×R

+ and take values in
R

d. We define two function spaces as follows:

FM =
{

f ∈ H
∣

∣

∣
‖f(x1, x2, t)− f(y1, y2, t)‖6M

√

‖x1 − x2‖2 + ‖y1 − y2‖2, ∀x1, x2, y1, y2 ∈ R
d, ∀t ∈ R

+
}

,

DN =
{

σ ∈ H
∣

∣

∣
‖σ(x1, x2, t)− σ(y1, y2, t)‖6N

√

‖x1 − x2‖2 + ‖y1 − y2‖2, ∀x1, x2, y1, y2 ∈ R
d, ∀t ∈ R

+
}

,

where M and N are positive constants that measure the size of the uncertainty quantitatively, ‖ · ‖ is the
standard Euclidean norm, and H denotes the space of functions from R

2d×R
+ to R

d which are piecewise
continuous in t.

The performance of the system (1) under the PID controller (4) can be presented by Theorem 1.

Theorem 1. Consider the nonlinear uncertain stochastic system (1), where u(t) is the state observer-
based PID controller (4). Assume that f(y∗, 0, t) = f(y∗, 0, 0) and σ(y∗, 0, t) = 0, ∀t ∈ R

+. Then, for
any M > 0 and N > 0, there exists an unbounded open set Ωk,β ⊂ R

5 such that whenever the controller
parameters (k0, k1, k2, β1, β2) ∈ Ωk,β , the closed-loop system will be globally stable and asymptotically
optimal in the sense that

sup
t>0

E[‖x1(t)‖2 + ‖x2(t)‖2 + ‖u(t)‖2] < ∞,

and
lim
t→∞

E‖y∗ − x1(t)‖2 = 0

for any initial value x(0) = (x1(0), x2(0)) ∈ R
2d and x̂(0) = (x̂1(0), x̂2(0)) ∈ R

2d, and for any f ∈ FM ,
σ ∈ DN . Simultaneously, the estimate error satisfies the following:

lim
t→∞

E‖xi(t)− x̂i(t)‖2 = 0, i = 1, 2.

Remark 1. From the proof of Theorem 1, the concrete construction of Ωk,β in R
5 can be taken as the

following parameterized form:

Ωk,β =





















































k0

k1

k2

β1

β2



















=



















λ0λ1λ2

−(λ0λ1 + λ0λ2 + λ1λ2)

λ0 + λ1 + λ2

−(µ1 + µ2)

µ1µ2



















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



















λ0

λ1

λ2

µ1

µ2



















∈ ∆λ,µ



































with

∆λ,µ =
{

(λ, µ)
∣

∣λi < 0, λi 6= λj , i 6= j;µi < 0, µ1 6= µ2;

4µ0[λ0λ1λ2(1 −Mφ(λ)ϕ(λ)) + Φ(µ, λ)N2ϕ2(λ)] > Θ(λ, µ)
}

,

where

λ , (λ0, λ1, λ2), µ , (µ1, µ2), µ0 , max{µ1, µ2},
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ϕ(λ) =

√

3 + λ2
0 + λ2

1 + λ−2
2 , φ(λ) =

√

1

b20
+

1

b21
+

λ2
2

b22
,

ai =
λi

bi
, i = 0, 1, a2 =

λ2
2

b2
, bj ,

∏

i∈{0,1,2}\{j}
(λj − λi), j = 0, 1, 2,

Ψ(λ, µ) =

√

µ2
1 + µ2

2

(µ2 − µ1)2

(

Mϕ(λ) +

√

λ2
1λ

2
2 + λ2

0λ
2
2 +

λ2
0λ

2
1

λ2
2

)

,

Φ(λ, µ) =
1

2

(

µ2
2 + µ2

1

(µ2 − µ1)2
+ a20λ1λ2 + a21λ0λ2 + a22λ0λ1

)

,

Θ(λ, µ) = (Ψ(λ, µ) +
√
2λ0λ1λ2φ(λ)(λ0 + λ1 + λ2))

2.

Remark 2. Theorem 1 is a global convergence result, for which the upper bounds of the Lipschitz
constants of the nonlinear drift function f and diffusion function σ play a key role in designing the
parameters. It is worth noting that the selection of the controller parameters does not rely on the initial
values or the setpoint y∗.

Remark 3. We remark that the parameter set Ωk,β is open and unbounded in R
5, and the function

space FM and DN are “relatively large”. Thus, we conclude that the PID controller (4) has good
robustness with respect to the system uncertainty, the selection of controller parameters, and the system
randomness.

The following is a proof of Theorem 1.
Step 1. First, we derive the closed-loop system equation.
For this, we introduce some notations. Let ξi denote the estimation error, i.e.,

ξi(t) = xi(t)− x̂i(t), i = 1, 2,

and

e0(t) =

∫ t

0

e(s)ds+
f(y∗, 0, 0)

k0
, e1(t) = x1(t)− y∗, e2(t) = x2(t).

We also define the following two functions: g1(e1, e2, t) , f(e1 + y∗, e2, t) − f(y∗, 0, t), g2(e1, e2, t) ,
σ(e1 + y∗, e2, t)− σ(y∗, 0, t).

Then, by (1)–(4) and the fact that f(y∗, 0, t) = f(y∗, 0, 0) and σ(y∗, 0, t) = 0, it is easy to derive the
following closed-loop equation:































dξ1(t) = ξ2(t)dt− β1ξ1(t)dt,

dξ2(t) = −β2ξ1(t)dt+ [g1(e1, e2, t) + k0e0]dt+ g2(e1, e2, t)dB(t),

de0(t) = e1(t)dt,

de1(t) = e2(t)dt,

de2(t) = (k0e0 + k1e1 + k2e2)dt+ [g1(e1, e2, t)− k2ξ2]dt+ g2(e1, e2, t)dB(t).

(5)

In addition, we define ξ , (ξT1 , ξ
T
2 )

T, E , (eT0 , e
T
1 , e

T
2 )

T, E′ , (eT1 , e
T
2 )

T,

A0 =

[

−β1I I

−β2I 0

]

, A1 =









0 I 0

0 0 I

k0I k1I k2I









,

where I is a d× d unit matrix. Then, Eq. (5) can be rewritten in the following matrix equation form:






































dξ(t) = A0ξ(t)dt+

[

0

g1(e1, e2, t) + k0e0

]

dt+

[

0

g2(e1, e2, t)

]

dB(t),

dE(t) = A1E(t)dt+









0

0

g1(e1, e2, t)− k2ξ2









dt+









0

0

g2(e1, e2, t)









dB(t).

(6)
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By the definitions of gi(e1, e2, t), i = 1, 2, it is easy to obtain gi(0, 0, t) = 0, which implies that 0 ∈ R
5

is an equilibrium of (6). Notice that f(x1, x2, t) ∈ FM and σ(x1, x2, t) ∈ DN , hence the two uncertain
functions gi(e1, e2, t) are both of linear growth:

‖g1(e1, e2, t)‖ 6 M‖(eT1 , eT2 )‖, ‖g2(e1, e2, t)‖ 6 N‖(eT1 , eT2 )‖. (7)

Step 2. We deduce some useful properties of matrices A0 and A1.
First, we calculate the characteristic polynomial of A0 and A1. Note that

A0 =

[

−β1 1

−β2 0

]

⊗ I , A01 ⊗ I, A1 =









0 1 0

0 0 1

k0 k1 k2









⊗ I , A11 ⊗ I,

where “⊗ ” denotes the Kronecker product. It is not difficult to obtain

det(µI −A0) = det(µI −A01)
d = (µ2 + µβ1 + β2)

d,

det(λI −A1) = det(λI −A11)
d = (λ3 − k2λ

2 − k1λ− k0)
d.

Assume we take β1, β2, k0, k1, k2 such that the quadratic equation µ2 + µβ1 + β2 has two distinct
negative roots µ1, µ2 and the cubic equation λ3 − k2λ

2 − k1λ − k0 has three distinct negative roots λ0,
λ1, λ2.

Next, we define the following matrices:

Q =





1

µ2

1

µ1

1 1



⊗ I =





I

µ2

I

µ1

I I



 , P =









λ−1
0 λ−1

1 λ−2
2

1 1 λ−1
2

λ0 λ1 1









⊗ I =









λ−1
0 I λ−1

1 I λ−2
2 I

I I λ−1
2 I

λ0I λ1I I









,

C =

[

1 1 λ−1
2

λ0 λ1 1

]

⊗ I =

[

I I λ−1
2 I

λ0I λ1I I

]

, C′ =
[

λ−1
0 λ−1

1 λ−2
2

]

⊗ I =
[

λ−1
0 I λ−1

1 I λ−2
2 I

]

.

Then, it is easy to obtain

Q−1 =
µ1µ2

µ1 − µ2









I − I

µ1

−I
I

µ2









, P−1 =









∗ ∗ a0I

∗ ∗ a1I

∗ ∗ a2I









,

where ai =
λi

bi
, i = 0, 1, a2 =

λ2
2

b2
, bj =

∏

i∈{0,1,2}\{j}(λj − λi), j = 0, 1, 2, and the “∗” in the elements of

P−1 means that we do not care what it is in our proof of Theorem 1.
It is also easy to verify that A0 = QJ0Q

−1 and A1 = PJ1P
−1, where

J0 =

[

µ1I 0

0 µ2I

]

, J1 =









λ0I 0 0

0 λ1I 0

0 0 λ2I









.

Step 3. In this step, we introduce invertible linear transformations ξ = Qη, E = Pω and derive the
closed-loop system equation under the new coordinate (η, ω).

Here, we define η = (ηT1 , η
T
2 )

T, ω = (ωT
0 , ω

T
1 , ω

T
2 )

T. Using the relationship A0 = QJ0Q
−1 and A1 =

PJ1P
−1, Eq. (6) can be rewritten as follows:















































dη1 =

[

µ1η1 +
µ2

µ2 − µ1
(g1(e1, e2, t) + k0e0)

]

dt+
µ2

µ2 − µ1
g2(e1, e2, t)dB(t),

dη2 =

[

µ2η2 −
µ1

µ2 − µ1
(g1(e1, e2, t) + k0e0)

]

dt− µ1

µ2 − µ1
g2(e1, e2, t)dB(t),

dω0 = [λ0ω0 + a0(g1(e1, e2, t)− k2ξ2)]dt+ a0g2(e1, e2, t)dB(t),

dω1 = [λ1ω1 + a1(g1(e1, e2, t)− k2ξ2)]dt+ a1g2(e1, e2, t)dB(t),

dω2 = [λ2ω2 + a2(g1(e1, e2, t)− k2ξ2)]dt+ a2g2(e1, e2, t)dB(t).

(8)
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Step 4. Now, we use the following Lyapunov function:

V (η, ω) =
1

2
(‖η1‖2 + ‖η2‖2 + λ1λ2‖ω0‖2 + λ0λ2‖ω1‖2 + λ0λ1‖ω2‖2), (9)

and calculate the differential operator L (Appendix A) associated with (8).
Let

F (η, ω) ,























µ1η1 +
µ2

µ2 − µ1
(g1(e1, e2, t) + k0e0)

µ2η2 −
µ1

µ2 − µ1
(g1(e1, e2, t) + k0e0)

λ0ω0 + a0(g1(e1, e2, t)− k2ξ2)

λ1ω1 + a1(g1(e1, e2, t)− k2ξ2)

λ2ω2 + a2(g1(e1, e2, t)− k2ξ2)























, G(η, ω) ,























µ2

µ2 − µ1
g2(e1, e2, t)

− µ1

µ2 − µ1
g2(e1, e2, t)

a0g2(e1, e2, t)

a1g2(e1, e2, t)

a2g2(e1, e2, t)























.

Now, we can calculate the differential operator L (Appendix A) associated with (8):

LV (η, ω) =
∂V

∂t
+ FT(η, ω)∇V +

1

2
Tr[G(η, ω)GT(η, ω)H(V )]. (10)

Obviously, the first term on the right-hand side (RHS) of (10) is zero, and the second term of (10) is

µ1η
T
1 η1 +

µ2

µ2 − µ1
(g1(e1, e2, t) + k0e0)η1 + µ2η

T
2 η2 −

µ1

µ2 − µ1
(g1(e1, e2, t) + k0e0)η2

+ λ0λ1λ2ω
T
0 ω0 + a0(g1(e1, e2, t)− k2ξ2)ω0λ1λ2 + λ0λ1λ2ω

T
1 ω1 + a1(g1(e1, e2, t)− k2ξ2)ω1λ0λ2

+ λ0λ1λ2ω
T
2 ω2 + a2(g1(e1, e2, t)− k2ξ2)ω2λ0λ1

= µ1‖η1‖2 + µ2‖η2‖2 +
µ2η1 − µ1η2

µ2 − µ1
(g1(Cω, t) + k0C

′ω)

+ λ0λ1λ2

(

‖ω‖2 +
(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

(g1(Cω, t)− k2(η1 + η2))

)

. (11)

The third term of (10) is expressed as

1

2

[(

µ2

µ2 − µ1

)2

+

(

µ1

µ2 − µ1

)2

+ λ0λ1λ2

(

λ0

b20
+

λ1

b21
+

λ3
2

b22

)]

g22(Cω, t)

=
1

2

[(

µ2

µ2 − µ1

)2

+

(

µ1

µ2 − µ1

)2

+ a20λ1λ2 + a21λ0λ2 ++a22λ0λ1

]

g22(Cω, t). (12)

Then, according to (11) and (12), we obtain

LV (η, ω) =µ1‖η1‖2 + µ2‖η2‖2 +
µ2η1 − µ1η2

µ2 − µ1
(g1(Cω, t) + k0C

′ω)

+ λ0λ1λ2

(

‖ω‖2 +
(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

(g1(Cω, t)− k2(η1 + η2))

)

+
1

2

[

(

µ2

µ2 − µ1

)2

+

(

µ1

µ2 − µ1

)2

+ λ0λ1λ2

(

λ0

b20
+

λ1

b21
+

λ3
2

b22

)

]

g22(Cω, t). (13)

Step 5. We proceed to estimate the upper bound of (13) and use the Lyapunov stability theory to
analyze the behavior of stochastic differential equation (8).

Let µ0 = max{µ1, µ2}, and then it is easy to get

µ1‖η1‖2 + µ2‖η2‖2 6 µ0‖η‖2. (14)

Using (7), we can obtain
‖g1(Cω, t)‖ 6 M‖C‖‖ω‖. (15)
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In addition, we have
‖k0C′ω‖ 6 |k0|‖C′‖‖ω‖. (16)

Next, we estimate the upper bounds of ‖C‖ and ‖C′‖, where the matrix norm ‖ · ‖ is the operator norm
induced by the Euclidean norm:

‖C‖ = sup
‖ν‖=1

‖Cν‖.

For any ν = (νT1 , ν
T
2 , ν

T
3 )

T ∈ R
3d with ‖ν‖ = 1, where νi ∈ R

d, i = 1, 2, 3. Then, by the definition of C,
it is easy to obtain

Cν =

[

I I λ−1
2 I

λ0I λ1I I

]









ν1

ν2

ν3









=





ν1 + ν2 +
1

λ2
ν3

λ0ν1 + λ1ν2 + ν3



 .

Using the Cauchy inequality, we have

‖Cν‖2 =
∥

∥

∥

∥

ν1 + ν2 +
1

λ2
ν3

∥

∥

∥

∥

2

+ ‖λ0ν1 + λ1ν2 + ν3‖2

6

(

1 + 1 +
1

λ2
2

)

(‖ν1‖2 + ‖ν2‖2 + ‖ν3‖2) + (λ2
0 + λ2

1 + 1)(‖ν1‖2 + ‖ν2‖2 + ‖ν3‖2)

= 3 + λ2
0 + λ2

1 +
1

λ2
2

.

Thus, we obtain

‖C‖ 6

√

3 + λ2
0 + λ2

1 +
1

λ2
2

, ϕ(λ). (17)

Similarly, it can be seen that

‖C′‖ 6

√

1

λ2
0

+
1

λ2
1

+
1

λ4
2

. (18)

Using the Cauchy inequality, we get

µ2η1 − µ1η2

µ2 − µ1
6

√

√

√

√

[

(

µ2

µ2 − µ1

)2

+

(

µ1

µ2 − µ1

)2
]

(‖η1‖2 + ‖η2‖2) =
√

µ2
2 + µ2

1

(µ2 − µ1)2
‖η‖. (19)

According to (15)–(19), we can get

µ2η1 − µ1η2

µ2 − µ1
(g1(Cω, t) + k0C

′ω)

6

√

µ2
2 + µ2

1

(µ2 − µ1)2
‖η‖2 (M‖C‖‖ω‖+ |k0|‖C′‖‖ω‖)

6

√

µ2
2 + µ2

1

(µ2 − µ1)2
(M‖C‖+ |k0|‖C′‖)‖η‖‖ω‖

=

√

µ2
2 + µ2

1

(µ2 − µ1)2

(

Mϕ(λ) +

√

λ2
1λ

2
2 + λ2

0λ
2
2 +

λ2
0λ

2
1

λ2
2

)

‖η‖‖ω‖

, Ψ(λ, µ)‖η‖‖ω‖. (20)

On the other hand, it is not difficult to obtain
(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

g1(Cω, t)

6

√

(

1

b20
+

1

b21
+

λ2
2

b22

)

(‖ω0‖2 + ‖ω1‖2 + ‖ω2‖2)M‖C‖‖ω‖
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, Mφ(λ)ϕ(λ)‖ω‖2. (21)

According to (21), we have

λ0λ1λ2‖ω‖2 + λ0λ1λ2

(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

g1(Cω, t) 6 (1−Mφ(λ)ϕ(λ))‖ω‖2λ0λ1λ2. (22)

By Cauchy inequality, we have

−λ0λ1λ2

(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

k2(η1 + η2) 6 −λ0λ1λ2φ(λ)‖ω‖|k2|
√

2(‖η1‖2 + ‖η2‖2)

,
√
2(−λ0λ1λ2)φ(λ)|k2 |‖η‖‖ω‖. (23)

From (7), we obtain
‖g2(Cω, t)‖ = ‖g2(Cω, t)‖ 6 N‖C‖‖ω‖,

which in turn gives
‖g2(Cω, t)‖2 6 N2‖C‖2‖ω‖2 , N2ϕ2(λ)‖ω‖2. (24)

Therefore, we have

1

2

[

µ2
2 + µ2

1

(µ2 − µ1)2
+ λ0λ1λ2

(

λ0

b20
+

λ1

b21
+

λ3
2

b22

)]

g22(Cω, t)

6
1

2

(

µ2
2 + µ2

1

(µ2 − µ1)2
+ a20λ1λ2 + a21λ0λ2 + a22λ0λ1

)

N2ϕ2(λ)‖ω‖2

, Φ(µ, λ)N2ϕ2(λ)‖ω‖2. (25)

According to Eq. (13) and by using inequalities (14), (20), (22), (23), and (25), we can estimate LV (η, ω)
as follows:

LV (η, ω) =µ1‖η1‖2 + µ2‖η2‖2 +
µ2η1 − µ1η2

µ2 − µ1
(g1(Cω, t) + k0C

′ω)

+ λ0λ1λ2

(

‖ω1‖2 +
(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

(g1(Cω, t)− k2(η1 + η2))

)

+
1

2

[

(

µ2

µ2 − µ1

)2

+

(

µ1

µ2 − µ1

)2

+ λ0λ1λ2

(

λ0

b20
+

λ1

b21
+

λ3
2

b22

)

]

g22(Cω, t)

6µ0‖η‖2 +Ψ(µ, λ)‖η‖‖ω‖+ (1−Mφ(λ)ϕ(λ))‖ω‖2λ0λ1λ2

+
√
2(−λ0λ1λ2)φ(λ)|k2|‖η‖‖ω‖+Φ(µ, λ)N2ϕ2(λ)‖ω‖2

=µ0‖η‖2 + (Ψ(µ, λ) +
√
2(−λ0λ1λ2)φ(λ)|k2|)‖η‖‖ω‖

+ ((1 −Mφ(λ)ϕ(λ))λ0λ1λ2 +Φ(µ, λ)N2ϕ2(λ))‖ω‖2. (26)

Now, suppose that the parameters k0, k1, k2, β1, β2 are selected from Ωk,β , and then the corresponding
parameters λ, µ should belong to ∆λ,µ. Thus, we have

4µ0[λ0λ1λ2(1−Mφ(λ)ϕ(λ)) + Φ(µ, λ)N2ϕ2(λ)] > Θ(λ, µ),

where Θ(λ, µ) = (Ψ(µ, λ) −
√
2λ0λ1λ2φ(λ)|k2|)2. This means that LV is a negative definite function of

(η, ω):
LV (η, ω) 6 −δ(‖η‖2 + ‖ω‖2) (27)

for some positive δ.
There, by the Itô’s formula (Appendix A), we have

dV (η, ω) = LV (η, ω)dt+G1(η, ω)dB(t), (28)

where

G1(η, ω) =

[

µ2η1 − µ1η2

µ2 − µ1
+ λ0λ1λ2

(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)]

g2(Cω, t).
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From (28), we have the following equality for any T > 0,

V (η(T ), ω(T )) = V (η0, ω0) +

∫ T

0

LV (η, ω)dt+

∫ T

0

G1(η, ω)dB(t). (29)

We now prove that

E

∫ T

0

G1(η(t), ω(t))dB(t) = 0. (30)

To obtain (30), we need to prove that

E

∫ T

0

‖G1(η(t), ω(t))‖2dt < ∞. (31)

Using the Cauchy inequality, we obtain the following:

(

1

b0
ω0 +

1

b1
ω1 +

λ2

b2
ω2

)

g2(Cω, t) 6

√

(

1

b20
+

1

b21
+

λ2
2

b22

)

(‖ω0‖2 + ‖ω1‖2 + ‖ω2‖2)N‖C‖‖ω‖

, Nφ(λ)ϕ(λ)‖ω‖2. (32)

With the help of (19) and (32), and by the expression of G1(η, ω), we know that

‖G1(η, ω)‖2 = O(‖η‖4 + ‖ω‖4).

Thus, we obtain (31) by taking p = 4 in Theorem A1 (Appendix A).
Consequently, by taking the expectation on both sides of (29) and using (27), we obtain

E(V (η(T ), ω(T ))) 6 V (η0, ω0).

By the positive property of V (η, ω), there exists some α > 0 such that for all T > 0,

E(‖η(T )‖2 + ‖ω(T )‖2) 6 αV (η0, ω0),

and therefore
sup
t>0

E[‖η(t)‖2 + ‖ω(t)‖2] < ∞.

In addition, by invertible linear transformations ξ = Qη and E = Pω, we obtain

sup
t>0

E[‖ξ(t)‖2 + ‖E(t)‖2] < ∞,

which implies global stability:

sup
t>0

E[‖x1(t)‖2 + ‖x2(t)‖2 + ‖u(t)‖2] < ∞.

To prove the optimality of tracking, using (30) and (27), and by taking the expectation of (29), we can
see that

∫ T

0

E(‖η(t)‖2 + ‖ω(t)‖2)dt 6 αV (η0, ω0). (33)

Notice that T is arbitrary in (33). Hence, we have

∫ ∞

0

E(‖η(t)‖2 + ‖ω(t)‖2)dt 6 αV (η0, ω0) < ∞.

Then, by Lemma B1 (Appendix B), we conclude that E(‖η(t)‖2 + ‖ω(t)‖2) is uniformly continuous of t.
From the Barbalat Lemma [20], we obtain the following:

lim
t→∞

E(‖η(t)‖2) = 0, lim
t→∞

E(‖ω(t)‖2) = 0.
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Recall that ξ = Qη, E = Pω. Thus, we can obtain

lim
t→∞

E(‖ξ(t)‖2) = 0, lim
t→∞

E(‖E(t)‖2) = 0.

Consequently, we have

lim
t→∞

E‖xi(t)− x̂i(t)‖2 = 0, i = 1, 2,

lim
t→∞

E‖y∗ − x1(t)‖2 = 0.

Step 6. Finally, we demonstrate that ∆λ,µ is open and unbounded.
Let us select two distinct negative numbers λ0, λ1 arbitrarily. By the definitions of ϕ and φ, we easily

obtain that ϕ(λ) = O(1) and φ(λ) = O( 1
|λ2|) as λ2 tends to −∞.

Take µ2 = 2µ1 = −2|λ2|1+ε, where ε is any given positive number. Using the fact k2 = λ0 + λ1 + λ2,
we obtain Ψ(λ, µ) = O(|λ2|), Φ(λ, µ) = O(|1|), and Θ(λ, µ) = (Ψ(µ, λ)+

√
2λ0λ1λ2φ(λ)(λ0+λ1+λ2))

2 =
O(λ2

2) as λ2 tends to −∞. Therefore, we obtain the following:

lim inf
λ2→−∞

4µ0[λ0λ1λ2(1−Mφ(λ)ϕ(λ)) + Φ(λ, µ)N2ϕ2(λ)]

|λ2|2+ε
> m > 0.

This implies that the following inequality always holds when λ2 → −∞:

4µ0[λ0λ1λ2(1−Mφ(λ)ϕ(λ)) + Φ(µ, λ)N2ϕ2(λ)] > Θ(λ, µ).

Thus, (λ, µ) ∈ ∆λ,µ when λ2 → −∞, which means that ∆λ,µ is nonempty and unbounded. The proof of
the openness of Ωk,β is similar to [11]; thus, we omit it. This completes the proof of Theorem 1.

4 Conclusion

In this paper, we have considered a basic class of nonlinear uncertain stochastic systems and proposed a
state observer-based PID controller. A five-dimensional parameter space was constructed, within which
the three PID and two observer parameters can be selected arbitrarily to guarantee the global stability
of closed-loop stochastic control systems. Our theory and design methods demonstrate that the PID
controller is quite robust to the design parameters, nonlinear uncertainties, and system randomness.
Of course, many interesting problems still remain open. For example, it may be interesting to provide
a new parameter formula for the design of a PID controller, which is derived from the inherent (but
rarely noticed) relationship between PID and active disturbance rejection control [21]. It would also be
interesting to consider more complicated situations such as saturation, dead zone, time-delayed inputs,
sampled-data PID controllers under a prescribed sampling rate.
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Appendix A

Definition A1 ([17]). Let (Ω,F , P ) be a probability space. A filtration is a family of σ-algebra {Ft}t>0 satisfying Ft ⊂ Fs ⊂ F
for all 0 6 t < s < ∞. The filtration is considered to be right continuous if Ft =

⋂

s>t
Fs for all t > 0. When the probability space

is complete, the filtration is considered to satisfy the usual conditions if it is right continuous and F0 contains all P -null sets.

We consider the following stochastic system:

dx(t) = f(x(t), t)dt + σ(x(t), t)dB(t), (A1)

where x ∈ R
n is the state of the system, f ∈ R

n, σ ∈ R
n, and B(t) is (standard one-dimensional) Brownian motion. The f term

is referred to as a drift or vector field, and the noise term σdB(t) is an uncertainty model. The uncertainty of this model could

be caused by external random influences or by fluctuating coefficients and parameters in a mathematical model. The σ function is

referred to as a diffusion coefficient.

Itô’s formula [17]. We denote C2,1(Rn × R
+,R+) as the space of all nonnegative functions V (x, t) defined on R

n × R
+ that

are continuously twice differentiable in x and once in t. We define the differential operator L associated with (A1) as follows:

L =
∂

∂t
+

n
∑

i=1

fi(x, t)
∂

∂xi

+
1

2

n
∑

i,j=1

[σ(x, t)σT(x, t)]ij
∂2

∂xi∂xj

.

If L acts on function V ∈ C2,1(Rn × R
+,R+), then

LV (x, t) =
∂V

∂t
(x, t) + f

T
▽V (x, t) +

1

2
Tr[σσT

H(V )](x, t).

By Itô’s formula, we can obtain

dV (x(t), t) = LV (x, t)dt + (▽V (x(t), t))
T
σ(x(t), t)dB(t),

where ▽V is the gradient of V , H(V ) = Vxixj
is the n × n Hessian matrix of V , and Tr(A) denotes the trace of a matrix A.

Lemma A1 (Barbalat). Assume that function f : R
+ → R is uniformly continuous and limt→∞

∫

t

0
f(τ)dτ exists and is finite.

Then

lim
t→∞

f(t) = 0.

See Lemma A.6 in [20] for a detailed discussion.

Theorem A1. Let p > 2 and x0 ∈ Lp(Ω;Rd). Assume there exists a constant α > 0 such that, for all (x, t) ∈ R
d × [t0, T ]:

x
T
f(x, t) +

p − 1

2
|σ(x, t)|2 6 α(1 + |x|2).

Then, for the solution of (A1) on t ∈ [t0, T ], we obtain the following:

E|x(t)|p 6 2
p−2
2 (1 + E|x0|p)epα(t−t0)

.

See Theorem 4.1 in [16] for a detailed discussion.

Appendix B

Lemma B1. Let the following linear growth condition hold for all (x, t) ∈ R
d × [t0,∞):

‖f(x, t)‖ ∨ ‖σ(x, t)‖ 6 K‖x‖, (B1)

and let x(t) be a solution to SDE (A1) on [t0,∞). Let h(t) = E‖x(t)‖2, and assume that supt>t0
h(t) < ∞. Then, h(t) is a

uniformly continuous function of t in [t0,∞).

Proof. Let C = supt>t0
h(t), and assume that t0 6 t1 < t2. Then, we obtain the inequality |h(t2) − h(t1)| 6 E| ‖x(t2)‖2 −

‖x(t1)‖2|.
According to the Schwarz inequality, we obtain

E

∣

∣‖x(t2)‖2 − ‖x(t1)‖2
∣

∣ 6

√

E(‖x(t2)‖ + ‖x(t1)‖)2
√

E(‖x(t2)‖ − ‖x(t1)‖)2.

Therefore, it is easy to see that

E(‖x(t2)‖ + ‖x(t1)‖)2 6 2(E‖x(t2)‖2 + E‖x(t1)‖2) 6 4 sup
t>t0

h(t) = 4C, (B2)

https://doi.org/10.1007/s11432-018-9570-8
https://doi.org/10.1007/s11432-019-2712-7
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where the RHS of (B2) is a constant that is independent of t1, t2.

In addition, we can obtain the following:

E(‖x(t2)‖ − ‖x(t1)‖)2 6 E(‖x(t2) − x(t1)‖2
) = E

∥

∥

∥

∥

∥

∫

t2

t1

f(x(t), t)dt +

∫

t2

t1

σ(x(t), t)dB(t)

∥

∥

∥

∥

∥

2

6 2

(

E

∥

∥

∥

∥

∥

∫

t2

t1

f(x(t), t)dt

∥

∥

∥

∥

∥

2

+ E

∥

∥

∥

∥

∥

∫

t2

t1

σ(x(t), t)dB(t)

∥

∥

∥

∥

∥

2)

.

From (B1), it is easy to obtain the following:

E

∥

∥

∥

∥

∥

∫

t2

t1

f(x(t), t)dt

∥

∥

∥

∥

∥

2

6 E

[

∫

t2

t1

K‖x(t)‖dt
]2

6 K
2(t2 − t1)E

[

∫

t2

t1

‖x(t)‖2dt

]

= K
2
(t2 − t1)

∫

t2

t1

h(t)dt 6 K
2
C(t2 − t1)

2
.

From Itô’s isometry, we obtain

E

∥

∥

∥

∥

∥

∫

t2

t1

σ(x(t), t)dB(t)

∥

∥

∥

∥

∥

2

= E

[

∫

t2

t1

‖σ(x(t), t)‖2
dt

]

6 K
2
E

[

∫

t2

t1

‖x(t)‖2
dt

]

= K
2
∫

t2

t1

h(t)dt 6 K
2
C(t2 − t1).

Therefore, we conclude that

|h(t2) − h(t1)| 6
√
4C
√

2K2C[(t2 − t1)2 + (t2 − t1)] < 4KC

√

(t2 − t1)2 + (t2 − t1),

which implies h(t) is uniformly continuous.
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