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Abstract Conventional feature selection methods select the same feature subset for all classes, which means

that the selected features might work better for some classes than the others. Towards this end, this paper

proposes a new semi-supervised local feature selection method (S2LFS) allowing to select different feature

subsets for different classes. According to this method, class-specific feature subsets are selected by learning

the importance of features considering each class separately. In particular, the class labels of all available data

are jointly learned under a consistent constraint over the labeled data, which enables the proposed method

to select the most discriminative features. Experiments on six data sets demonstrate the effectiveness of the

proposed method compared to some popular feature selection methods.
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1 Introduction

Feature selection is an important problem for many tasks, including machine learning and pattern recog-
nition, which is considered with the aim to improve the performance and reduce the computational
cost [1, 2]. Feature selection methods are often applied when analyzing high-dimensional data such as
images and gene expression data [3–5]. Feature selection methods aim at finding features useful for the
task at hand and removing redundant or noisy features. Carefully selecting a subset of feature can speed
up the learning process and provide insights into the nature of data [3, 6, 7].

Conventional feature selection methods select a single feature subset for all the classes. Unsupervised
feature selection methods are designed to find the optimal subset by exploring the data structure. The
feature similarity was explored for unsupervised feature selection in [8], while the Laplacian score was
learned to select features in [9]. Supervised feature selection methods explore the discriminative infor-
mation encoded in class labels [10,11]. In [12], features were selected one by one based on spectral graph
theory. Features were selected in a supervised manner based on linear models with sparsity regulariza-
tion in [6, 13]. Semi-supervised feature selection methods have been proposed to leverage unlabeled and
labeled data [14, 15]. Features were selected by maximizing the classification margin and exploring the
manifold regularization over both labeled and unlabeled data in [14]. Constrained Laplacian score was
proposed for semi-supervised feature selection in [15]. To alleviate the need for labeled data that are
typically expensive to obtain, this study focuses on semi-supervised feature selection to jointly consider
labeled and unlabeled data.

Existing methods learn from data using the same feature subset for all the samples from different
classes. The underlying assumption is that the feature space of all classes can be optimally characterized
by a single feature subset [16, 17]. However, in fact, such an assumption may not be useful in some
cases, considering that people recognize samples from different classes using different features. Figure 1
illustrates one such example, where the shape feature is useful for distinguishing a banana from an orange,
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Figure 1 (Color online) Illustration of recognizing samples from different classes using different features. It can be observed that

images from different classes can be well recognized using different visual features such as shape and color.

while the color feature is useful to distinguish an orange from an apple. That is, it may be not optimal
to describe data of different classes using a common feature subset.

Towards this end, this work proposes a new semi-supervised local feature selection method (S2LFS) for
data classification by jointly exploring the discriminative information and class-specific feature selection.
According to the proposed method, an indicator vector learned for each class represents whether a specific
feature is chosen or not for the class. To leverage the discriminative information for classification, a
predicted class matrix is learned from all available data using discrete and nonnegative spectral analysis
with consistent constraints over the labeled data. As a result, the optimal feature subset minimizing
the predicted error with its corresponding class is selected. The proposed method is formulated as an
optimization problem and an algorithm to solve is presented. The experimental results over several real
data sets demonstrated the effectiveness of the proposed method for feature selection compared to several
state-of-the-art methods.

The main contributions of this study are summarized as follows.

• A novel semi-supervised local feature selection method is proposed to select different feature subsets
for different classes.

• The discriminative information and class-specific feature selection are jointly explored to guarantee
the effectiveness of the selected feature subsets.

• A predicted class matrix is learned using all available data by leveraging a discrete and nonnegative
spectral analysis model.

The rest of this paper is organized as follows. Related methods are briefly discussed in Section 2. The
proposed S2LFS method is detailed in Section 3. Section 4 presents the experimental results and their
analysis, including sensitiveness and convergence analysis. Section 5 concludes the paper and outline
future research directions.

2 Related work

Many feature selection methods have been proposed for finding the desired feature subset by explor-
ing different criteria. The widely studied methods are the global feature selection ones, which select
a common subset for all classes [18–20]. These methods can be grouped into three categories: unsu-
pervised, supervised and semi-supervised methods. Unsupervised feature selection methods explore the
data structure to select the desired feature subset [5, 8, 9, 21–24]. For example, feature similarity was
explored in [8], while He et al. [9] proposed to learn the Laplacian score of data. The multi-cluster fea-
ture selection (MCFS) method [21] was proposed for unsupervised feature selection based on a two-step
spectral regression approach. Spectral analysis was employed to learn cluster indicators for unsupervised
feature selection [22–25]. The redundancy for feature selection was explored in [1, 5]. To improve the
discriminative ability of selected feature subsets, supervised feature selection methods were proposed to
explore the available label information [10–12]. Linear prediction models with sparsity regularization
were proposed to select the discriminative feature subsets [6, 13]. The class correlation information was
preserved for supervised feature selection in [26]. In [27], supervised feature selection was performed
using self-weighted orthogonal linear discriminant analysis. The cost of obtaining labeled data for super-
vised learning is high [28, 29]. To address this problem, semi-supervised feature selection methods were
proposed by jointly exploring unlabeled and labeled data [14, 15, 30–33]. In [31], features were ranked
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based on an extended least square regression model. This study focuses on semi-supervised feature selec-
tion considering both the labeled and unlabeled data. Several survey papers investigated global feature
selection methods, e.g., further details on these methods can be found in [34].

Methods such as co-clustering [35] and subspace clustering [36–38] were proposed to explore local
information for feature selection. In co-clustering, features and samples are both clustered using a feature
matrix to find co-clusters. Subspace clustering finds clusters within different subspaces assuming that
valid clusters are defined by only a subset of dimensions. In contrast, local feature selection aims to find
different feature subsets for different classes. In [17], localized feature selection was proposed to select a
feature subset for each region of the sample space. In [39], a unified probabilistic method was proposed to
perform global and local feature selection for clustering. An embedded method was developed in [40] to
locally weight variables for global feature selection. These methods mainly explore the local information
to select feature subsets.

In contrast to previous methods, the method proposed in this paper aims to select label-specific feature
subsets, generating different feature subsets for different classes. The discriminative ability of the selected
features is also guaranteed to well predict the labels of data.

3 Semi-supervised local feature selection

This section presents the proposed S2LFS method for finding class-specific discriminative feature subsets.

3.1 Preliminary

Throughout this paper, bold uppercase and lowercase characters are used to denote matrices and vectors,
respectively. Scalars are denoted using lowercase italic characters. Given a matrix A, its i-th column
vector and j-th row vector are expressed as ai and aj , respectively. Aij is the (i, j)-th element of A.
Tr[A] denotes the trace of the square A, while AT denotes the transposed matrix of A. The Frobenius
norm of A ∈ R

m×n can be obtained as ‖A‖2F =
∑m

i=1

∑n

j=1 A
2
ij = Tr[ATA]. 1m = [1, . . . , 1]T ∈ R

m×1

and Ic ∈ R
c×c is an identity matrix.

Semi-supervised learning considers a data set X = [x1, . . . ,xn] ∈ R
d×n with c classes. The data set has

two parts: l labeled samples XL = [x1, . . . ,xl] with their corresponding labels YL = [Y1, . . . ,Yl]
T ∈ R

l×c,
and u = n− l unlabeled samples XU = [xl+1, . . . ,xn] with their unknown labels YU = [Yl+1, . . . ,Yn]

T ∈
R

u×c. For the labeled data, Yij = 1 if xi is labeled with the j-th class and 0 otherwise. Let G ∈ R
n×c

denote the learned label matrix. Semi-supervised feature selection can be formulated as follows:

min
W

inf
f∈F

EX,Y L(Y , f(X,W )), (1)

where Y = [YL;YU ], W denotes the feature selection matrix, F denotes the class of the predicted
function, L denotes the loss function, and E denotes the expectation.

3.2 Problem formulation

The proposed S2LFS method aims to find a feature subset containing the most discriminative features
for each class separately, by simultaneously exploring labeled and unlabeled data. The discriminative
ability of the selected subsets is leveraged jointly.

A discriminative analysis model is leveraged to learn the label information of unlabeled data. Inspired
from semi-supervised learning, the discriminative information is explored using a label propagation model,
which enables to guide the local feature selection procedure. A label matrix G is learned for unlabeled
data under consistent constraints on labeled data. That is, the learned label matrix for labeled data is
constrained to be consistent with their groundtruth label matrix. Moreover, local information is consid-
ered to preserve the structure information of the data. The manifold structure smoothness constraints
are introduced to explore local information for simplicity [41]. Therefore, the optimization problem of
label propagation can be formulated as the following problem:

min
G

Tr[GTLG] s.t. GL = YL, (2)

where L = D− (S+ST)/2 is the Laplacian matrix, S is the affinity matrix of data, and D is a diagonal
matrix with Dii =

∑n

j=1(Sij + Sji)/2. Each element Gij of G denotes the binary relationship between
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the i-th sample and the j-th class. According to the definition of G, Gij = 1 or Gij = 0, and G1c = 1n.
Thus, the above optimization problem becomes

min
G

Tr[GTLG] + Tr[(G − Y )TU(G − Y )] s.t. G ∈ {0, 1}n×c, G1c = 1n, (3)

where U is a diagonal matrix representing consistent constraints imposed on the labeled data, with Uii

equaling to a very large number (e.g., 1010) if i = 1, . . . , l and 0 if i = l + 1, . . . , n.

With the learned label matrix G, the feature subset that has the most discriminative ability is selected
for each class. For this purpose, a regularized linear regression model is introduced with an indicator
vector for each class. The induced prediction model is formulated as follows:

min
W ,Z

c∑

k=1

L(gk, f(X, zk,wk)) + λ‖W ‖2F s.t. zk ∈ {0, 1}d, zT
k 1d = m, (4)

where zk is an indicator vector representing whether a feature is chosen or not for the k-th class, wk is
the prediction function for the k-th class based on the selected features, m denotes the number of the
desired features, and λ is the regularization parameter.

To jointly explore discriminative information and local feature selection, the discriminative and regu-
larized linear regression models are considered together to formulate the following problem:

min
G,W ,Z

c∑

k=1

L(gk, f(X, zk,wk)) + λ‖W ‖2F + β(Tr[GTLG] + Tr[(G − Y )TU(G − Y )])

s.t. G ∈ {0, 1}n×c, G1c = 1n, zk ∈ {0, 1}d, zT
k 1d = m, (5)

where β is a trade-off parameter that balances feature selection and discriminative analysis. Owing to
the constraints imposed on G and Z, the above problem is NP-hard. The constraints imposed on G

ensure that only one element in each row of G is equal to 1 and all the others are 0. Similar to [5], the
nonnegative and orthogonal constraints imposed on G have the same properties. In fact, features are
selected according to their importance. Thus, the integer constraints imposed on Z are also relaxed to real
nonnegative constraints. To select several features without introducing an additional hyper-parameter, a
simplex constraint zT

k 1d = 1 is introduced. Consequently, the above problem can be re-formulated as

min
G,W ,Z

c∑

k=1

L(gk, f(X, zk,wk)) + λ‖W ‖2F + β(Tr[GTLG] + Tr[(G − Y )TU(G − Y )])

s.t. G > 0, GTG = Ic, zk > 0, zT
k 1d = 1. (6)

To optimize problem (6), the loss function L and function class F should be defined. For simplicity, the
squared error L(x, y) = (x− y)2 and linear functions are used.

min
G,W ,Z

c∑

k=1

‖gk −XTdiag(
√
zk)wk||2 + λ‖W ‖2F + β(Tr[GTLG] + Tr[(G− Y )TU(G − Y )])

s.t. G > 0, GTG = Ic, zk > 0, zT
k 1d = 1. (7)

To simplify the model, diag(
√
zk)wk is substituted with wk.

min
G,W ,Z

c∑

k=1

‖gk −XTwk||2 + λ

c∑

k=1

wT
k diag(z

−1
k )wk + β(Tr[GTLG] + Tr[(G− Y )TU(G − Y )])

s.t. G > 0, GTG = Ic, zk > 0, zT
k 1d = 1. (8)

The value of each Zjk represents the importance of the j-th feature for the k-th class. If the j-th feature
is irrelevant to the k-th class, the learned value of Zjk is small, which leads to a large penalty being
applied to Wjk.
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3.3 Optimization

The proposed problem is solved using an iterative algorithm. Before optimization, the closed form solution
of W can be easily obtained by setting the derivative of the above objective function with respect to W

to 0.

wk = (XXT + λdiag(z−1
k ))−1Xgk. (9)

By substituting wk by the above equation, the problem (8) can be rewritten as

min
G,Z

−
c∑

k=1

gT
k X

T(XXT + λdiag(z−1
k ))−1Xgk + β(Tr[GTLG] + Tr[(G − Y )TU(G − Y )])

s.t. G > 0, GTG = Ic, zk > 0, zT
k 1d = 1. (10)

For a given Z, G is optimized by using the Lagrange multiplier method and the Karush-Kuhn-Tucker
(KKT) condition.

min
G,Z

−
c∑

k=1

gT
k X

T(XXT + λdiag(z−1
k ))−1Xgk + β(Tr[GTLG] + Tr[(G− Y )TU(G − Y )])

+
γ

2
‖GTG− Ic‖2F +Tr[ΦTGT], (11)

where γ is a very large positive parameter to ensure that the orthogonality is satisfied and φij is a
Lagrange multiplier for Gij > 0. The updated rules are obtained as follows:

gk = gk ⊗ [(T + βU + γIn)gk]⊘ [(β(L+U) + γGGT)gk], (12)

where T = XT(XXT + λdiag(z−1
k ))−1X. ⊗ and ⊘ denote the element-wise multiplication and division

operators, respectively.
With the learned G, the optimal value of W can be obtained using (9). Then, the solution of Z can

be reduced to the following sub-problem:

min
zk

wT
k diag(z

−1
k )wk zk > 0, zT

k 1d = 1. (13)

The solution of zk can be obtained using the Lagrange multiplier and KKT conditions as Zjk =

|Wjk|/
∑d

h=1 |Whk|.
The most important feature subset for each class can be obtained by finding solutions of G and zk

for each class. The class labels of unlabeled data can be obtained using the learned GU . For any new
data sample x, the found features are first chosen by using the learned zk for each class, and then, the
probability score is predicted using wk. The class label is assigned to the one with the highest predicted
probability.

As the aforementioned analysis, it may be impossible to directly solve all the desired variables. There-
fore, an iterative algorithm summarized in Algorithm 1 is used to update them. The convergence criterion
employed in this study is that |Lt−1 − Lt|/Lt−1 < 10−6, where Lt is the value of the objective function
in the t-th iteration. The objective function monotonically decreases in each updating step, and the
formulated objective function has the lower bound. This proposed optimization algorithm converges to
a local minimum. The convergence rate is evaluated in Section 4.

Algorithm 1 The proposed S2LFS algorithm

Input:

Data feature matrix X;

Labeled matrix YL;

Parameters λ and β;

Output:

Feature selection matrix W .

1: Compute the image similarity S and Laplacian matrix L;

2: Initialize U and Z;

3: repeat

4: Update W according to (9);

5: Update G according to (12);

6: Update Z by optimizing problem (13);

7: until Convergence criterion satisfied.
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Table 1 Dataset description

Dataset # of sample (n) # of feature (d) # of class (c)

USPS 9298 256 10

COIL20 1440 1024 20

ORL 400 1024 10

Binary Alphabet 1404 320 36

Pointing4 2790 490 15

YaleB 2414 1024 38

3.4 Computational complexity analysis

This subsection will discuss the computational cost of the proposed S2LFS method. The complexity of
the employed algorithm is described using the big O notation.

It can be seen from Algorithm 1 that the affinity graph is constructed first using the Euclidean distance
with cost of O(dn2), where n is the number of data points and d is the dimensionality of features. The
desired variables are updated iteratively. It takes O(d3 + d2n) to obtain (XXT + λdiag(z−1

k ))−1X.
The computational cost to update W is O(dnc2), where c is the number of classes. It takes O(cn2) to
calculate GGT and O(cdn2) to update G. The cost of updating Z is O(cd). Therefore, the total cost
of the proposed method is O(dn2 + T (cd3 + cd2n+ c2dn+ cn2 + cdn2 + cd)), where T is the number of
iterations. Since n ≫ c, the total cost is O(T (cd3 + cd2n+ cn2)).

It is worth noting that the proposed method is scalable to larger data sets, although the computational
cost of the proposed method would also become larger in this case. Once the desired variables are
obtained, the learned Z can be used to select features for all data, and then the label information can
be predicted based on the selected features. If the size of the used data set is too large, a subset can be
randomly sampled to learn the feature selection model. The learned feature selection model is used to
choose a feature subset for all data, including the sampled subset and the remaining data. That is, the
proposed method is scalable to larger data sets.

4 Experiments

This section will investigate whether the proposed method can select reasonable local features for each
class. The experiments are conducted on six real-world data sets. In the experiments, the data are
normalized with zero mean and unit variance.

4.1 Data set description

Experiments are conducted on six publicly available data sets including USPS [42], COIL20 [43], ORL1),
Binary Alphabet2), Pointing4 [44] and YaleB [45]. The details of these data sets are listed in Table 1 and
briefly described as follows.

• USPS [42]. This data set contains 9298 images of 10 handwritten digits. The size of each image is
16× 16. Each image is described by a 256 dimensional feature vector.

• COIL20 [43]. This data set contains 1440 grayscale images of 20 object classes. Each class has
72 images. The size of each image is 32× 32. And each image is described by a 1024 dimensional feature
vector.

• ORL. This data set is composed of face images from 40 classes. There are 400 samples and each
sample is represented by a 1024 dimensional feature vector.

• Binary Alphabet. This data set contains 1404 samples from 36 classes. Each sample is represented
by a 320 dimensional feature vector.

• Pointing4 [44]. This data set has 2790 samples from 15 classes. Each sample is represented by a
490 dimensional feature vector.

• YaleB [45]. This data set has 2414 images from 38 classes. The size of each image is 32 × 32. A
vector with 1024 dimension is introduced to describe each data sample.

1) The ORL database of faces. http://www.face-rec.org/databases/.

2) Handwritten digits. https://cs.nyu.edu/ roweis/data.html.
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Table 2 Classification accuracy (CA%±std) of different feature selection methods over the USPS and COIL20 data sets with

selected 80 and 100 features, respectivelya)

Data set
USPS COIL20

s = 10 s = 20 s = 50 s = 10 s = 20 s = 50

SAFS Semi 82.6 ± 1.6 84.7 ± 1.3 85.7 ± 0.7 60.2 ± 2.3 66.9 ± 1.4 74.6 ± 1.2

CLS Semi 81.5 ± 0.9 84.3 ± 1.2 85.9 ± 1.0 62.0 ± 3.6 70.4 ± 2.0 75.7 ± 1.2

RSSL Semi 82.9 ± 1.6 86.1 ± 1.2 87.3 ± 1.3 68.6 ± 2.0 75.5 ± 1.6 82.6 ± 1.6

RLFS Semi 82.3 ± 1.8 85.3 ± 1.0 86.9 ± 0.5 67.4 ± 1.6 76.6 ± 1.5 85.2 ± 1.7

S2FS Semi 80.7 ± 1.0 82.4 ± 2.3 83.6 ± 2.1 69.1 ± 2.4 77.9 ± 1.2 85.6 ± 1.8

S2LFS Semi 84.5± 0.5 87.7± 1.0 88.9± 1.3 71.5± 1.3 78.2± 0.4 87.8± 0.6

SAFS Test 81.7 ± 0.8 84.2 ± 0.7 85.6 ± 1.1 58.1 ± 2.9 66.2 ± 3.1 74.2 ± 2.3

CLS Test 81.1 ± 0.3 83.4 ± 1.2 85.4 ± 0.8 59.9 ± 2.3 68.7 ± 2.4 75.4 ± 0.9

RSSL Test 82.5 ± 1.1 85.6 ± 1.3 86.4 ± 1.0 67.1 ± 2.6 74.9 ± 1.3 80.9 ± 2.0

RLFS Test 82.1 ± 1.7 85.2 ± 0.7 86.4 ± 2.2 66.3 ± 3.3 73.5 ± 2.2 83.1 ± 1.4

S2FS Test 80.3 ± 2.6 82.2 ± 2.4 83.4 ± 2.1 68.1 ± 0.7 75.9 ± 1.7 85.2 ± 1.1

S2LFS Test 83.6± 0.5 87.2± 0.9 87.6± 0.4 69.4± 0.5 77.9± 1.0 87.1± 0.8

a) The best results are highlighted in bold.

For each data set, 50% of samples were randomly chosen as training data and the remaining samples
were used as test data. Furthermore, s% of training data were randomly sampled as labeled data. In
experiments, s is set to 10, 20 and 50, respectively.

4.2 Comparison scheme

To demonstrate the effectiveness of the proposed method for feature selection, it was compared to the fol-
lowing representative semi-supervised feature selection methods and feature selection methods exploring
local information.

• SAFS. The spectral analysis semi-supervised feature selection method learning feature’s relevance
using a regularization framework [30].

• CLS. The constrained laplacian score method evaluating the relevance of features by preserving
their locality using constraints [15].

• RSSL. The robust structured subspace learning method for semi-supervised feature selection by
exploring local information [37].

• RLFS. The rescaled linear regression-based semi-supervised feature selection method rescaling re-
gression coefficients using a set of scale factors for feature selection in [31].

• S2FS. The proposed semi-supervised feature selection method using one feature selection indicator
vector for all classes.

• S2LFS. The proposed semi-supervised local feature selection method exploring discriminative in-
formation and performing class-specific feature selection.

The above listed methods were compared using selected features with the same dimensionality. The
grid search strategy was used for all the methods to tune their hyper-parameters. The search range is
{10−3, 10−2, 10−1, 1, 10, 102, 103} for all the methods. The parameters are tuned based on the unlabeled
learning data. Following previous studies on feature selection, the number of selected features was set to
{50, 80, 110, 140, 170, 200} for the USPS data set and {50, 100, 150, 200, 250, 300} for the other data sets.
The ridge regression model was used as the classifier to verify the performance of the methods in terms
of their classification accuracy over unlabeled and test data.

4.3 Results and analysis

The training and test data sets were generated five times to alleviate the bias of the data partitioning
process, and all the methods were run over these five sets. The average results over the five runs obtained
by each method for the unlabeled and test data are listed in Tables 2–4.

From the results, it can be easily observed that the proposed S2LFS method achieves the best perfor-
mance over the unlabeled and test data for all the six data sets, which verifies the effectiveness of the
proposed method. There are some other observations. First, the proposed S2LFS method outperforms
S2FS, which demonstrates the superiority of the local feature selection scheme. Second, the proposed
S2LFS is better than RLFS, which focuses on rescaling the regression coefficients of a rigid regression
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Table 3 Classification accuracy (CA%±std) of different feature selection methods over the ORL and Binary Alphabet data sets

with 100 selected featuresa)

Data set
ORL Binary Alphabet

s = 10 s = 20 s = 50 s = 10 s = 20 s = 50

SAFS Semi 46.6 ± 6.5 49.6 ± 2.3 65.7 ± 1.9 13.9 ± 0.7 14.8 ± 1.6 32.4 ± 2.7

CLS Semi 30.2 ± 4.3 31.9 ± 2.1 34.2 ± 3.8 15.9 ± 1.5 16.6 ± 1.3 31.8 ± 1.7

RSSL Semi 47.5 ± 3.9 52.4 ± 4.0 70.8 ± 3.4 16.4 ± 1.2 19.6 ± 0.8 38.1 ± 1.6

RLFS Semi 42.1 ± 2.8 43.5 ± 3.2 68.3 ± 5.0 16.6 ± 0.8 18.2 ± 1.8 35.6 ± 2.9

S2FS Semi 49.4 ± 3.7 54.4 ± 2.7 72.5 ± 3.2 18.2 ± 0.7 20.2 ± 1.2 39.8 ± 1.1

S2LFS Semi 51.2± 2.5 55.8± 1.8 74.3± 2.6 19.8± 1.3 21.8± 1.1 41.3± 1.5

SAFS Test 44.7 ± 3.4 46.8 ± 2.9 60.7 ± 6.6 13.5 ± 1.3 13.4 ± 1.0 31.5 ± 1.5

CLS Test 31.1 ± 3.5 32.3 ± 3.1 34.1 ± 4.6 14.5 ± 1.0 16.2 ± 1.4 31.9 ± 1.1

RSSL Test 45.0 ± 0.5 49.4 ± 1.6 69.5 ± 3.2 15.6 ± 0.9 18.3 ± 0.8 35.7 ± 1.2

RLFS Test 40.8 ± 4.7 42.6 ± 4.8 67.3 ± 3.8 15.4 ± 0.7 17.5 ± 1.9 34.2 ± 1.9

S2FS Test 47.6 ± 1.2 51.2 ± 1.8 71.3 ± 1.4 16.2 ± 1.0 19.7 ± 0.6 36.4 ± 0.9

S2LFS Test 50.6± 1.8 52.5± 1.6 72.3± 1.3 17.5± 0.4 20.6± 1.2 38.1± 1.4

a) The best results are highlighted in bold.

Table 4 Classification accuracy (CA%±std) of different feature selection methods over the Pointing4 and YaleB data sets with

100 selected featuresa)

Data set
Pointing4 YaleB

s = 10 s = 20 s = 50 s = 10 s = 20 s = 50

SAFS Semi 62.1 ± 1.1 68.7 ± 2.5 74.7 ± 1.5 48.3 ± 1.5 61.5 ± 2.4 77.2 ± 1.1

CLS Semi 63.3 ± 1.6 67.8 ± 2.1 72.4 ± 1.9 49.8 ± 3.5 66.0 ± 2.4 80.3 ± 1.0

RSSL Semi 64.2 ± 2.9 72.9 ± 0.8 80.6 ± 2.3 56.8 ± 2.9 70.9 ± 1.7 81.6 ± 2.4

RLFS Semi 65.7 ± 1.6 69.4 ± 0.9 77.2 ± 1.0 55.4 ± 1.4 71.3 ± 1.5 82.7 ± 1.2

S2FS Semi 66.6 ± 1.2 74.7 ± 1.3 81.6 ± 1.1 57.2 ± 2.4 72.9 ± 2.3 84.6 ± 1.9

S2LFS Semi 68.4± 1.5 75.7± 0.8 83.8± 1.5 58.5± 1.9 74.1± 1.3 86.2± 1.3

SAFS Test 62.1 ± 2.4 64.7 ± 2.5 72.3 ± 1.4 46.1 ± 3.0 59.1 ± 2.5 75.9 ± 4.3

CLS Test 62.1 ± 2.3 66.5 ± 1.3 71.2 ± 0.8 48.2 ± 4.2 65.5 ± 1.9 79.2 ± 1.4

RSSL Test 62.7 ± 0.7 71.6 ± 1.3 78.3 ± 1.7 55.6 ± 2.0 68.4 ± 2.2 79.8 ± 2.1

RLFS Test 63.6 ± 2.3 69.9 ± 1.5 75.2 ± 1.2 55.2 ± 3.5 71.5 ± 2.2 81.9 ± 1.2

S2FS Test 65.6 ± 1.6 72.8 ± 2.4 80.4 ± 1.2 56.5 ± 1.7 72.5 ± 1.1 82.5 ± 0.9

S2LFS Test 67.3± 2.1 74.1± 1.5 82.2± 1.4 57.3± 0.8 73.5± 1.2 84.8± 1.6

a) The best results are highlighted in bold.

model, which can well indicate the superiority of the proposed local feature selection method. Fur-
thermore, S2LFS and RSSL, which are semi-supervised feature selection methods based on nonnegative
spectral analysis, achieve better results in most cases compared to SAFS, CLS, and RLFS. This indicates
that the underlying semantic information of unlabeled data can be uncovered, which can help guide the
procedure of feature selection.

The experiments were conducted by varying the number of selected features. The results with s = 20
over the test data are illustrated in Figure 2, where the proposed S2LFS method is compared with SAFS,
CLS, RSSL, and RLFS. It can be noticed from the figure that the proposed S2LFS method achieves
the best classification performance over all the six data sets with different numbers of selected features
in almost all cases. This verifies the effectiveness of the proposed method that jointly learns the class
labels of unlabeled data and local feature selection indicators for feature selection. The anomalous results
obtained for the Binary Alphabet data set can be explained by the feature distribution. When the top 150
features are selected, classifiers are being somewhat misled. This misleading information can be removed
or rectified if selecting less or more features.

4.4 Sensitivity analysis

The proposed method relies on two hyper-parameters, β and λ, which balance the importance of different
terms. Different values of these two hyper-parameters may lead to different performance. Hence, it is
important to conduct the hyper-parameter sensitivity study with respective to β and λ using the six data
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Figure 2 (Color online) The classification accuracy of different feature selection methods with respect to (w.r.t.) different

numbers of selected features on the six data sets with s = 20. (a) USPS; (b) COIL20; (c) ORL; (d) Binary Alphabet; (e) Pointing4;

(f) YaleB.
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Figure 3 (Color online) Performance variation of the proposed method w.r.t. different values of the parameters β and λ over the

(a) USPS, (b) COIL20, (c) ORL, (d) Binary Alphabet, (e) Pointing4, and (f) YaleB data sets with s = 20.

sets.

Figure 3 illustrates the experimental results for the test data of all the six data sets with s = 20. The
number of selected features was set to 80 for the USPS data set and 100 for the other data sets. It can be
noticed from the figure that the values of the hyper-parameters β and λ actually affect the classification
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Figure 4 (Color online) Convergence curves for the proposed method over the (a) USPS, (b) COIL20, (c) ORL, (d) Binary

Alphabet, (e) Pointing4, and (f) YaleB data sets.

performance, which indicates the importance of the corresponding terms. That is, it is necessary and
helpful to introduce the corresponding terms. While the default values of these two hyper-parameters can
be provided, it would be advisable to tune them. The suitable ranges for the default values are [0.1, 1]
for β and [0.1, 10] for γ.

4.5 Convergence study

The convergence of an optimization algorithm is an important problem. Figure 4 illustrates the conver-
gence curves for the proposed S2LFS over all the six data sets.

In this figure, the x-axis represents the number of iterations while the y-axis represents the values of
the corresponding objective functions. It can be noticed from the convergence curves that the proposed
optimization algorithm quickly converges to the local optimal solutions. That means that the proposed
method enables efficient learning of the desired class-specific feature selection matrix.

5 Conclusion

This paper presented a new semi-supervised local feature selection method that selects different discrimi-
native feature subsets to represent samples from different classes. According to the proposed method, the
class-specific importance scores of features for different classes are learned simultaneously with the classes
of unlabeled data, which allows the selected features to optimally adapt to the classes. The discriminative
ability of the selected feature subsets was explored. Experiments on six real data sets demonstrated the
effectiveness of the proposed local feature selection method. In the future, we plan to extend the proposed
method to address the zero-shot learning problem and the cases where only a big amount of unsupervised
data are available.
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