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Abstract Although considerable success has been achieved in urban air quality prediction (AQP) with

machine learning techniques, accurate and long-term prediction is still challenging. One of the key issues

for existing AQP approaches is that air quality monitoring stations are sparsely distributed, typically with

around ten monitoring stations per city. As air quality may change abruptly in a local area, it is difficult to

perform AQP accurately in areas that are far away from observation points. In addition, due to the large

distance between every two monitoring stations, we cannot effectively leverage spatial relations among them

to improve the AQP accuracy. In this paper, thanks to the development of low-cost air quality sensors, we

are now able to collect a large-scale air quality dataset with 393 deployed air quality monitoring stations

in a 120 km × 70 km region, which is more than ten times denser than existing AQP datasets. Further,

we present a novel method to handle the data effectively. Specifically, we first convert the observed data

from irregularly distributed monitoring stations into a regular image-like pollution map, which can then be

processed with advanced deep convolutional networks. The experimental results show that the proposed

approach can simultaneously model the temporal and spatial relations in our large-scale densely-observed

dataset, leading to significantly improved AQP results.
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1 Introduction

Air quality control has become increasingly important in recent years, as air pollution’s negative impacts
have been extensively studied and spread to people [1]. In particular, the negative impacts of fine partic-
ulate matter (PM2.5) pollution on human respiratory symptoms have been validated by a considerable
number of researches [2–4]. Potential implications of PM2.5 air pollution include free radical peroxida-
tion, imbalanced intracellular calcium homeostasis, inflammatory injuries, cardiovascular diseases, and
lung cancer [5–7]. Hence, air quality prediction (AQP), a fundamental task for air quality control, has
attracted great research interests in the artificial intelligence field since decades ago [8–10]. Among many
AI-based AQP methods, machine learning has been demonstrated to be rather effective [11, 12] due to
its strong modeling capability.

Although advanced machine learning algorithms have greatly improved the precision of AQP, they still
have limitations in performing accurate and long-term predictions. It is well known that air quality data,
like the PM2.51) observations, can be viewed as a typical spatiotemporal dataset, which ideally involves
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1) PM2.5, stands for atmospheric particulate matter that has a diameter of fewer than 2.5 µm, which is an essential metric for

air quality.
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Figure 1 (Color online) A comparison of the number of monitoring stations in previous work [16] (a) and this paper (b). Both

sub-figures show a region of approximately 70 km × 70 km. The density of observation points is about ten times higher than that

in previous work.

both spatial modeling and temporal modeling. However, classical AQP models, such as auto-regressive
moving average (ARMA) [13] and support vector regression (SVR) [14], treat each air quality monitoring
station independently, totally ignoring the spatial relations among the air quality values of different
stations. Therefore, they are not capable of using the data from neighboring stations to improve AQP
accuracy. To address this issue, Zheng et al. [15] proposed the prediction aggregator (PA) to fuse the
spatial information in AQP models. This approach is shown to outperform methods that are only using
temporal information, but it is a complicated two-stage algorithm which is non-trivial to implement, and
the improvement is also limited.

Overall, there are two challenges for existing AQP methods: (1) the lack of densely observed data that
allow effective spatial modeling; and (2) the lack of integrated algorithms that can perform both spatial
and temporal modeling simultaneously. The first challenge originates from the fact that high precision
air quality sensors are expensive, and there are usually a limited number of monitoring stations in each
city. Since air pollution has local property, it is difficult to predict the air quality in areas that are far
away from monitoring stations. Moreover, we cannot adequately model the spatial dependency of the air
quality at different stations as they are geographically far away from each other. The second challenge
can be considered as a byproduct of the first issue. Because of the sparsely observed data, researchers
have made little effort to develop practical algorithms to incorporate spatial information in temporal
AQP.

In this paper, we aim to address the aforementioned two challenges, specifically. First, we collect a large-
scale air quality dataset2) with much denser monitoring stations, using low-cost sensors networks, which
is shown in Figure 1 [16]. Compared to the existing air pollution datasets, e.g., those used in [14,17,18],
which contain data observed from less than 40 monitoring stations in a single city, our dataset has
393 air pollution monitoring stations in a region of 120 km × 70 km. This large-scale dataset allows
for accurate and long-term prediction of future air quality. Second, we propose a novel deep learning
framework to handle this large-scale air quality dataset. This is achieved by transforming the dense air
quality data to image-like pollution maps, as the monitoring points are dense enough to produce an image
with decent resolution. Then image data can be effectively processed with advanced deep convolutional
networks [19, 20]. It is well-known that convolutional networks can effectively explore spatial relations
in image data; our model can perform spatial and temporal modeling simultaneously in an end-to-end
manner, leading to a simple and accurate approach for AQP.

In summary, our contributions mainly include:

• A large-scale air pollution dataset is collected. The dataset contains the PM2.5 values from 393
monitoring stations in a region of 120 km × 70 km over five months, with one observation per hour per
station.

• An end-to-end deep learning framework for spatiotemporal AQP. With the collected densely observed
data, we first transform them into 3-dimensional tensors, which contain both the temporal and spatial
information. Then a deep convolutional network is deployed to predict the future air quality of the city.

2) We focus on PM2.5 in this paper, although our proposed approach can be generally applied to other air quality metrics as

well.
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• Comprehensive experiments on the large-scale real dataset are conducted to demonstrate the effec-
tiveness of the proposed approach.

2 Related work

2.1 Air quality prediction

The existing AQP methods are generally categorized into deterministic and statistical AQP models. The
deterministic AQP models are designed to simulate pollutant discharge, transfer, diffusion, and removal
processes with dynamic data of a limited number of monitoring points in a model-driven way [21, 22]
based on theoretical meteorological and chemical models in environmental science [9, 22, 23]. However,
deterministic AQP models have difficulty in modeling the generation and transformation of air pollution
due to insufficient data and incomplete theoretical foundations, and thus frequently achieve low forecasting
accuracy in urban AQP [24].

As the complexity in modeling the underlying factors causing air pollution, statistical methods in a
data-driven manner have become more and more popular in AQP. The statistical AQP methods can be
divided into linear AQP models, such as multi-linear regression [25] and ARMA [13], and nonlinear ones,
such as long short-term memory (LSTM) [26, 27] and kernel SVR [14]. Furthermore, a stacked selective
ensemble model is proposed for the PM2.5 forecast to boost the performance of a single model [28].
Although recent research has shown the high performance of statistical methods in AQP, these methods
only predict air quality at monitoring stations and ignore the spatial correlations between the stations.
As a strong correlation between these monitoring stations reflects air pollutant dispersion patterns, re-
searchers propose several spatiotemporal AQP models to integrate spatial information during AQP. Zheng
et al. [15] proposed a hybrid AQP model, which applies spatial aggregation in a temporal predictor based
on a linear regression model. Moreover, the hybrid AQP model named deep distributed fusion network
for AQP [29] also utilizes spatial aggregation in a deep network to accurately forecast future air pollu-
tion. Nevertheless, the spatial information can only be utilized by spatial aggregation in a non-trivial
way because of the lack of densely observed data.

Different from these methods, our AQP model transforms the air quality data into image-like pollution
maps due to the proposed densely observed data. Therefore, our network can conduct AQP with spatial
and temporal information in an end-to-end manner. This non-trivial implementation further ensures the
effectiveness of our network in AQP.

2.2 Deep learning for spatiotemporal prediction in urban computing

With the fast development speed of modern cities, urban computing [30, 31], especially spatiotemporal
analysis [32, 33] and prediction [34], has become a popular research field in recent years. The latest
research showed the ability of deep learning algorithms to solve spatiotemporal prediction. Lv et al. [35]
made traffic prediction with a stacked auto-encoder model to learn generic traffic flow features with spatial
and temporal correlations. ST-ResNet [36] is proposed to collectively forecast the inflow and outflow of
crowds in each and every region of a city. Liang et al. [37] represented a deep multi-view network to
predict taxi demand based on convolutional neural networks (CNN) and LSTM.

More recently, there has been a trend of applying deep learning methods to solve urban air quality
challenges in the form of urban computing. U-air [16] is proposed to infer the real-time and fine-grained
air quality throughout an entire city. Moreover, a general AQP model based on deep neural networks is
proposed for spatiotemporal data [38].

However, these models are mainly built based on sparsely distributed monitoring stations. To effectively
handle the proposed air quality dataset with densely deployed monitoring stations, we propose an AQP
model based on deep architecture.

3 Large scale air pollution prediction

3.1 Datasets

In this subsection, we give a brief introduction of the proposed large-scale air pollution dataset. The
dataset contains the PM2.5 concentrations sampled by 393 monitoring stations deployed in a region of
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Table 1 Dataset description

Item Description

Monitoring points 393

Collection time period September/1st/2018–November/30th/2018

May/1st/2019–June/30th/2019

Resolution 1 hour per record

PM2.5 concentrations µg/m3

Longitude Location information

Latitude Location information

Time series Pollution map Imputation Input data

Device 40727

Device 40184

PM2.5

PM2.5

W

TH

t1

t1t1

t2

t1 t2

t2 t2

t

t

Figure 2 (Color online) An illustration of the transformation of our observed data. The observed PM2.5 concentrations of all

monitoring points at time t1 are firstly transformed into a pollution map according to the stations’ geolocation. Then the pollution

map is imputed into a regular image, and this transformation is conducted for all observed hours to consist of the input tensor to

facilitates the use of a deep convolutional network.

120 km × 70 km. The PM2.5 concentrations from each monitoring station are with the resolution of
one hour or each record, and the datasets are comprised of two time periods: September/1st/2018–
November/30th/2018 and May/1st/2019–June/30th/2019 (five months in total). See Table 1 for more
details.

In general, our dataset contains two different kinds of information. (a) The geographic location of
all monitoring stations. (b) The PM2.5 concentrations recorded as time sequence at each monitoring
satiation, which are denoted by yi = [yi1, y

i
2, . . . , y

i
N ]T ∈ R

N , where N and i ∈ {1, 2, . . . ,M} (M denotes
the number of total monitoring points) are the number of total samples and the ith monitoring station,
respectively.

3.2 Problem descriptions and data transformation

Before describing the problem, we first define a pollution map of a given region. The pollution map at
time t is represented by matrix Xt ∈ R

H×W , where H and W represent the relative height and width of
the monitoring region. The value of each element xij

t represented the PM2.5 concentrations at time t at
the corresponding location of the city, which can be further illustrated in Figure 2.

In this paper, we focus on using the pollution maps of T hours to predict the pollution maps of the next
K hours. More specifically, we aim at predicting the pollution map X̂j at time t in next K hours, where
j ∈ {t+1, . . . , t+K}, by a series of available pollution maps Xi, where i ∈ {t−T+1, t−T+2, . . . , t−1, t}.

During the data transformation, we firstly equally divided the monitoring region into aH×W (H×W >

M) grid map based on the longitude and latitude, where the H and W can be selected to ensure that
each grid contains less than one monitoring point. After defining the H and W , the pollution map Xt is
obtained by setting x

ij
t as the values of the PM2.5 concentrations of the corresponding monitoring points

in time t. We repeat this procedure until we have the pollution maps of all valuable time.

Even the number of monitoring stations is much denser than in other researches. It is still too sparse as
a neural network input. Therefore, an imputation procedure is further conducted, which is described as
follows: for each point which does not have a corresponding monitor, we set anm×m grid window and the
average value of the points in the grid window is considered as the value for the point [39]. We denote the
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Figure 3 (Color online) The architecture of the proposed convolutional network.

imputed pollution maps of Xi as Zi. Our task is then transformed to predict Ẑj (j ∈ {t+1, . . . , t+K})

at time t by Zi (i ∈ {t− T + 1, . . . , t}) using a deep network. The predicted pollution map X̂j can then

be extracted from the obtained Ẑj .

3.3 The proposed network

In this subsection, we proposed our deep network, which is modified from the original DenseNet [20] for
pixel-wise regression, and provides a possible way to predict the pollution map accurately. DenseNet [20]
connects all layers with each other directly which facilitates the flow of information and reuse of features.
Moreover, DenseNet [20] also requires fewer parameters than traditional convolutional neural networks.
We design our proposed model based on DenseNet due to its computational efficiency and ability of
feature extraction.

The proposed network is illustrated in Figure 3. It is comprised of three parts.

(1) A head layer. Given the pollution maps of T hours, the head layer is set to a 3 × 3 convolutional
layer [40, 41]3) with the number of input and output channels set to T and 24, respectively.

(2) A dense connection block (dense block). We apply a 4-layer (with bottleneck layer) dense block [20]
in our network. The block applies the dense connection structure to explore the temporal variation of
the pollution maps. The growth rate of the dense block is set to be 16. The dense block aims to learn the
temporal trends of the air pollution maps and the correlation between monitoring stations from a global
view.

(3) A skip connection block. Just like the skip connection in U-net [18] can refine the detailed infor-
mation in pixel classification tasks, the skip connection in the proposed network can learn the regional
variation trends of the pollution and thus can improve the performance of the proposed network. In the
skip connection block, the features firstly pass through a 3×3 convolutional layer following by an average
pooling layer. Then the obtained representations are fed to a 3 × 3 convolutional layer following by an
up-sampling layer.

(4) A pixel level regression. After we concatenate the features from the dense block and the skip
connection block, the obtained features are then fed into a 3 × 3 convolutional layer with the number
of output channels as K to generate the final feature maps, where K is the number of the hours of the
pollution maps that we want to predict. The K pollution maps are derived from selecting the values in

3) In this paper, a convolutional layer sequentially contains a convolutional layer, a batch-normalization layer [40], and a ReLU

layer [41].
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the final feature maps. The objective function of the proposed network is set as

Loss =
1

KM

M∑

i=1

t+K−1∑

j=t

λj−1‖yij − ŷij‖1, (1)

where yij and ŷij are the observed and predicted PM2.5 concentrations at time t for ith monitoring points.
Moreover, a decay factor λ ∈ [0, 1] is introduced in the objective function for balancing the impact from
different hours.

4 Experiments

In this section, three experiments are conducted to evaluate the benefits of AQP with a large-scale dataset.
We further demonstrated the effectiveness of the proposed method in both one-hour AQP and multi-hour
AQP.

4.1 Experiments setting

4.1.1 Data separation

In this subsection, we evaluate the AQP at Handan with the proposed large-scale dataset with different
methods. The data from September/1st/2019 to November/30th/2019 are equally divided into five
subsets, where the first three subsets are for training, and the rest two are used as the validation set and
test set, respectively. Moreover, we further add the data from May/1st/2019 to June/30th/2019 as the
training data. The input of our model is sliced from a time dimension with a length of T = 4 and a stride
of 1.

4.1.2 Implementation details

The implementation details of our model are described as follows. Our optimizer is Adam [42] with a
mini-batch size of 512. We train our model for a total of 70 epochs. The learning rate is set to 0.008
initially and is divided by 5 at the 30th and the 50th epoch, respectively. We use a weight decay of
5× 10−4 and a momentum of 0.9. The decay factor λ is set as 0.95 in multi-hour AQP.

4.1.3 Evaluation metrics

To evaluate the performance of each AQP method, two metrics [26] for a predicted pollution map,
including the mean absolute error (MAE) and the mean absolute percentage error (MAPE), are used in
our experiments, which are respectively defined as follows:

MAE =
1

M

M∑

i=1

‖ŷi − yi‖1, (2)

MAPE = 1−
1

M

M∑

i=1

‖ŷi − yi‖1
yi

, (3)

where yi and ŷi are observed PM2.5 concentrations and predicted PM2.5 concentrations respectively, and
M is the number of monitors.

4.1.4 Baseline models

We compare the proposed network with the following baselines AQP models:
• SVR [14]. SVR is an optimal regressor which minimizes a hinge loss. We use radial basis function

(RBF) [43] as the kernel function in order to increase the ability of non-linearity fit.
• GBDT [44]. Gradient boosting decision tree is a regressor commonly used in the literature.
• LSTM [45]. Long short term memory network is commonly used to deal with sequence data.
• 1D CNN. One-dimensional convolutional neural network with filters slide on the time dimension.
• PA [15]. Prediction aggregator combines a temporal model kernel SVR [14] which is mentioned

before and the spatial predictor proposed by [15] making use of temporal and spatial information. Our
implementation, which is an improved version of Zheng’s model, increases the ability of non-linearity fit.
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Table 2 One-hour AQP results

Type Model MAE MAPE Time (s)

Temporal GBDT 23.81 79.61 0.0490

SVR 20.96 81.47 0.0184

LSTM 16.84 83.28 0.1190

1D CNN 17.58 82.15 0.1231

Spatiot- PA 17.89 82.36 0.0223

emporal Our model 13.26 85.04 0.0070

Table 3 Three-hour AQP results

Our method PA
Hour

MAE MAPE MAE MAPE

The 1st 15.38 83.37 17.89 82.36

The 2nd 19.36 77.52 26.91 72.60

The 3rd 25.24 71.17 34.66 64.29

4.2 One hour AQP

We first compare the proposed method with baseline AQP methods in the one-hour AQP setting. The
experimental results are shown in Table 2.

From Table 2 we conclude that:
• The proposed method outperforms other non-neural network models (SVR and GDBT), which shows

the effectiveness of the neural network-based method in AQP due to its strong ability in analyzing complex
data.

• The experiments show that the spatiotemporal models are superior to the temporal-based models,
from which we can conclude the importance of the spatial information in AQP. As the spatiotemporal
AQP models disentangle the complex correlation between different monitoring stations, they can provide
more precise PM2.5 concentrations predictions.

•Although the prediction aggregator and our model both make use of temporal and spatial information,
our model achieves better results. Different from the prediction aggregator, which processes the spatial
and temporal information separately, our method conducts the AQP in an end-to-end manner, which
facilitates the model to learn more iteration information between two different kinds of information.

To further evaluate the effectiveness of our model, we plot the one-hour PM2.5 prediction results of two
monitoring stations on the test set, which is illustrated in Figure 4. LSTM and PA are also implemented
as comparisons. Moreover, we randomly select one predicted pollution map and visualize it in Figure 5.
The low MAE shown in two figures verifies the effectiveness of our method. Table 2 also shows that
our model achieves a faster inference speed with all the sites’ data parallelly running on GPU by the
implementation of deep learning models.

4.3 Multi-hour AQP

We further evaluate the proposed method in a multi-hour AQP setting, where we predict the pollution
maps for the next three hours. We conduct the multi-hour AQP experiments on the proposed method
and PA due to the ability of both methods to model the spatiotemporal information. The results are
shown in Table 3.

From the experimental results, we conclude that:
• In general, our model outperforms the prediction aggregator for a stronger ability in the non-linear

fitting of a deep network. The proposed method always achieves a lower MAE and higher MAPE, which
means that our method accurately forecasts the future air quality in the next few hours. The results
further indicate that our model has a longer-term prediction in AQP compared with the famous AQP
model, prediction aggregator.

• The predicted error is becoming higher with the prediction in a longer term, which meets our intuition.
Predicting the pollution in the long term can still be challenging for the uncertainty of complex factors
causing air pollution.

• The performance of the 1st hour prediction in Table 2 is better than that in Table 3 because the
model has to balance three hours’ loss during the AQP procedure.
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Datetime (h) Datetime (h) Datetime (h) Datetime (h)

(a)

Datetime (h) Datetime (h) Datetime (h) Datetime (h)

(b)

LSTM
LSTM

LSTM

LSTM

Figure 4 (Color online) A comparison of the proposed model, temporal model and existing spatiotemporal model for AQP at

two randomly selected monitoring stations. (a) Monitor 10965’s result; (b) monitor 16038’s result.

(a) (c)(b)

Figure 5 (Color online) The prediction of the proposed method (a), the real observation values (b), and mean absolute error (c)

at a randomly selected time slot.

Table 4 Performance v.s. the number of monitors points

Monitors points MAE MAPE

20 21.54 72.21

30 20.54 72.98

50 14.12 78.68

393 13.26 85.04

4.4 Ablation study

4.4.1 Density of monitoring stations of the dataset

As the insufficiency of monitoring stations can limit the models to explore the spatial correlation between
each monitoring point, we study the impact of the number of monitoring stations on the performance of
AQP methods. As it is shown in Table 4, we demonstrate that denser monitoring points can provide a
more accurate prediction in AQP, which further indicates the importance of the proposed dataset.

4.4.2 Spatial information of the dataset

In this subsection, we generate coordinates for each monitor randomly and transform the ordinal data into
pollution maps to study the importance of spatial information in AQP. As such data does not have the
correct geolocation information compared with the original data, the proposed method on this random
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Table 5 Study of the effect of incorporating spatial information

Model MAE MAPE

Spatial information 13.26 85.04

Non-Spatial information 15.04 83.32

Table 6 Study on the effectiveness of the skip connection

Model MAE MAPE

Our method 13.26 85.04

Our method-nonSkip 14.74 84.29

Table 7 Study on the effectiveness of the dense connections

Model MAE MAPE

Our method 13.26 85.04

Without-dense-connections 15.00 83.36

pollution maps achieves a lower MAE and a higher MAPE in the experiments (Table 5), which shows
the necessity for applying the spatial information in AQP.

4.4.3 Skip connection in the proposed network

We further conduct the experiments to show the effectiveness of the skip connection block in our net-
work. The experiments on the proposed network with or without skip connection are shown in Table 6.
Downsampling can enlarge the inception filed for making use of neighborhood points information. More-
over, similar to the skip connection in U-Net [18], the skip connection in our network can provide more
regional information in AQP, which results in the higher performance in AQP.

4.4.4 Dense connections in the proposed network

We furthermore conduct the experiments to represent the effectiveness of the densely connected block in
our proposed network. We replace our 4-layer dense block with 4-layer convolution layers which have the
same number as channels of the dense block in order to keep the number of parameters unchanged. The
experimental results are shown in Table 7. Dense connections can make better use of features and are
of high efficiency [20]. Dense connections could preserve the information from shallow layers which could
be of help to AQP.

5 Conclusion

To accurately predict future air quality (we focused on PM2.5 value in this paper) in an urban city,
we collected a large-scale air quality dataset with 393 deployed air quality monitoring stations in a
region of 120 km × 70 km and proposed a novel AQP approach based on deep convolutional networks.
As the presented dataset is more than ten times denser than existing AQP datasets, we transform
the data to image-like pollution maps, which can be effectively processed by convolutional networks.
Different from the existing AQP methods, the proposed network simultaneously utilizes the temporal
and spatial information to predict future air quality in an end-to-end manner and expertly explores the
spatial correlation between each monitoring point, leading to a state-of-the-art performance in AQP. For
future work, we will consider incorporating terrain information, wind data, and other factors to improve
prediction accuracy further.
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