
SCIENCE CHINA
Information Sciences

September 2021, Vol. 64 192106:1–192106:13

https://doi.org/10.1007/s11432-020-3112-8

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

EAT-NAS: elastic architecture transfer for
accelerating large-scale neural architecture search

Jiemin FANG1,2†, Yukang CHEN4†, Xinbang ZHANG4, Qian ZHANG3,

Chang HUANG3, Gaofeng MENG4, Wenyu LIU2 & Xinggang WANG2*

1Institute of Artificial Intelligence, Huazhong University of Science and Technology, Wuhan 430074, China;
2School of Electronic Information and Communications, Huazhong University of Science and Technology,

Wuhan 430074, China;
3Horizon Robotics, Beijing 100089, China;

4National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 28 February 2020/Revised 19 May 2020/Accepted 4 August 2020/Published online 6 August 2021

Abstract Neural architecture search (NAS) methods have been proposed to relieve human experts from

tedious architecture engineering. However, most current methods are constrained in small-scale search owing

to the issue of huge computational resource consumption. Meanwhile, the direct application of architectures

searched on small datasets to large datasets often bears no performance guarantee due to the discrepancy

between different datasets. This limitation impedes the wide use of NAS on large-scale tasks. To overcome

this obstacle, we propose an elastic architecture transfer mechanism for accelerating large-scale NAS (EAT-

NAS). In our implementations, the architectures are first searched on a small dataset, e.g., CIFAR-10. The

best one is chosen as the basic architecture. The search process on a large dataset, e.g., ImageNet, is

initialized with the basic architecture as the seed. The large-scale search process is accelerated with the help

of the basic architecture. We propose not only a NAS method but also a mechanism for architecture-level

transfer learning. In our experiments, we obtain two final models EATNet-A and EATNet-B, which achieve

competitive accuracies of 75.5% and 75.6%, respectively, on ImageNet. Both the models also surpass the

models searched from scratch on ImageNet under the same settings. For the computational cost, EAT-NAS

takes only fewer than 5 days using 8 TITAN X GPUs, which is significantly less than the computational

consumption of the state-of-the-art large-scale NAS methods.

Keywords architecture transfer, neural architecture search, evolutionary algorithm, large-scale dataset

Citation Fang J M, Chen Y K, Zhang X B, et al. EAT-NAS: elastic architecture transfer for accelerating large-

scale neural architecture search. Sci China Inf Sci, 2021, 64(9): 192106, https://doi.org/10.1007/s11432-020-3112-8

1 Introduction

Deep neural networks have achieved significant success in a wide range of computer vision applications,
including image classification [1–3], semantic segmentation [4–7], object detection [8–10], and super-
resolution [11]. However, the designing of neural network architectures by human experts often requires
tedious trial and error. To make this designing process more efficient, many neural architecture search
(NAS) methods [12–14] have been proposed. However, despite their remarkable results, most NAS
methods require expensive computational resources. For example, 800 GPUs are used by NAS [15] over 28
days for the task of CIFAR-10 [16] image classification. The real-world applications of NAS involve many
large-scale datasets. However, directly performing an architecture search on large-scale datasets, e.g.,
ImageNet [17], requires significantly high computation cost, which limits the wide application of NAS.
Although some search accelerating methods [12–14] have been proposed, few of them directly explore
large-scale tasks.

From many previous studies, e.g., VGGNet [18], GoogleNet [19], ResNet [2], it can be said that
a neural architecture with good performance on one dataset usually performs well on other datasets

*Corresponding author (email: xgwang@hust.edu.cn)

†Fang J M and Chen Y K have contributed equally, and the work was performed during the internship at Horizon Robotics.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3112-8&domain=pdf&date_stamp=2021-8-6
https://doi.org/10.1007/s11432-020-3112-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3112-8
https://doi.org/10.1007/s11432-020-3112-8

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:2

0.88 0.78

0.72 0.92

0.92

Small task Large task

Architecture

Select

Architecture transfer

Offspring architecture

cenerator

Search space

Population

quality

Train &

evaluation

Evolution

Population

quality

Train &

evaluation

Evolution

Seed

Conv op : SepConv , MBConv3, MBCon6…

Kernel size: 3×3, 5×5, 7×7

Architecture scale search:

?

Width search Depth search

?

Output

Block 1

Input

Block 2

Block N

···
...

...

Figure 1 (Color online) Framework of the elastic architecture transfer for NAS (EAT-NAS). We first search for the basic archi-

tecture on a small-scale task and then search on a large-scale task with the basic architecture as the seed of the new population

initialization.

or tasks. Most ImageNet [17] pre-trained models can be used as the backbones of object detection
networks. PNAS [20] demonstrates the transfer capability of the searched architectures by measuring the
correlation between the performances on CIFAR-10 and ImageNet for different neural architectures. Most
existing NAS methods [12, 13, 20] search for architectures on a small dataset, e.g., CIFAR-10 [16], and
they then directly apply these architectures on a large dataset, e.g., ImageNet, with the architectures
adjusted manually. Generally, when transferring a neural architecture to a large dataset, the number
of stacked cells/layers and filters in the network will increase. Although the searched cell structures
or layer operations remain unchanged. However, because of the dataset bias [21] between small and
large datasets, the best representation of a neural architecture differs between small and large datasets.
Moreover, because of the lower resolution and limited number of training images and data categories in
small datasets, the effectiveness of an architecture or the cells/layers of it searched on a small dataset
degrades, when the architecture is directly applied on a large dataset or transferred with only the depth
and width of the architecture adjusted by handcraft.

In this study, we propose a transfer learning solution to the above-mentioned problem. What we pro-
pose is not only a NAS method but also a common mechanism for architecture-level transfer learning.
We define the elements in the neural architecture design as architecture primitives, namely the number
of filters, the number of layers, operation types, the connection mode, and kernel size. Our proposed
elastic architecture transfer (EAT) method automatically transfers a neural architecture to a large-scale
dataset, as shown in Figure 1. It is elastic because all the architecture primitives are automatically
adjusted or fine-tuned when transferring the architecture to another dataset. The similarities between
datasets/tasks facilitate the model/architecture transfer, offering benefits including high-level informa-
tion/feature extraction and spatial information caption demands between the small and large tasks.
Whereas the conventional transfer learning methods mostly focus on the parameter level, our EAT-NAS
performs transfer learning on the architecture level.

In our implementation, we choose the evolutionary algorithm (EA) to design the basic NAS method.
Benefitting from the population-based search process, the information of the architecture searched on the
small dataset can be easily transferred to another architecture population on the large dataset. We adopt a
two-stage search process to achieve the architecture transfer between different datasets. First, we perform
the first search stage on a small dataset. Upon the completion of the first search process, we choose the
best architecture of the population as the seed which is called basic architecture. Second, we use the seed
to initialize the architecture population of the second search stage on the large dataset. We obtain the
new architectures of the new population by adding some perturbations to the basic architecture. Finally,
we proceed with the search process on the large dataset for fewer epochs. The population resulting from

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:3

the deformed representations of the basic architecture can evolve faster towards the direction that fits
the new dataset.

EAT narrows the gap between datasets on the architecture level automatically. The search process on
the large dataset is accelerated by taking advantage of the information from the architecture searched on
the small dataset. Our proposed architecture-level transfer mechanism provides a new aspect for transfer
learning. The transfer mechanism could not only be deployed to the EA-based NAS method, but also to
the gradient or reinforcement learning (RL) based ones. Moreover, EAT is readily available for various
tasks and datasets in practical problems.

Our contribution in this study can be summarized as follows:

(1) We propose an elastic architecture transfer mechanism which automates the architecture transfer
between datasets and enables NAS on large datasets with low computation cost.

(2) Through experiments on the large-scale dataset, i.e., ImageNet, we prove the efficiency of our
method by reducing the search cost to only fewer than 5 days on 8 TITAN X GPUs, about 106x lower
than the cost for MnasNet estimated based on [22].

(3) Our searched architectures achieve remarkable ImageNet performance that is comparable to Mnas-
Net which searches directly on the full dataset incurring huge computational cost (75.6% vs. 74.0%).

2 Related work and background

2.1 Neural architecture search

Generating neural architectures automatically has aroused significant interest in recent years. In NAS [15],
an RNN network trained via reinforcement learning is utilized as a controller to determine the opera-
tion type, parameter, and connection for every layer in the architecture. Although NAS [15] achieves
impressive results, its search process is incredibly computation hungry and requires hundreds of GPUs
to generate a high-performance architecture on CIFAR-10 datasets. On the basis of the NAS method
in [15], many novel methods have been proposed to improve the efficiency of architecture search; these
novel methods include finding out the blocks of the architecture instead of the whole network [12, 23],
progressive search with a performance predictor [20], an early stopping strategy [23], and parameter
sharing [14]. Although these methods have achieved impressive results, their search processes are still
computation hungry and become extremely tedious when the searched datasets are large-scale, e.g.,
ImageNet.

Another stream of studies on NAS utilizes the evolutionary algorithm to generate coded architec-
tures [13, 24, 25]. Modifications to the architecture (filter sizes, layer numbers, and connection patterns)
serve as the mutation in the search process. Though they have achieved state-of-the-art results, the
computation cost required is also far beyond affordable.

Gradient-based NAS methods [26–32] have also become popular. They discard the black-box searching
method and introduce architecture parameters, which are updated on the validation set by using gradient
descent, for every path of the network. A softmax classifier is utilized to select the path and operation
for each node, while some studies [33,34] use Gumbel-Softmax for better optimization of the architecture
parameters. The search space is relaxed to be continuous so that the architecture can be optimized with
respect to its validation set performance by gradient descent. Although gradient-based NAS methods
perform remarkably with high efficiency, the search space relies on the super network. All the possible
sub-architectures should be included in the delicately designed super network. Therefore, the scalability
of the search space is suppressed, e.g., it is not easy to search for the widths of the architecture by
gradient-based methods. However, in our evolutionary algorithm based EAT method over the discrete
search space, the architecture can be encoded and is easy to be extended to diverse search spaces.

Recently, MnasNet [22] proposes to search directly on large-scale datasets with accuracy and latency
co-optimization of the architecture based on RL. MnasNet successfully generates high-performance ar-
chitectures with promising inference speed, but it requires huge computational resources. In total, 8K
models are sampled to be trained on nearly the entire training set for 5 epochs and then evaluated on a
50K validation set. It takes about 91K GPU hours, as estimated according to the description in [22].

There is a work [35] that combines transfer learning with the RL-based NAS method. They transfer
the controller by reloading the parameters of the pretrained controller and add a new randomly initialized
embedding for the new task. Our proposed elastic architecture transfer method focuses on transferring

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:4

on the architecture-level automatically. The architecture searched on the small dataset can be transferred
to the large dataset fast and precisely. Compared with searching from scratch, EAT-NAS obtains models
with competitive performances and significantly fewer computational resources.

2.2 Evolutionary algorithm based NAS

EA is widely utilized in NAS [13, 24, 25]. As summarized in Algorithm 1, the search process is based
on the population of various models. Conventionally, the population P is first initialized with randomly
generated P models which are within the setting range of the search space. Each model is trained and
evaluated on the dataset to get its accuracy.

Algorithm 1 Evolutionary algorithm

Input: Population size P , sample size S, dataset D.

Output: The best model Mbest.

1: P
(0) ← initialize(P);

2: for 1 6 j 6 P do

3: Mj .acc ← train-eval(Mj, D);

4: Mj .score ← comp-score(Mj,Mj .acc);

5: end for

6: Q(0) ← comp-quality(P(0));

7: while Q(i) not converge do

8: S(i) ← sample(P(i), S);

9: Mbest, Mworst ← pick(S(i));

10: Mmut ← mutate(Mbest);

11: Mmut.acc ← train-eval(Mmut, D);

12: Mmut.score ← comp-score(Mmut, Mmut.acc);

13: P
(i+1) ← remove Mworst from P

(i);

14: P
(i+1) ← add Mmut to P

(i);

15: Q(i+1) ← comp-quality(P(i+1));

16: i + +;

17: end while

18: Mbest ← rerank-topk(Pbest, k).

Following the Pareto-optimal problem [36], we use acc× [size/T]ω to compute the score of the model,
where acc denotes the accuracy of the model, size denotes the model size (i.e., the number of parameters
or multiply-add operations), T the target model size, and ω a hyperparameter for controlling the trade-off
between accuracy and model size. At each evolution cycle, S models are randomly sampled from the
population. The models with the best and worst scores, respectively, are selected. A mutated model is
then obtained by adding some transformation to the best scoring model. The mutated model is trained,
evaluated and added to the population with its score. Meanwhile, the worst model is removed. The
aforementioned search process is called tournament selection [37]. Finally, the top-k performing models
are retrained and the best one is selected. Our architecture search method is based on the evolutionary
algorithm.

3 Method

To apply an architecture to large-scale tasks, most architecture search methods [12–14,38] merely rely on
the prior knowledge of human experts. They manually transfer an architecture with only expanding the
depth and width by multiplication or direct addition. Different from these conventional transfer methods,
we propose an EAT method. EAT automatically transfers the neural architecture to a large-scale task
by fine-tuning the architecture primitives searched on a small-scale task. It is elastic for the transfer
capability of all the architecture primitives, e.g., operator types, structure, and the depth and width of
the architecture. EAT accelerates the large-scale search process by making use of the knowledge from the
basic architecture searched on the small-scale task. EAT adjusts the basic architecture to the large-scale
task with all the architecture primitives fine-tuned.

3.1 Framework

Figure 1 illustrates the process of EAT. The two search processes on the small and the large datasets,
respectively, are based on the same search space (see Subsection 3.2). We first search for a set of
top-performing architectures on the small dataset, such as CIFAR-10. To obtain better performing

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:5

Block 1Input Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Output

Layer 1 Layer N…
Conv OP

Skip OP

+

Figure 2 (Color online) Search space. During the search, all the blocks are concatenated to constitute the whole network

architecture. Each block comprises several layers and is represented by the following five primitives: convolutional operation type,

kernel size, skip connection, width and depth.

architectures, we search for the architecture scale (see Subsection 3.3) with the help of the width and
depth factor. We design a criterion called population quality (see Subsection 3.4) to better evaluate
the model population. Subsequently, we retrain the top-performing models and choose the best one
as the basic architecture. Second, we start the architecture search on the large-scale task with the
basic architecture as the seed to initialize the new architecture population. We design an architecture
perturbation function (see Subsection 3.5) to produce the architectures of the new population. We then
continue the architecture search on the large-scale task based on the population derived from the basic
architecture. In this way, the search on the new task is accelerated, and better-performing models are
obtained than those obtained via searching from scratch, which is benefited from the useful information
of the basic architecture. Subsection 4.4 displays the results of contrast. Finally, we select the best one
from the top-k performing models in the population by retraining them on the full large-scale dataset.
Algorithm 2 displays the entire procedure of the elastic architecture transfer.

Algorithm 2 Elastic architecture transfer

Input: Datasets D1, D2, population size P .

Output: The target architecture Archtarget.

1: // Initialize the population on D1.

2: P1 ← initialize(P);

3: evolve(P1, D1);

4: Archbasic ← rerank-topk & select(P1, k);

5: // Initialize the population on D2.

6: for 1 6 i 6 P do

7: Archi ← arch-perturbation(Archbasic);

8: P2.append(Archi);

9: end for

10: evolve(P2, D2);

11: Archtarget ← rerank-topk & select(P2, k).

3.2 Search space

A well-designed search space is essential for NAS. Inspired by MnasNet [22], we employ an architecture
search space with MobileNetV2 [3] as the backbone. As shown in Figure 2, the network is divided
into several blocks which can be different from each other. Each block consists of several layers, whose
operations are determined by a per-block sub search space. Specifically, the sub search space for each
block could be parsed as follows:

• Conv operation. Depthwise separable convolution (SepConv) [39], mobile inverted bottleneck
convolution (MBConv) with diverse expansion ratios {3, 6} [3].

• Kernel size. 3×3, 5×5, 7×7.
• Skip connection. Whether to add a skip connection for every layer.
• Width factor. The expansion ratio of the output width to input width, factorwidth = No/Ni, [0.5,

1.0, 1.5, 2.0].
• Depth factor. The number of layers per block, [1, 2, 3, 4].
Besides, down-sampling and width-expansion operations are applied in the first layer of each block.
To manipulate the neural architecture more conveniently, every architecture is encoded following the

format defined in the search space. As a network could be separated into several blocks, the whole
architecture is presented as a block set Arch = {B1, B2, . . . , Bn}. Each block consists of the above-
mentioned five primitives, which is encoded by a tuple Bi = (conv, kernel, skip,width, depth). Every
manipulation for the neural architecture is performed based on the model code.

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:6

3.3 Architecture scale search

Most NAS methods [12–14, 20] treat the scale of the architecture as a fixed element based on the prior
knowledge from human experts. The scale, depth, and width of the architecture usually affect the
architecture performance. To obtain better performing architectures, we search for the architecture scale
by manipulating the width and depth factors.

To accelerate the architecture search process, we employ the parameter sharing method on each
model during the search. Inspired by the function-preserving transformations, namely Net2WiderNet
and Net2DeeperNet, in Net2Net [40], we propose a modified parameter sharing method used for model
training. When initializing the parameters for a network, the proposed algorithm traverses the operation
type of each layer. If the operation type and kernel size of the layer are consistent with those of the
shared model, then parameter sharing is applied on this layer; otherwise, the parameters are randomly
initialized. We introduce two parameter sharing behaviors on the network width and depth, respectively.

Parameter sharing on the width-level. By sharing the parameters, we desire to inherit as much
information as possible from the former model. For the convolutional layer, we assume that the con-
volutional kernel of the lth layer Kl has the shape of (wl, hl, chlin, ch

l
out), where wl and hl denote the

filter width and height respectively, while chlin and chlout denote the number of input and output channels
respectively. If the original convolutional kernel Ko has the shape of (wo, ho, choin, ch

o
out), we perform

the sharing strategy as described in Algorithm 3. In addition to the shared parameters, the rest part of
Kl is randomly initialized.

Algorithm 3 Parameter sharing on the width-level

Input: Kernel Kl in layer l, the original kernel Ko.

Output: Kernel Kl in layer l.

1: chs
in ← min(chl

in, ch
o
in);

2: chs
out ← min(chl

out, ch
o
out);

3: Kl ← Ko(w
o, ho, chs

in, ch
s
out).

Parameter sharing on the depth-level. The parameters are shared on the depth level in a way
similar to that on the width level. Suppose that U [1, 2, . . . , lu] denotes the parameter matrix of one
block which has lu layers. Additionally, assume that W [1, 2, . . . , lw] denotes the parameter matrix of
the corresponding block, which has lw layers, from the shared model. The parameter sharing process is
illustrated in two cases as follows:

(i) lu > lw:

U [i] =

{

W [i], if i < lw,

Γ(i), otherwise;
(1)

(ii) lu 6 lw:

U [1, 2, . . . , lu] = W [1, 2, . . . , lu], (2)

where Γ denotes a random weight initializer based on the normal distribution.

3.4 Population quality

During the evolution process, we design a criterion called population quality to evaluate the model
population. With the search proceeding, the scores of the models in the population improve. To ascertain
whether the population evolution converges, the variance of the model scores needs to be taken into
consideration. Merely depending on the mean score of the models in the population may result in
imprecision, because accuracy gains could derive both from parameter sharing and model performance
promotion.

Therefore, until the population converges to an optimal solution, the mean score of the models should
be as high as possible while the variance of the model scores as low as possible. This issue could be
treated as a Pareto-optimal problem [36]. To approximate the Pareto optimal solution, we utilize a
target function, population quality, as follows:

Q = scoremean ×

[

std

targetstd

]ω

, (3)

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:7

where ω denotes the weight factor defined as follows:

ω =

{

α, if std < targetstd;

β, otherwise,
(4)

where α and β denote the hyperparameters for controlling the trade-off between the mean score of the
models and the standard deviation of the model scores.

In Eq. (3), scoremean denotes the mean score of the models in the population, std the standard deviation
of model scores, and targetstd the target std of model scores. The term targetstd is a preset parameter,
0.1, in our experiments, for minimizing the std of model scores during search and obtain a population of
models with similar performance. Following MnasNet [22], we set α = β = −0.07 to assign the value to
ω. After the evolution, we select the best-quality population and retrain top-k models of the population.

3.5 Architecture perturbation function

To transfer the architecture, we initialize the new population on the large scale dataset with the the basic
architecture searched on the small dataset as the seed. We design an architecture perturbation function to
derive new architectures by adding some perturbation to the input architecture code homogeneously and
slightly. Algorithm 4 illustrates the process of the perturbation function. In each block of the architecture,
there are a total of five architecture primitives (conv, kernel, skip, width, depth) to be manipulated as
described in Subsection 3.2. We randomly select one type of the five primitives to perturb. We then
stochastically generate a new value of the selected primitive within the restriction of our search space
and replace the existing one.

Algorithm 4 Architecture perturbation function

Input: Basic architecture Archb, search space S, number of blocks Nblocks, and primitives prims.

Output: Perturbed architecture Archp.

1: Archp ← copy(Archb);

2: for 1 6 j 6 Nblocks do

3: prim ← rand-select(prims);

4: value ← rand-generate(prim, S);

5: B
j
t ← get-block(Archt, j);

6: B
j
t [type] ← value;

7: end for

When initializing the population on the large dataset, we produce every new architecture by applying
the architecture perturbation function to the basic architecture until the number of architectures meets
the population size. In another word, each initial architecture of the new population is a deformed
representation of the basic one. After initializing the new population, the evolution begins as the same
procedure described in Algorithm 1.

Randomized perturbations are introduced into the initial population for more possible architectures
to be searched. The proposed perturbations are slight, and thus the similarity among the architectures
is maintained. The original similarity between the datasets is unchanged, as the perturbations are only
performed on the architecture level. Moreover, the architecture perturbation function is utilized as the
mutation operation in the evolution.

4 Experiments

Our experiments mainly consist of two stages, searching for the basic architecture on CIFAR-10 and then
transferring it to ImageNet. In this section, we introduce some implementation details in EAT-NAS and
report the experimental results. We analyze the results of some ablation experiments to demonstrate the
effectiveness of the proposed EAT-NAS method.

4.1 Search on CIFAR-10

The experiments on CIFAR-10 are divided into two steps including architecture search and evaluation.
CIFAR-10 consists of 50000 training images and 10000 testing images. We split the original training
set (80%–20%) to create our training and validation sets for the search process. The original CIFAR-10

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:8

S
ep

C
o
n
v,

 k
5
×

5

id
_
sk

ip

C
o
n
v
 3

×
3

M
B

C
o
n
v
3
,
k
7
×

7

id
_
sk

ip

M
B

C
o
n
v
6
,
k
7
×

7

id
_
sk

ip

M
B

C
o
n
v
6
,
k
5
×

5

id
_
sk

ip

M
B

C
o
n
v
6
,
k
3
×

3

id
_
sk

ip

M
B

C
o
n
v
3
,
k
5
×

5

id
_
sk

ip

F
C

,P
o
o
li

n
g

In
p
u
t

O
u
tp

u
t

S
ep

C
o
n
v,

 k
5
×

5

id
_
sk

ip

S
ep

C
o
n
v,

 k
5
×

5

id
_
sk

ip

C
o
n
v
 3

×
3

M
B

C
o
n
v
6
,
k
5
×

5

id
_
sk

ip

M
B

C
o
n
v
3
,
k
5
×

5

id
_
sk

ip

M
B

C
o
n
v
6
,
k
7
×

7

id
_
sk

ip

M
B

C
o
n
v
6
,
k
3
×

3

id
_
sk

ip

M
B

C
o
n
v
6
,
k
7
×

7

id
_
sk

ip

M
B

C
o
n
v
3
,
k
7
×

7

id
_
sk

ip

F
C

,P
o
o
li

n
g

In
p
u
t

×1 ×3

×3 ×3 ×3 ×4 ×2 ×2 ×1

×4 ×3 ×1 ×1 ×1
3
2
×

3
2
×

3
2
2
4
×

2
2
4
×

3

1
1
2
×

1
1
2
×

3
2

1
1
2
×

1
1
2
×

3
2

5
6
×

5
6
×

3
2

2
8
×

2
8
×

6
4

1
4
×

1
4
×

9
6

1
4
×

1
4
×

1
9
2

7
×

7
×

2
8
8

7
×

7
×

2
8
8

3
2
×

3
2
×

3
2

3
2
×

3
2
×

4
8

3
2
×

3
2
×

4
8

1
6
×

1
6
×

9
6

1
6
×

1
6
×

9
6

8
×

8
×

1
4
4

8
×

8
×

2
8
8

8
×

8
×

1
4
4 O

u
tp

u
t

CIFAR-10

ImageNet

Elastic architecture transfer

Figure 3 (Color online) The architectures searched by EAT-NAS. The upper one is the basic architecture searched on CIFAR-10.

And the lower one is the architecture, namely EATNet-A, searched on ImageNet which is transferred from the basic architecture.

testing set is only utilized in the evaluation process of the final searched models. All images are whitened
with the channel mean subtracted and the channel standard deviation divided. Then we crop 32×32
patches from images padded to 40×40 and randomly flip them horizontally.

During the search process, we set the population size to 64 and the sample size to 16. Every model
generated during the evolution is trained for 1 epoch and is evaluated on the separate validation set to
measure its accuracy. We mutate about 1400 models during the total evolution and only top-8 models
are retrained on the full training dataset and evaluated on the testing dataset. The number of model
parameters is the sub-optimizing objective during the evolution with the target as 3.0M. Each model
on CIFAR-10 consists of 7 blocks and the downsampling operations are performed in the third and fifth
blocks. The initial number of channels is 32. The depth and width of the mutated model would vary in
an extremely wide range within our search space if no restriction is set. Some constraints are added to
the scale of the model within an acceptable range to avoid the memory running out of control during the
search. On CIFAR-10, the total expansion ratio is limited within [4, 10].

For training during the search process, the batch size is set as 128. We use the stochastic gradient
descent (SGD) optimizer with the learning rate of 0.0256 (fixed during the search), momentum of 0.9,
and weight decay of 3×10−4. The search experiment is performed on 4 GPUs, taking about 22 h. For
evaluation, every model is trained for 630 epochs with a batch size of 96. The initial learning rate is 0.0125,
and the learning rate follows the cosine annealing restart schedule [41]. Other hyperparameters remain
the same as that in the search process. Following existing studies [12–14, 20], additional enhancements
include cutout [42] with the length of 16, and auxiliary towers with weight 0.4. The training of the
searched model takes around 13 h on two GPUs.

Since the CIFAR-10 results are subject to high variance even with exactly the same training setup [38],
we report the mean and standard deviation of 5 independent runs for our model. The basic model
achieves 96.42% mean test accuracy (the standard deviation of 0.05) with only 2.04M parameters. The
architecture of the basic model is shown in Figure 3.

4.2 Transferring to ImageNet

We use the architecture of the basic model searched on CIFAR-10 as the seed to generate the model
population on ImageNet. The search process is carried out on the whole ImageNet training dataset.
To avoid overfitting the original ImageNet validation set, we have a separate validation set containing
50K images randomly selected from the training set to measure the accuracy. We use the architecture
perturbation function to produce 64 new architectures based on the basic architecture.

During the architecture search, we train every model for one epoch with a batch size of 128 and a
learning rate of 0.05. Following GoogleNet [19], the input images are sampled as various sized patches
whose size is distributed between 20% and 100% of the image area with aspect ratio constrained to the
range of [34 ,

4
3]. The number of multiply-add operations is set as the sub-optimization objective during

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:9

24

22

20

18

16

14

12

M
ea

n
 a

cc
 (

%
)

0 20 40 60 80 100 0 20 40 60 80 100

Epoch number Epoch number

18

16

14

12

10

8

P
o
p
u
la

ti
o
n
 q

u
al

it
y

EAT-NAS

Search from scratch

EAT-NAS

Search from scratch

(a) (b)

Figure 4 (Color online) Comparing the evolution processes between EAT-NAS and search from scratch on ImageNet. (a) Mean

accuracy of models in the population; (b) population quality.

Table 1 ImageNet classification results in the mobile setting. The results of manually designed models are provided in the top

section, other NAS results in the middle section, and the result of our models in the bottom sectiona)

Model
#Params

(M)

#Mult-Adds

(M)

Top-1/Top-5

Acc (%)
Search dataset

Search time

(GPU hours)

MobileNet-v1 [43] 4.2 575 70.6/89.5 – –

MobileNet-v2 [3] 3.4 300 71.7/ – – –

MobileNet-v2 (1.4) [3] 6.9 585 74.7/ – – –

ShuffleNet-v1 2x [44] ≈ 5 524 73.7/ – – –

NASNet-A [12] 5.3 564 74.0/91.6 CIFAR-10 48K

NASNet-B [12] 5.3 488 72.8/91.3 CIFAR-10 48K

NASNet-C [12] 4.9 558 72.5/91.0 CIFAR-10 48K

AmoebaNet-A [13] 5.1 555 74.5/92.0 CIFAR-10 76K

AmoebaNet-B [13] 5.3 555 74.0/91.5 CIFAR-10 76K

AmoebaNet-C [13] 5.1 535 75.1/92.1 CIFAR-10 76K

PNASNet-5 [20] 5.1 588 74.2/91.9 CIFAR-10 6K

MnasNet [22] 4.2 317 74.0/91.8 ImageNet 91K

DARTS† [26] 4.7 574 73.3/91.3 CIFAR-10 96

P-DARTS† [45] 4.9 557 75.6/92.6 CIFAR-10 7.2

PC-DARTS† [46] 5.3 597 75.8/92.7 ImageNet 91

Proxyless (GPU)† [28] 7.1 465 75.1/92.5 ImageNet 200

SNAS† [47] 4.3 522 72.7/90.8 CIFAR-10 36

EATNet-A 5.1 563 75.5/92.5 CIFAR-10 to ImageNet 856

EATNet-B 5.2 545 75.6/92.4 CIFAR-10 to ImageNet 856

EATNet-C 4.6 417 73.9/91.8 CIFAR-10 to ImageNet 856

a) † denotes the gradient-based search method.

the evolution, with the target as 500M. The other hyperparameters of the search process are the same as
that on CIFAR-10. Each model is composed of 7 blocks and the number of input channels is 32 as well.
The downsampling operations are carried out in the input layer and the 2nd, 3rd, 4th, 6th block. The
number of layers is limited within [16, 18] and the total width expansion ratio is limited within [8, 16].

For evaluating the model performance on ImageNet, we retrain the final top-8 models on 224×224
images of the training dataset for 240 epochs, using the standard SGD optimizer with 0.9 momentum
rate, 4×10−5 weight decay and 0.1-weighted label smoothing. The batch size is 128 on 8 GPUs. The
initial learning rate is 0.5 and it decays with a cosine annealing schedule [41] to 1×10−4. We use the
standard GoogleNet [19] data augmentation.

As shown in Figure 4, the evolution process takes about 100 evolution epochs to converge. In another
word, taking the initial 64 models into account, we only sample around 164 models to find out the best
one based on the basic architecture. In MnasNet [22], the controller samples about 8K models during

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:10

Table 2 Results on CIFAR-100a)

Model #Params (M) Top-1 Acc (%)

ResNet [2] 1.7 72.8

LS Evo [48] 40.4 77.0

SS 2.2 77.4

EATNet 1.9 78.1

a) The comparison results are from [48]. “LS Evo”: large-scale evolution. “SS”: the model searched from scratch on CIFAR-100.

architecture search, 50 times the amount of ours. With much less computational resources, EAT-NAS
achieves comparable results on ImageNet as in Table 1 [3,12,13,20,22,26,28,43–47]. Though the gradient-
based methods [26, 28, 45, 46] are faster in principal than the EA based one, our EAT-NAS still achieves
competitive results compared with the gradient-based ones.

Figure 3 shows the basic architecture and the architecture of EATNet-A. From the figure, we observe
that compared with the basic architecture, there are some transformations in EATNet-A. During the
elastic architecture transfer process, all architecture primitives in the basic architecture are likely to be
modified. For example, the operation type in the second block has changed from Mbconv6 to SepConv,
and the kernel sizes have also changed in some blocks. The depth and the width of the architecture
have changed as well. The modifications to the architecture primitives adapt the architecture to the new
dataset.

In summary, our EAT-NAS includes two stages, search on CIFAR-10 and transfer to ImageNet. It
takes 22 h on 4 GPUs to search for the basic architecture on CIFAR-10 and 4 days on 8 GPUs to transfer
to ImageNet. Though DARTS [26] and SNAS [47] take less search time, they only search on the small
dataset, CIFAR-10. And our ImageNet performances clearly surpass them.

4.3 Transferring to CIFAR-100

We further perform an experiment by transferring the architecture searched on CIFAR-10 to CIFAR-
100. All the search and retraining settings and hyper-parameters on CIFAR-100 are the same as the
experiments on CIFAR-10 in Subsection 4.1. The search process on CIFAR-100 takes 100 epochs in
total. The results are shown in Table 2 [2, 48]. Compared with the handcrafted architecture ResNet [2],
EATNet achieves a 5.3% higher accuracy with similar Params and a 1.1% higher accuracy with only
4.7% Params of LS Evo [48]. Compared with the model searched from scratch on CIFAR-100, EATNet
obtains a 0.7 higher accuracy with 0.3M fewer Params.

4.4 Ablation study

Efficiency of EAT. To demonstrate the efficiency of our proposed method EAT-NAS, we carry out the
search process on ImageNet from scratch. All the settings are the same as EAT-NAS both in the search
and evaluation processes. The search process takes the same GPU hours as EAT-NAS as well. Figure 4
shows the mean accuracy of population models and the population quality of EAT-NAS compared with
the search from scratch on ImageNet. The search epochs are set equal for the fair comparison. We
observe that after initialization, the mean accuracy of models is obviously higher of EAT-NAS than that
of search from scratch all through the search process. And the evolution process converges faster for
EAT-NAS. In Table 3, we compare the best performing model of top-8 searched from scratch with that
from EAT-NAS. The compared models we select are guaranteed to have similar model sizes. Obviously,
the model EATNet-C surpasses that searched from scratch.

Effectiveness of EAT. To verify the effectiveness of our elastic architecture transfer method, we
apply our basic architecture searched on CIFAR-10 directly on ImageNet without any modification as
the handcrafted transfer does. We train the basic model on ImageNet under the same settings as those
of EAT-NAS. The performance of the basic model is shown in Table 3. The basic model achieves a worse
validation accuracy with a much larger number of multiply-add operations. Compared with the basic
model, not only does EAT promote the accuracy, but also optimizes the computation cost of the model.

Impact of basic architecture performance. We select one architecture with worse performance as
the basic architecture in our transfer process, whose validation accuracy on CIFAR-10 is 96.16% and the
number of parameters is 1.9M. As shown in Figure 5, the basic architecture with worse performance has a
negative impact on the transfer process. The mean accuracy deteriorates in the preliminary epochs. This
experiment demonstrates the importance of a well-performing basic architecture for transfer. We retrain

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:11

Table 3 Results of the contrast experiments on ImageNeta)

Model #Params (M) #Mult-Adds (M) Top-1/Top-5 Acc (%)

SS 5.55 465 72.5/90.7

Basic model 3.27 934 75.2/92.5

Model-B 3.22 408 72.7/91.0

EATNet-A 5.12 563 75.5/92.5

EATNet-B 5.20 545 75.6/92.4

EATNet-C 4.63 417 73.9/91.8

a) “SS” denotes the model searched from scratch on ImageNet. The basic model searched on CIFAR-10 is directly applied

on ImageNet without any modification. Model-B denotes the best model searched on ImageNet with a poor-performing basic

architecture. EATNet-C is a small model searched by EAT-NAS.

23.4

23.2

23.0

22.8

22.6

22.4

22.2

22.0

M
ea

n
 a

cc
 (

%
)

0 20 40 60 80 100 120

Epoch number

700

650

600

550

500

450

400

350

M
ea

n
 m

u
lt

-A
d
d
s

(M
)

Mean acc

Mean mult-Adds

Figure 5 (Color online) Mean accuracy and the mean multiply-Adds of the models during the search on ImageNet whose basic

architecture has worse performance on CIFAR-10.

the searched top-8 models under the same settings and compare the best one with that searched by EAT-
NAS which has a similar model size. As shown in Table 3, models searched by EAT-NAS surpass those
searched with the poor-performing basic architecture. We attribute the results to the poor performance
of the basic architecture.

5 Conclusion and future work

In this paper, we propose an elastic architecture transfer mechanism for accelerating the large-scale neural
architecture search (EAT-NAS). Rather than spending a lot of computation resources to directly search
the neural architectures on large-scale tasks, EAT-NAS makes full use of the information of the basic
architecture searched on the small-scale task. We transfer the basic architecture with elasticity to the
large-scale task fast and precisely. With less computational resources, we obtain networks with excellent
ImageNet classification results in mobile sizes.

In the future, we would try to combine the proposed mechanism with other search methods, including
reinforcement learning and gradient-based NAS. Additionally, EAT-NAS can be utilized to search for
neural architectures in other computer vision tasks like detection, segmentation, and tracking.

Acknowledgements This work was in part supported by National Natural Science Foundation of China (NSFC) (Grant Nos.

61876212, 61976208, 61733007), Zhejiang Lab (Grant No. 2019NB0AB02), and HUST-Horizon Computer Vision Research Center.

We thank Liangchen SONG and Guoli WANG for the discussion and assistance.

References

1 Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2016

2 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2016

3 Sandler M, Howard A, Zhu M, et al. Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2018

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:12

4 Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell, 2018, 40: 834–848

5 Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation. 2017.

ArXiv:1706.05587

6 Huang Z L, Wang X G, Huang L C, et al. CCNet: criss-cross attention for semantic segmentation. In: Proceedings of

International Conference on Computer Vision, 2019

7 Huang Z L, Wang X G, Wei Y C, et al. CCNet: criss-cross attention for semantic segmentation. IEEE Trans Pattern Anal

Mach Intell, 2020. doi: 10.1109/TPAMI.2020.3007032

8 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans

Pattern Anal Mach Intell, 2017, 39: 1137–1149

9 Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector. In: Proceedings of European Conference on Computer

Vision, 2016

10 Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proceedings of International Conference on

Computer Vision, 2017

11 Yi P, Wang Z Y, Jiang K, et al. Multi-temporal ultra dense memory network for video super-resolution. IEEE Trans Circ

Syst Video Technol, 2020, 30: 2503–2516

12 Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition. In: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, 2018

13 Real E, Aggarwal A, Huang Y, et al. Regularized evolution for image classifier architecture search. In: Proceedings of AAAI

Conference on Artificial Intelligence, 2019

14 Pham H, Guan M Y, Zoph B, et al. Efficient neural architecture search via parameter sharing. In: Proceedings of International

Conference on Machine Learning, 2018

15 Zoph B, Le Q V. Neural architecture search with reinforcement learning. In: Proceedings of International Conference on

Learning Representations, 2017

16 Krizhevsky A, Hinton G. Learning Multiple Layers of Features From Tiny Images. Technical Report, 2009

17 Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2009

18 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. ArXiv:1409.1556

19 Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2015

20 Liu C X, Zoph B, Neumann M, et al. Progressive neural architecture search. In: Proceedings of European Conference on

Computer Vision, 2018

21 Tommasi T, Patricia N, Caputo B, et al. A deeper look at dataset bias. In: Proceedings of Domain Adaptation in Computer

Vision Applications, 2017

22 Tan M X, Chen B, Pang R M, et al. Mnasnet: platform-aware neural architecture search for mobile. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2019

23 Zhong Z, Yan J J, Wu W, et al. Practical block-wise neural network architecture generation. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2018

24 Miikkulainen R, Liang J, Meyerson E, et al. Evolving deep neural networks. In: Proceedings of Artificial Intelligence in the

Age of Neural Networks and Brain Computing, 2019

25 Lu Z C, Whalen I, Boddeti V, et al. NSGA-Net: a multi-objective genetic algorithm for neural architecture search. 2018.

ArXiv:1810.03522

26 Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search. In: Proceedings of International Conference on

Learning Representations, 2019

27 Zhang X B, Huang Z H, Wang N Y. You only search once: single shot neural architecture search via direct sparse optimization.

2018. ArXiv:1811.01567

28 Cai H, Zhu L G, Han S. ProxylessNAS: direct neural architecture search on target task and hardware. In: Proceedings of

International Conference on Learning Representations, 2019

29 Fang J M, Sun Y Z, Zhang Q, et al. Densely connected search space for more flexible neural architecture search.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2020

30 Fang J M, Sun Y Z, Peng K, et al. Fast neural network adaptation via parameter remapping and architecture search.

In: Proceedings of International Conference on Learning Representations, 2020

31 Dong X Y, Yang Y. Searching for a robust neural architecture in four GPU hours. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2019

32 Mei J R, Li Y W, Lian X C, et al. Atomnas: fine-grained end-to-end neural architecture search. In: Proceedings of Interna-

tional Conference on Learning Representations, 2020

33 Wu B C, Dai X L, Zhang P Z, et al. FBNet: hardware-aware efficient convnet design via differentiable neural architecture

search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019

34 Chang J L, Zhang X B, Guo Y W, et al. Data: differentiable architecture approximation. In: Proceedings of Conference on

Neural Information Processing Systems, 2019

35 Wong C, Houlsby N, Lu Y F, et al. Transfer learning with neural automl. In: Proceedings of Conference on Neural Information

https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1706.05587
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/TCSVT.2019.2925844
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1810.03522
https://arxiv.org/abs/1811.01567

Fang J M, et al. Sci China Inf Sci September 2021 Vol. 64 192106:13

Processing Systems, 2018

36 Deb K. Multi-objective optimization. In: Proceedings of Search Methodologies, 2014

37 Goldberg D E, Deb K. A comparative analysis of selection schemes used in genetic algorithms. Found Genetic Algorithms,

1991, 1: 69–93

38 Liu H X, Simonyan K, Vinyals O, et al. Hierarchical representations for efficient architecture search. In: Proceedings of

International Conference on Learning Representations, 2018

39 Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, 2017

40 Chen T, Goodfellow I J, Shlens J. Net2Net: accelerating learning via knowledge transfer. In: Proceedings of International

Conference on Learning Representations, 2016

41 Loshchilov I, Hutter F. SGDR: stochastic gradient descent with warm restarts. 2016. ArXiv:1608.03983

42 DeVries T, Taylor G W. Improved regularization of convolutional neural networks with cutout. 2017. ArXiv:1708.04552

43 Howard A G, Zhu M L, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications.

2017. ArXiv:1704.04861

44 Zhang X Y, Zhou X Y, Lin M X, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018

45 Chen X, Xie L X, Wu J, et al. Progressive differentiable architecture search: bridging the depth GAP between search and

evaluation. In: Proceedings of International Conference on Computer Vision, 2019

46 Xu Y H, Xie L X, Zhang X P, et al. PC-DARTS: partial channel connections for memory-efficient architecture search.

In: Proceedings of International Conference on Learning Representations, 2020

47 Xie S R, Zheng H H, Liu C X, et al. SNAS: stochastic neural architecture search. In: Proceedings of International Conference

on Learning Representations, 2019

48 Real E, Moore S, Selle A, et al. Large-scale evolution of image classifiers. In: Proceedings of International Conference on

Machine Learning, 2017

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1704.04861

	Introduction
	Related work and background
	Neural architecture search
	Evolutionary algorithm based NAS

	Method
	Framework
	Search space
	Architecture scale search
	Population quality
	Architecture perturbation function

	Experiments
	Search on CIFAR-10
	Transferring to ImageNet
	Transferring to CIFAR-100
	Ablation study

	Conclusion and future work

