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Dear editor,

Higher-order masking is one of the most effective coun-

termeasures against differential power analysis attacks

(DPA) [1]. However, this measure has not yet been widely

applied to real-life applications because it suffers from heavy

masking-overheads. The efficient realization of non-linear

operations, such as substitution-box (S-box), is a major

challenge. Among them, the addition-chain(AC)-based

schemes are the most compelling approaches for address-

ing the efficiency issue. These schemes provide a feasible

solution by reducing the number of non-linear multiplica-

tion required for the power function [2]. However, it is very

hard to further reduce the masking complexity by existing

methods.

This study proposes a fast S-box evaluation algorithm us-

ing a look-up-table based addition-chain (LUT-AC), which

is inspired by AC based algorithm. This algorithm substan-

tially reduces the masking-complexity by replacing a cer-

tain power function with a specially designed LUT. Its cor-

responding higher-order masking scheme derived from the

LUT-AC is also proposed; it provides a new practical way

for masking S-box of block ciphers.

Proposed LUT-AC. The LUT-AC is a new type of addi-

tion chain that is constructed by mixing LUT with a normal

AC. In the LUT-AC, the objective power function is sepa-

rated into a certain power function and a specially designed

LUT, which is shown in Figure 1 (take x254 as an exam-

ple). For the masking scheme, if the masking-complexity

is to be further reduced, then replacing the specific power

function (usually close to the objective power function, e.g.,

x238) with a small size LUT will offer a possible solution,

i.e., the LUT-AC based masking scheme. Because it can

reduce both the non-linear multiplication number and the

linear operation number.

Fast algorithm for solving the high-degree congruence

equation over GF(2n). The elements over GF(2n) are ob-

tained through the function of F2 → (F2/p(x),⊕,⊗). There

are 2n congruence classes with regard to fixed p, e.g., there

are 28 elements over GF(28) [3]. If mk = 2n − 1, m and

k are natural numbers, then all the elements over GF(28)

satisfy

xm ≡ bj(mod p), j ∈ [1, k]. (1)

Theorem 1. If a is the primitive root modulo p over

GF(2n), then the solutions of xm ≡ 1(mod p) satisfy

xj = a(j−1)k , k =
2n − 1

m
, j ∈ [1,m] . (2)

Theorem 2. For mk = 2n − 1, if all solutions of xm ≡

1(mod p) is the vector X1, and a is one of the primitive

roots, then the solutions of other k − 1 high-degree congru-

ence equations can be easily obtained from

(a(j−1) ⊗X0)
m ≡ bj(mod p), j ∈ [2, k], (3)

where bj is one solution of xk ≡ 1(mod p).

Proofs of Theorems 1 and 2 can be found in Appendixes A

and B.

Based on the above theorems, a fast algorithm can be de-

veloped to solve some specific-degree congruence equations

which satisfy (xm)d ≡ bj(mod p), where m is one factor of

2n − 1, d ∈ N and j ∈ [1, k]. Since all elements over GF(2n)

can be partitioned into m sets with all k elements in each set

having identical power functions. As a result of this prop-

erty, the LUT used to evaluate the specific power function

can be efficiently constructed. For GF(2n), if 2n−1 is a com-

posite number, then it will have different factorizations with

different factoring pairs (pi, qi) that satisfy 2n−1 = pi× qi,

i ∈ N. Take the factor pair (m, k) as an example, now,

equation xm ≡ 1(mod p) can be solved under Theorem 1.

Next, the other k − 1 equations can be solved under Theo-

rem 2. Finally, the solutions of (xm)d ≡ bj(mod p) can be

obtained by raising the power of bj to d. Appendix C lists

the high-degree congruence solutions with different factor-

ing pairs for GF(2n) where n 6 9. As we have known, the

size of the S-boxes in a cryptosystem is typically less than

nine.

Masking scheme for AES S-box. For AES S-box evalu-

ation, different LUT-ACs can be selected according to the

requirements of real-life applications. The LUT size is de-

pendent on the factoring pairs; as such, it is less than the
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Figure 1 Proposed LUT-AC.

square root of the original size (i.e., 256 bytes) in most situ-

ations. If the memory storage is not a constrained resource,

then the AC with large size LUT (e.g., x16 ×x238

−−−−→ x254,

which requires 15 bytes of memory) can be selected; while,

for constrained resources, the AC with small size LUT (e.g.,

x16 ×x85
×x153

−−−−−−−−→ x254, which requires eight bytes memory)

can be selected. Therefore, the LUT-AC based scheme has

high flexibility to meet different application requirements.

To mask AES S-box, there are two non-linear parts: one

non-linear multiplication and one small size LUT, which are

required to be masked separately. For the non-linear multi-

plication, a secure ISW [4] scheme can be used. To mask the

LUT, the multiplicative masking is easier and more efficient

than the Boolean masking because the LUT is constructed

based on the higher-order congruence equations.

The high-degree congruence equations and their solutions

which used to construct the AES S-box, can be viewed as

the extension matrix E:

E = [B|M ], (4)

where B = [b1 · · · bk]k×1, bj = a(k−1)m, j ∈ [1, 2n

m
], and M

is the solutions matrix.

According to Theorem 3 in [5], the mixed masking scheme

(Boolean masking for linear operation and multiplicative

masking for the LUT) is developed. Since the proposed al-

gorithm contains both Boolean and multiplicative masking

schemes, the masks have to be converted from one type to

the other. Thus, the transformation from Boolean mask-

ing to multiplicative masking (BMtoBM) shown in (5) is

required.

(x = ⊕d
i=0xa0, xa1, . . . , xad)

→ (x = ⊗d
i=0xm0, xm1, . . . , xmd). (5)

In order to simplify the operation and fully utilize the

properties of the proposed algorithm, the ‘BMtoMM’ is in-

tegrated with LUT and denoted as a global LUT (GLUT).

Therefore, the LUT integrated with masking conversion can

be masked as follows. First, the Boolean masks of the inputs

are transformed to multiplicative masks; then, the multi-

plicative masks are unmasked by table re-computation (i.e.,

permutation of bj); finally, the outputs are accessed from

LUT and remasked by new random masks. The detailed

algorithm is shown in Appendix D.

Masking-overheads comparisons. To evaluate the

masking-overheads of the proposed schemes, the computing-

complexity for AES S-box is evaluated and compared with

existing AC-based schemes in [6–9]. Under a normal AC-

based S-box evaluation schemes, there are three types of

arithmetic modules: F2-linear operation, multiplication,

and x × g(x) over GF(2n). Unlike these existing schemes,

the proposed scheme included a GLUT and a table re-

computation operation. The computing-complexity of the

different arithmetic modules costs and different AES S-boxes

is shown in Appendix E.

Conclusion. The computing-complexity (in terms of

XOR, non-linear multiplication over GF(2n), and LUT ac-

cess) is reduced by approximately 62.5% compared with the

existing schemes. Therefore, the proposed scheme has the

lowest complexity compared to existing higher-order mask-

ing schemes. Furthermore, the proposed algorithm is a gen-

eral method to evaluate the inverse over GF(2n), and thus

it is suitable for every block cipher constructed with in-

verse functions and affine transformations, e.g., SM4 and

Camellia.
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