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Appendix A System Model
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Figure A1 System model

Appendix B Proposed Algorithm

The proposed algorithm is shown in Fig. B1, V and U denote the outputs of SMOTE and the outputs in the hidden layer of sparse

autoencoder [2] respectively.
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Figure B1 The proposed algorithm
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Appendix B.1 Synthetic Minority Over-sampling Technique-Based Data Preprocessing

Due to the lack of samples with cell outage events, SMOTE [1] is firstly employed to preprocess the original dataset S by oversam-

pling. Denote S0 as the minority samples (i.e. samples with cell outage events) dataset. For each sample xi in S0, the SMOTE

algorithm selects K nearest samples according to Eq. (B1).

xk = arg min
xk∈S0,k 6=i

‖xk − xi‖2

S0 = S0 − {xk}

T = T ∪ {xk}

(B1)

where T is the set containing K nearest samples of xi.

Then, for each sample xj in T , the new sample xnew is generated according to Eq. (B2).

xnew = xi + α ∗ (xj − xi) (B2)

where α is a uniformly distributed random variable from 0 to 1.

Fig. B2 briefly shows the process for processing dataset S using SMOTE. The SMOTE algorithm is summarized in Algorithm B1,

where operation |S0| denotes the total number of elements in set S0.
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Figure B2 Dataset preprocessing using SMOTE

Algorithm B1 SMOTE

Input: dataset S, number of nearest samples K.
Output: the preprocessed dataset V .

1: Divide S into two subsets according to the label of the samples: S0 and S1, where S0 is the minority
samples dataset;

2: for each sample xi in S0 do
3: Select K nearest samples in S0 to xi, obtain set T according to Eq. (B1);
4: for each sample xj in T do
5: Generate xnew according to Eq. (B2);
6: Update S0: S0 = S0 ∪ {xnew};
7: if |S0| > |S1| then
8: return V = S0 ∪ S1.
9: end if

10: end for
11: end for

Appendix B.2 Sparse Autoencoder-Based Data Features Extracting

Predictably, there is still room for improvement since SMOTE is only an oversampling method which does not change the “primitive

structure” of samples. In this paper, after obtaining the preprocessed dataset V via SMOTE, sparse autoencoder is used to extract

the high-level features of original samples characterized by RSRP and SINR. It yields a funtion f : Rdim v → Rs2 that transforms

the input v to a high-level representation u shown in Eq. (B3), where s2 is the number of hidden-layer neurons.

u = f(v) ∈ Rs2 (B3)

Sparse autoencoder is one kind of feed-forward neural network [4]. It is noted that sparse autoencoder has more complex

structure such as stacked sparse autoencoder [5], but for simplicity, in this paper the classical three-layer sparse autoencoder

(shown in Fig. B3) is used, where the activation function a(x) is sigmoid function.

a(x) =
1

1 + e−x
(B4)
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Figure B3 The three-layer sparse autoencoder

Table B1 Enumeration of the symbols used in sparse autoecnoder

Symbol Description

W(l) weight matrix between the l-th layer and the (l + 1)-th layer

wlji
the weight between the i-th neuron in the l-th layer and the j-th neuron in
the (l + 1)-th layer

b(l) bias vector between the l-th layer and the (l + 1)-th layer

blj
bias between the bias unit (i.e. the neuron marked “+1” in Fig. B3) in the
l-th layer and the j-th neuron in the (l + 1)-th layer

N number of elements in V

vi the i-th element in V

zi output of the sparse autoencoder for the input vi

λ regularization coefficient used to reduce weights to decrease overfitting [7]

sl number of neurons in the l-th layer

β weight of the penalty factor
s2∑
j=1

KL(ρ||ρj)

ρ
sparsity parameter indicating the desired activation degree of each hidden-
layer neuron

ρj average activation degree of the j-th hidden-layer neuron for all inputs

a
(2)
j (vi) output of the j-th hidden-layer neuron under the condition of input vi

The process of training sparse autoencoder is to adapt the weight matrices W(1), W(2) and bias vectors b(1), b(2) to minimize

the following cost function, which can be solved by back propagation algorithm [6].

J(W
(1)
,W

(2)
,b

(1)
,b

(2)
) =

1

N

N∑
i=1

1

2
‖vi − zi‖22 +

λ

2

2∑
l=1

sl∑
i=1

sl+1∑
j=1

(w
l
ji)

2
+ β

s2∑
j=1

KL(ρ||ρj) (B5)

where,

KL (ρ||ρj) = ρ ln
ρ

ρj
+ (1− ρ) ln

1− ρ
1− ρj

, ρj =
1

N

N∑
i=1

a
(2)
j (vi) (B6)

The symbols in Eq. (B5) and Eq. (B6) are summarized in Table B1.

The purpose of minimizing Eq. (B5) is to adapt the weight matrices W(1), W(2) and bias vectors b(1), b(2) such that inputs

are restored at the output layer as much as possible (i.e. vi ≈ zi), which is so called “autoencoding”.
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Sparse autoencoder extracts high-level features of inputs in the hidden layer by minimizing Eq. (B5). For each input vi, the

output ui in the hidden layer is shown in Eq. (B7), which will be used for cell outage detection.

ui = a(W
(1)T

vi + b
(1)

) (B7)

Appendix B.3 Logistic Regression-Based Cell Outage Detection

After training the sparse autoencoder, outputs of its hidden layer are utilized to detect cell outages via Logistic Regression [3] (LR).

LR is a classic classification model, which is to determine the maximum value of the log-likelihood function defined as follows:

L(h, c) =

N∑
i=1

yi(h · ui + c)− ln(1 + e
h·ui+c

) (B8)

where ui represents the i-th input, yi (same as section 2) indicates the label of vi. yi has two possibile values: 1 or 0. h is the

weight vector and c is the bias.

The maximum value of Eq. (B8) can be found by gradient descent algorithms [8]. Denote the solution of maxmizing Eq. (B8)

as hopt and copt.

The proposed algorithm is summarized in Algorithm B2.

Algorithm B2 Cell outage detection algorithm based on sparse autoencoder

Input: dataset S, number of nearest samples K, regularization coefficient λ, weight of penalty factor β,
sparsity parameter ρ and number of hidden-layer neurons s2.

Output: two variables determining the LR model: hopt and copt.
1: Obtain the preprocessed dataset V by SMOTE algorithm;
2: Take vi ∈ V as input to train the sparse autoencoder, let U = ∅;
3: for each sample vi in V do
4: Obtain the output ui of the hidden layer in the sparse autoencoder according to Eq. (B7);
5: Update U : U = U ∪ {ui};
6: end for
7: Train LR model: taking ui ∈ U as input, determine the maximum value of Eq. (B8);
8: Denote the weight vector and bias after training as hopt and copt respectively;
9: return hopt and copt.

Appendix C More simulation Results

The more detailed parameter configuration is listed in Table C1, where d (in meter) is the distance between the base station and

the user.

The effect of the neuron number on performance is stuied. Under the same sample size, Fig. C1 illustrates the detection rate

versus the number of hidden-layer neurons. As the number of neurons increases, the performance for each neuron number improves.

We can see that it is essential to combine SMOTE and sparse autoencoder since under the similar performance SMOTE greatly

reduces the number of hidden-layer neurons in sparse autoencoder, which saves the training time of it, as shown in Fig. C2.
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Figure C1 Detection rate versus number of hidden neurons
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Table C1 Simulation Parameters

Parameter Value

Transmit Power 16 dBm

Carrier Frequency 5G Hz

Channel Bandwidth 5M Hz

Thermal Noise Power -174 dBm/Hz

Minimum Distance between Base Stations and Users 2 m

Pathloss Model 40.4 + 22 ∗ lg(d) dB [10]

Shadow Fading Standard Deviation 6.8 dB [10]

Shadow Fading Decorrelation Distance [9] 5 m

Shadow Fading Cross-correlation between Base Stations [9] 0.5

Minimal Sensitive Signal Strength of Devices [11] -112.5 dBm

Number of Nearest Samples K 1

Regularization Coefficient λ 3 ∗ 10−3

Weight of Penalty Factor β 3

Sparsity Parameter ρ 0.1

Number of Hidden-layer Neurons s2 250
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Figure C2 Training time versus number of hidden neurons
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