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Dear editor,

Quantum state estimation (QSE) is the most important

work in quantum information processing and quantum feed-

back control, which is usually formulated by means of strong

measurements of an informationally complete set of mea-

surement operators and corresponding observables. How-

ever, strong measurements collapse the original quantum

state, the ensemble must be reprepared, and the measure-

ment apparatus has to be reconfigured at each step. Weak

measurements (WM) [1] offer an alternative in acquiring

quantum measurements and estimating quantum states. In

the measuring process, by using continuous weak measure-

ments (CWM) it is possible to gain the target state infor-

mation without disturbing it substantially, and the value

recovered in CWM can be obtained by computing the en-

semble averaging. Compressed sensing (CS) [2] has been

brought into the quantum domain in the context of reducing

the number of measurements required for QSE [3, 4]. How-

ever, whether a unified efficient scheme for on-line quantum

state estimation using CWM and partial measurements is

feasible, remains unknown.

In this study, we propose a new information acquisition

and processing for on-line quantum state estimation on the

basis of continuous weak-measurements with the help of

compressive sensing and the optimization algorithm. Our

key idea is to make a weak measurement on the complete

measurement operators in an ensemble system by coupling

the ensemble to some probe which can be measured. At each

instant time, we obtain the records of the expectation val-

ues corresponding to some measurement operators using the

indirect results of continuous weak measurements, and the

estimated state is obtained by solving an on-line optimiza-

tion problem with physical constraints. CS is used to reduce

the number of the measurements needed and to improve the

efficiency of the estimation. The existing techniques usually

perform continuous weak measuring on-line yet estimate the

state off-line, and the estimated state is a fixed state. While

during the on-line state estimation in this study, the states

estimated on-line are dynamic system states.

In a quantum weak measurement, a probe P is coupled

with the estimated system S, and they become a joint cou-

pled system S⊗P . For one qubit density matrix ρ, suppose

the initial state of the probe P is |φ〉, and the initial state of

the system S is ρ0 = |ψ〉〈ψ|. HS and HP are the Hamilto-

nians of systems S and P , respectively, and H = HP ⊗HS

is the Hamiltonian of the joint system. The initial state

of the coupled system is |Ψ〉: |Ψ〉 = |φ〉 ⊗ |ψ〉. After the

joint evolution of S and P for time ∆t, the state |Ψ〉 be-

comes |Ψ(∆t)〉 = U(∆t)|Ψ〉, where U(∆t) is the joint evo-

lution operator U(∆t) = exp(−iξ∆tH/~), and ξ represents

the interaction strength between systems S and P . At time

∆t, a projective measurement is performed on P with the

measurement operator X =
∑

I ⊗ |k〉〈k|, where |k〉 is the

eigenstate of the system P : |0〉 or |1〉. The output is the

eigenvalue corresponding to |k〉. The state of the joint sys-

tem after the weak measurement becomes

|ψk(∆t)〉=〈k| ⊗ I · U(∆t)|φ〉 ⊗ |ψ〉/Θk, (1)

where Θk=
√

〈Ψ(∆t)|Πk|Ψ(∆t)〉.
We define the weak measurement operator Mk as

Mk = 〈k| ⊗ I · U(∆t) · |φ〉 ⊗ I, (2)

which is a Kraus operator and satisfies
∑

kM
†
kMk = 1. In

this case, Θk becomes Θk=
√

〈ψ|M†
kMk|ψ〉. Finally, we can

get the relationship between the state of the system S before

and after the whole measurement process as

|ψk(∆t)〉=
Mk

√

〈ψ|M†
kMk|ψ〉

|ψ〉. (3)

In such a way, we obtain the weak measurement operator

Mk in (2) on the system S.

On-line state estimation makes the measurement oper-

ators be no longer a constant matrix group, and they be-

come a set of time varying measurement operators Mk(t).

We need to deduce the time varying measurement operators

used in the on-line state estimation.
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Figure 1 (Color online) (a) On-line estimation of the quantum state based on continuous weak measurements; (b) evolution

trajectories of the actual state ρ(t) (red line) and the on-line estimation state ρ̃(t) (blue line) in the Bloch sphere; (c) fidelity of

sampling times with three different noise amplitudes.

The process of on-line estimation of quantum states

based on continuous weak measurements is shown in Fig-

ure 1(a). Assume ~ = 1. We can get the Taylor ex-

pansion of U and neglect more than three orders of mag-

nitude as U(∆t) ≈ I ⊗ I − iξ∆tH − (ξ∆t)2H2
/

2, which

is substituted into (2). We can obtain the expression of

the weak measurement operator as Mk(∆t) ≈ I 〈k| φ〉 −
iξ∆tHS 〈k| HP |φ〉 − (ξ∆t)2H2

S 〈k| H2
P |φ〉 /2. Let rk =

(ξ∆t)H2
S 〈k| H2

P |φ〉
/

2, k = 1, 2, . . . , d, and the general

form of the weak measure operator is Mk(∆t) = I 〈k| φ〉 −
[rkλ/2+iλHS 〈k| HP |φ〉 ], where λ = ξ∆t denotes the weak

measurement strength and it tends to zero in the case of

∆t → 0. Supposing 〈j | φ〉 = 1 when k = j, we can obtain

Mi(t) asMj(∆t) = I−(ξrk=j/2+iξHS)∆t, and all the other

measurement operators of k 6= j can be combined as one op-

erator as Mk 6=j(∆t) = Mj⊥(∆t) =
√

rk 6=j∆t, where Mj⊥

andMj are orthogonal and satisfy (Mj⊥)2+(Mj)
2 = I. For

the continuous weak measurements of a two-level quantum

system, the measurement operator group only contains two

operators: M0(∆t) and M1(∆t), which can be constructed,

respectively, as

M0(∆t) = Mj − i(1− ξ)HS∆t

= I − (ξrk/2 + iH(t))∆t

= I −
(

L†L
/

2 + iH(t)
)

∆t,

M1(∆t) = Mk 6=j = L ·
√
∆t,

(4)

in which L†L = ξrk.

The stochastic master equation (SME) of the open quan-

tum system can be written as

ρ(t + dt) − ρ(t) = − i

~
[H(t), ρ(t)]dt

+
∑

[

Lρ(t)L† −
(

1

2
L†Lρ(t) +

1

2
ρ(t)L†L

)]

dt

+
√
η
∑

[

Lρ(t) + ρ(t)L†
]

dW,

ρ0 = ρ(0),

(5)

where ρ(t) is the density matrix. H(t) = HS+HP +u(t)Hc,

where H(t) is the whole Hamiltonian, HS is the measured

system Hamiltonian, HP is the Hamiltonian of probe sys-

tem, and Hc is the control Hamiltonian. u(t) is the exter-

nal regulate value. η is the measure efficiency and satisfies

0 < η 6 1. The discrete-time dynamic evolution equation of

the stochastic open quantum system S can be written as

ρ(k + 1) = A0ρ(k)A
†
0
+A1ρ(k)A

†
1
, (6)

where dt = ∆t represents the very short time in-

terval required for the weak measurement, A0 =

M0(dt) +
√
ηL · dW,A1 = M1(dt) +

√
ηL · dW , L · dW de-

notes the noise caused by the continuous weak measure-

ments, and dW denotes Gaussian white noise.

The evolution equation of the measurement opera-

tor Mi(t) is Ṁk(t) = i

~
[H(t),Mk(t)] + LMk(t)L

† −
1

2
(L†LMk(t)+Mk(t)L

†L). The corresponding discrete-time

evolution equation of continuous weak measurement opera-

tors is

Mk(k + 1) =M†
0
Mk(k)M0 +M†

1
Mk(k)M1. (7)

According to the theory of CS, the density matrix of the

quantum state can be reconstructed with only O (rd ln d)

measurements’ numbers of random measurement operators

by solving an optimization problem, where r and d are the

dimension and rank of the density matrix ρ, respectively,

and r ≪ d. One can estimate the quantum state on-line

with a small amount of time-evolving measurement oper-

ators
{

Mkl

}

, l = 1, 2, . . . , m and corresponding measure

records y(tl) by solving the optimization problem:

argmin ‖A · vec(ρ̂)− y‖
2

s.t. ρ̂ > 0, tr(ρ̂) = 1,
(8)

where vec(·) represents the transformation from a ma-

trix to a vector by stacking the matrix’s columns in or-

der on the top of one another. The sampling matrix A

is the matrix form of the all the sampled measurement

operators Mkl
(tl); Mkl

, l = 1, 2, . . . ,m is an arbitrary

measurement operator in the l-th or the tl-th measure-

ment. For the sake of simplicity, we let Mkl
= Mkl

(tl).
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The vector y and matrix A can be expressed accord-

ing to the current measurement configurations as y(tl) =

(
〈

Mk1

〉

,
〈

Mk2

〉

, . . . ,
〈

Mkl

〉

)T, l = 1, 2, . . . ,m, and A(tl) =

( vec(Mk1
)T vec(Mk2

)T · · · vec(Mkl
)T ), l = 1, 2, . . . , m,

where
〈

Mkl

〉

is the corresponding measurement value in

the l-th measurement. The sampling vector y is the vec-

tor form of the corresponding observation values 〈Mkl
〉, l =

1, 2, . . . , m.

Experiments. Consider a 1/2 spin particle ensemble ρ(t)

as the system for on-line state estimation. The Hamil-

tonian of system is H = H0 + uxHx, where H0 =

− (~/2)ω0σz is the free Hamiltonian, and ux ∈ R+ is

the time-independent control amplitude. We use the least-

square algorithm to solve the optimization problem (8),

and the on-line estimated solution ρ̂(t) is the estimation

of ρ(t). In the experiments, the fidelity f(t) is used to

represent the performance of state estimation: f(t) =

Tr
√

ρ̂(t)1/2ρ(t)ρ̂(t)1/2 . The initial state of the 1/2 spin sys-

tem is ρ(0) = [ 3/4 −
√
3
/

4; −
√
3
/

4 1/4 ], and the Bloch

sphere coordinate of ρ(0) is (
√
3
/

2, 0, 1/2). The inter-

val time between two weak measurements is ∆t = 0.1

atomic unit, the measure efficiency is set as η = 0.5, and

dW = σ · randn(2, 2). Figure 1(b) shows the experimental

results, where ux = 2, ξ1 = 0.3, L = ξ1σz , and the variance

of noise σ = 0.02. Figure 1(c) shows the fidelity of sampling

times with σ being 0, 0.02 and 0.04, respectively. From Fig-

ure 1(c) one can see that on-line estimations of the quantum

state can achieve more than 95% accuracy of fidelity after

two times measurements.

Conclusion. We proposed an on-line quantum state

estimation method in this study and provided an imple-

mentable method for more complex application of high ac-

curate closed-loop quantum feedback control [5]. This is

particular interest for microscopic systems.
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