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Dear editor,

Spatial crowdsourcing (SC) services (e.g., Uber, DiDi, and

Meituan) have become popular with smart-phone growth.

However, the online matching problems in real-time spatial

data are a key issue in SC [1–4]. Unlike the current one-sided

online matching study in real-time spatial data [5], which

focuses on minimizing the overall cost of the matching, we

focus on minimizing the bottleneck cost, i.e., minimizing the

maximum distance cost of the matching. The reason why

we consider the bottleneck optimization goal is explained in

Appendix A. The real-time minimum bottleneck matching

(RMBM) problem in SC is defined as follows.

Definition 1 (The RMBM problem). In a 2D space,

given a worker set W with specific locations, a set of

tasks T released by users whose spatial information is un-

known before they appear; the RMBM problem is to find

a matching M of W and T to minimize the maximum dis-

tance cost of all worker-task matching pairs, Cost(M) =

maxw∈W,t∈T dis(w, t), where dis(·, ·) is the distance func-

tion. And all the following constraints must be satisfied.

• Capacity constraint: a task can only be assigned to one

worker and vice versa.

• Cardinality constraint: |M | = min(|W |, |T |).

• Real-time constraint: when a task occurs, the task must

be allocated immediately to a worker as long as there exists

an available worker. Otherwise, the task will expire.

• Invariability constraint: every worker-task matching

pair cannot be revoked or re-matched.

LLDF algorithm. The RMBM problem is difficult to

overcome because the bottleneck cost is very sensitive, i.e.,

the bottleneck cost is decided by only one single awful

worker-task matching pair. To solve the RMBM problem,

an online algorithm, local low-density first (LLDF), is pro-

posed. In LLDF, we believe that workers with lower den-

sity have higher probabilities of being outliers and lead to a

larger bottleneck cost. We, therefore, give the low-density

worker a high priority to match for lowering the final bot-

tleneck cost. Information on the idea of LLDF is shown in

Appendix B and the description of workers’ density is shown

below.

Definition 2 (Density). Given a set of workers W =

{w0, w1, . . . , wk−1} with specific locations, a distance func-

tion DenDis(·, ·) in a 2D space and a distance threshold θ

(θ > 0), an arbitrary worker wi’s density is Density(wi) =

|S|, where S = {∀wj ∈ W |DenDis(wi, wj) 6 θ}. For wi, the

larger Density(wi) means more workers surrounding around

wi, and wi’s density Density(wi) is higher.

We name DenDis(·, ·) as “density distance” and

DenDis(·, ·) is the same with the distance function dis(·, ·)

in the RMBM problem definition by default. Notice that

the different settings of the threshold θ have a considerable

influence on the results of workers’ density. To make our al-

gorithm adaptively suit different distributions of workers, we

use κ×AvgDenDis as the threshold θ, where AvgDenDis is

the average density distance of DenDis(·, ·) of arbitrary two

workers and κ is a preset parameter.

In many instances, a simpler distance metric than dis(·, ·)

can be used as DenDis(·, ·) to accelerate LLDF. In fact, ow-

ing to the adaptive threshold κ×AvgDenDis used in LLDF,

the actual distance between workers does not matter when

calculating the density of each worker, and LLDF can work

well as long as the density distance function DenDis can

roughly explain the relative distance distribution between

workers.

The final question is how to give the lower density worker

a higher priority to match. When a task ti arrives, we calcu-

late the average distance Avgti of dis(·, ·) between ti and all

available workers. Then we match ti to the available worker

with the minimum density within the range of η × Avgti
away from ti. Note that η is a preset parameter. Further,

Algorithm 1 shows the whole procedure of LLDF.

Complexity and competitive analysis. For each new arriv-

ing task, the space and time complexity of LLDF is O(|W |).

For initialization, the space and time complexity of LLDF

is O(|W |) and O(|W |2), respectively. We also analyze the

competitive ratio’s lower bound of LLDF in the adversarial
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model as shown in Theorem 1. The competitive ratio in the

adversarial model is defined in Appendix C and the proof of

Theorem 1 is shown in Appendix D.

Algorithm 1 LLDF

Input W , T ;

Output A feasible matching M ;

1: (i) Initialization:

2: M ← ∅;

3: AvgDenDis←

∑p=|W |−1,q=|W |−1
p=0,q=0 DenDis(wp,wq)

|W |2
;

4: Density← [0, 0, . . . , 0]|W |;

5: for p = 0 to |W | − 1 do

6: DenSet ← {∀u|u ∈ W and DenDis(wp, u) 6 κ ×

AvgDenDis};

7: Density[p]← |DenSet|;
8: end for

9: (ii) A task ti arrives:

10: π ← {dis(ti, w0), dis(ti, w1), . . . , dis(ti, w|W |−1)};

11: Avgti
←

∑j=k−1
j=0

πj

k
;

12: Cand← {∀u|u ∈W and dis(ti, u) 6 η × Avgti
};

13: wx ← the worker in Cand with the minimum density;

14: M ← (ti, wx);

15: W ← W − wx;

16: return M ;

Theorem 1. The competitive ratio of LLDF is at least

η · 2⌊k−log k−1⌋, where k = |M | = min(|T |, |W |).

To validate the efficiency and effectiveness of LLDF, four

existing algorithms, Greedy [6, 7], Permutation [6, 7], Bal-

ance [7, 8], and Greedy-HST [5, 9] are used as baseline al-

gorithms to compare with LLDF. All the four baseline al-

gorithms are the state-of-the-art algorithms for solving the

general online bottleneck matching problem or the one-sided

online minimum matching problem in real-time SC. Exper-

iments on synthetic and real datasets show that LLDF is

effective and considerably outperforms smaller bottleneck

costs and that LLDF is also efficient in terms of both mem-

ory and running time. More details about the experiments

are shown in Appendix E.
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