
SCIENCE CHINA
Information Sciences

August 2021, Vol. 64 182401:1–182401:17

https://doi.org/10.1007/s11432-020-3150-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

A robust QRS detection and accurate R-peak
identification algorithm for wearable ECG sensors

Kai ZHAO1, Yongfu LI1*, Guoxing WANG1, Yu PU2 & Yong LIAN1

1Department of Micro and Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
2Alibaba Group, Sunnyvale CA 94085, USA

Received 9 August 2020/Revised 23 October 2020/Accepted 7 December 2020/Published online 8 May 2021

Abstract This paper presents a robust QRS detection algorithm that is capable of detecting QRS com-

plexes as well as accurately identifying R-peaks. The proposed bilateral threshold scheme combined with

QRS watchdog greatly improves the detection accuracy and robustness, resulting in consistent detection per-

formance on 9 available ECG databases. Simulations show that the proposed algorithm achieves good results

on the datasets from both QTDB healthy database and MITDB arrhythmia database, i.e. the sensitivity of

99.99% and 99.88%, the precision of 99.98% and 99.88%, and the detection error rate of 0.04% and 0.31%,

respectively. Furthermore, it also outperforms many existing algorithms on six other ECG databases, such

as NSTDB, TWADB, STDB, SVDB, AFTDB, and FANTASIADB.
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1 Introduction

Electrocardiogram (ECG) is an electric potential signal generated by a large number of cardiomyocytes,
measured by electrodes at specified positions on a human body. According to World Health Organization,
cardiovascular diseases (CVDs) are the number 1 cause of death globally, representing 31% of all global
deaths [1]. With the recent advancement in flexible electronics, low cost and easy to use wearable ECG
sensors will be available in near future [2–9]. These wearable ECG sensors will change the landscape of
managing CVD patients, saving millions of dollars in treating CVDs and in production loss.

As illustrated in Figure 1, ECG waveform is a quasi-periodic signal composed of repeating patterns,
which can be marked by fiducial points, i.e., “P”, “Q”, “R”, “S”, and “T”. The “P” wave represents atrial
depolarization, the “QRS” complex represents ventricular depolarization, and the “T” wave represents
ventricular re-polarization [10]. The “QRS” complex has a distinct characteristic in ECG waveform, and
its peak, also known as “R” peak, is the most important feature in ECG analysis. The segmentation
between sequential “R” peaks is known as “R-R” interval.

“QRS” detection is an important step in ECG-related analytic applications, including heart rate (HR)
monitoring [11], heart rate variability (HRV) analysis [10, 12–17], cardiac arrhythmia detection [18, 19],
heartbeat classification [20–22], and identity recognition [23–26]. HRV can be used to detect early warning
signs of congestive heart failure [27, 28] and obstructive sleep apnea [29, 30]. Thus, a “QRS” detection
algorithm that is capable of accurately identifying R-peak location is highly sought.

ECG signals are normally contaminated by instrumental, muscle, and power-line noises. The first step
in detecting “QRS” complexes is to reduce these noises. Existing “QRS” and R-peak detection algori-
thms [31–39] adopted signal level “threshold” technique(s) to determine the positions of “QRS” complexes
and derived “R” peaks and “R-R” intervals. However, the detection accuracy is highly dependent on
ECG morphology. Figure 2 shows 10 different types of ECG waveform from MITDB [40]. Most of
“QRS” detection algorithms use MITDB to demonstrate their performance. Note that there are other
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Figure 1 (Color online) An example of ECG signal, marked with fiducial points “P”, “Q”, “R”, “S”, and “T”.
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Figure 2 (Color online) An example of ten different types of ECG beat from MITDB [40]. (a) Normal (NOR); (b) atrial premature

contraction (APC); (c) left bundle branch block (LBB); (d) ventricular escape beat (VEB); (e) NOR with noise; (f) paced beat

(PAB); (g) premature ventricular contraction (PVC); (h) right bundle branch block (RBB), (i) ventricular flutter wave (VFW);

(j) aberrated atrial premature.

ECG databases such as QTDB [41], NSTDB [42], TWADB [43], STDB [44], SVDB [45], AFTDB [46],
FANTASIADB [47], and INCARTDB [48]. A robust “QRS” detection algorithm should show good
performance across different ECG databases. Such robustness may not be easily achieved. For example,
the Pan and Tompkins [31] method has achieved the best performance on QTDB [41] (sensitivity (Se)
of 99.54% and precision (+P) of 99.68%); however, its sensitivity on FANTASIADB has degraded to
82.70%. Note that the ECG signals recorded from the wearable flexible ECG sensors are very different
from traditional resting ECG and Holter, i.e., the ECG morphology changes with the sensor location.
So a robust “QRS” detection algorithm is highly thought of in dealing with the large variations in ECG
morphology. This motivates us to develop a “QRS” detection algorithm that is able to maintain the
detection accuracy across different databases.

In this paper, we present a robust “QRS” (R-QRS) detection algorithm that is optimized on MITDB
and evaluated on eight other databases from PhysioNet without removing any record and segment, except
for non-annotated beats. The rest of the paper is organized as follows. Section 2 describes the definitions
of the nine PhysioNet databases [49] and the parameters used in the proposed algorithm. Section 3
provides details of the proposed algorithm. Section 4 describes evaluation criteria with experiment results.
Finally, a conclusion is drawn in Section 5.
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2 Preliminaries

There are a total of nine PhysioNet databases [40–49] being evaluated in our proposed R-QRS algorithm.
These databases are collected from populations of different physical conditions, sampled at different
frequencies and under different noise environments. A summary of each database is described as follows:

(1)MITDB.MIT-BIH Arrhythmia database [40] is collected from a population of arrhythmia patients,
sampled at 360 Hz. It contains 48 records of 30 min. Lead II of this database is used for optimizing our
parameters while the remaining databases are used for evaluation.

(2) QTDB. QT database [41] contains 105 records of 15 min, sampled at 250 Hz. We have excluded
parts of the record without “R” peak annotations.

(3) NSTDB. MIT-BIH noise stress test database [42] includes 12 half-hour ECG records with different
degrees of noise, sampled at 360 Hz. The records are created on two clean records from Lead II of the
MIT-BIH arrhythmia database [40] with electromyography (EMG) artifact noise. The signal-to-noise
ratios (SNRs) of these records range from −6 to 24 dB.

(4) TWADB. T-wave alternans challenge database [43] contains 100 records from a population of
cardiac patients and healthy controls, sampled at 500 Hz.

(5) STDB. MIT-BIH ST change database [44] includes 28 ECG recordings of varying lengths sampled
at 360 Hz, most of which were recorded during exercise stress tests and which exhibit transient ST
depression. In this database, the “QRS” complex labels in the segment from 395 to 518 ms in record 319
were missing, so we have deleted record 319 in our experiments.

(6) SVDB. MIT-BIH supraventricular arrhythmia database [45] includes 78 half-hour records of
supraventricular arrhythmia patients, which complement with MIT-BIH Arrhythmia database and sam-
pled at 128 Hz.

(7) AFTDB. AF termination challenge database [46] includes 80 one-minute records of atrial fibrilla-
tion (AF), sampled at 128 Hz.

(8) FANTASIADB. Fantasia database [47] contains 40 120-min records from healthy subjects, sam-
pled at 250 Hz.

(9) INCARTDB. St Petersburg INCART 12-lead arrhythmia database [48] contains 75 30-min records
from patients undergoing tests for coronary artery disease, sampled at 257 Hz. Lead I of this database is
used in our experiments.

3 The proposed R-QRS algorithm

The flow chart of the proposed R-QRS algorithm is shown in Figure 3. It contains the proposed pre-
processing method, “peak pre-selection (PPS)” procedure, “bilateral threshold” setting mechanism, and
“QRS watchdog”. The pre-processing method aims to reduce noise and enhance “QRS” complex. The
PPS algorithm identifies potential R-peak candidates, and the “bilateral threshold” determines R-peak
from its candidates. The “QRS watchdog” recovers the missing “R” peaks using a search-back function.
Each part of the proposed algorithm is discussed in Subsections 3.1 and 3.2.

3.1 The pre-processing

Pre-processing is commonly used to reduce noises and enhance “QRS” complexes in ECG signals. We
noticed that existing methods [31,32] are not very effective against noises as illustrated in Figure 4 while
methods in [33–39, 50] are less sensitive to ventricular flutter beats. Thus, we proposed a new QRS
enhancement technique that enhances the “QRS” complex while suppresses different types of noise. For
a bandpass filtered ECG signal, y, the proposed QRS enhancement generates a QRS-enhanced signal, z,
as follows:

z[n] =
1

2W + 1

2W
∑

k=0

(y [n−W + k]− ŷn [k])
2
, (1)

where y is a band-pass filtered ECG signal. The cut-off frequencies f1 and f2 of the bandpass filter are
optimized based on MITDB, whose values will be given in Subsection 4.2. W is the radius of a window
centered at the time index n, and ŷn is defined as

ŷn[k] =
k

2W
(y [n+W ]− y [n−W ]) + y [n−W ] . (2)
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Figure 3 (Color online) Flow chart of our proposed R-QRS algorithm.
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Figure 4 (Color online) An example of (a) the ECG signal, (b) its enhanced “QRS” complexes after pre-processing [31], and

(c) its enhanced “QRS” complexes after pre-processing [32].

If the window radius W is set properly (close to the duration of most “QRS” complexes), the proposed
QRS enhancement is able to enhance the “QRS” complexes and reduce the interferences based on the
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Figure 5 (Color online) The relation among the original ECG, the filtered ECG, and the QRS-enhanced ECG.

following observations:
(1) For a normal “QRS” complex, z[n] produces a local maximum at the “R” when the window

[n−W,n+W ] is centered at the “R” peak, as shown at location (i) in Figure 5.
(2) In the case of an “R” followed by a deep “S” wave at locations (ii) and (iii) in Figure 5, z[n]

produces two local maximums.
(3) For an elevated “T” wave at location (iv) in Figure 5, z[n] becomes much smaller than that of an

“R” peak. This is because a “T” wave is wider than that of the “QRS” complex.
(4) For noises, their durations do not match the window width of 2W + 1. So they will be suppressed

as shown at location (v) in Figure 5.
Based on the above observations, the window width 2W+1 should be wide enough to cover the duration

of most “QRS” complexes, and it also should be as narrow as possible to avoid covering an elevated “T”
wave. The value of W is optimized on MITDB, and the details can be found in Subsection 4.2.

Figure 6 provides different examples of the ECG signals and their corresponding QRS-enhanced ECG
signals using the proposed technique. The proposed method is effective for different types of regular
ECG, as shown in Figures 6(a) and (b). Clearly, the “R” peaks in Figures 6(a) and (b) can be detected
using a simple constant threshold. However, there are still non-negligible “noise” peaks in the noisy ECG
signals, as shown in Figures 6(c) and (d), and highly irregular “R” peaks in the arrhythmia ECG signal,
as shown in Figure 6(e). Therefore, we propose the following “R” peak detection procedure for these
complex scenarios.

3.2 The “R” peak detection procedure

The proposed “R” peak detection procedure detects potential “R” peaks in the QRS-enhanced ECG,
and finds their exact locations of “R”. As illustrated in Figure 3, the “R” peak detection procedure
consists of (1) “peak pre-selection” (PPS), (2) “bilateral threshold”, (3) “QRS watchdog”, and (4) “R-
peak identifier” algorithms. For each pre-processed incoming ECG sample z[n], the PPS algorithm finds a
local maximum within a given time window. This peak is checked by the “bilateral threshold” algorithm
to determine if it is an “R” peak or a “noise” peak. A search-back function, “QRS watchdog”, is used to
pick up possible missing “R” peaks. Whenever an “R” peak is identified on z[n], an actual “R” peak is
marked on the corresponding raw ECG signal x[n] by the “R” peak identifier algorithm to complete the
“R” peak detection process.

3.2.1 The “peak pre-selection (PPS)” algorithm

The “peak pre-selection (PPS)” algorithm finds a local maximum A0 within a time window Lpre = 200
ms. Lpre represents the shortest “R-R” interval in MITDB. To prevent large noise, such as motion
artifacts, from distorting the “R” peak detection threshold, A0 is limited by an upper bound Amax,
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Figure 6 (Color online) ECG signals (solid blue lines) and our QRS-enhanced ECG (dotted red line) from MITDB record

(a) ‘101’, (b) ‘102’, (c) ‘104’, (d) ‘105’, and (e) ‘201’. The “R” peaks are denoted by red circles.

which is optimized based on MITDB. The local maximum A0 and its time index P0, namely “large
peak”, will be passed to the “bilateral threshold” algorithm (Subsection 3.2.2) to decide if this peak is
considered as an “R” peak or “noise” peak.

3.2.2 The “bilateral threshold” algorithm

The “bilateral threshold” algorithm is performed on the detected large peak (P0, A0) from the PPS
algorithm, to determine if this detected peak is considered as an “R” peak or “noise” peak. The algorithm
uses an adaptive threshold T1 based on three predicted values, i.e., “R-R” interval LRR, “R” peak ER,
and “noise” peak EN. The predicted values are based on the most recent Ns numbers of “R-R” intervals
Li, “R” peaks Ai, and “noise” peaks Bi.

Note that not all the historical data are helpful in predicting LRR, ER and EN. For example, sudden
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Figure 7 (Color online) The different threshold setting strategies. (a) Record ‘205’ in MITDB; (b) record ‘104’ in MITDB;

(c) bilateral threshold.

arrhythmia or large noise may cause extreme “R-R” intervals, “R” peak’s amplitudes, and “noise” peak’s
amplitudes. These extreme values may distort the predicted values. To improve predictions, we first sort
the stored Li, Ai, and Bi in ascending order. The predicted “R-R” interval is obtained by

LRR =
1

Ns − 2Ne

Ns−Ne
∑

i=Ne+1

Li, (3)

where Ne is the number of discarded large and small values. The predicted “R” peak’s amplitude ER

and “noise” peak’s amplitude EN are calculated by a similar method. The constant parameters Ns and
Ne are being optimized on MITDB, and the details can be found in Subsection 4.2.

To determine whether a “large peak”, (P0, A0), is an “R” peak or “noise” peak, the threshold, T1,
should be set between ER and EN. The weighted linear combination (WLC) of ER and EN is used in [31]
to determine the threshold; however, such a strategy is not always effective. As shown in Figure 7(a),
record ‘205’ in MITDB, to detect the “R” peak with a low amplitude at location (i), an extremely low
constant threshold value must be set, which means the weight of EN must be much larger than the weight
of ER. However, if the same set of weights is used for the threshold in record ‘104’ in MITDB, as shown in
Figure 7(b), the large “noise” peak (i) will be wrongly marked as an “R” peak since its amplitude is higher
than the threshold value. The problem can be solved by adopting an adaptive threshold setting strategy
where the threshold value is dependent on the relative position between the R-peak candidate (“large
peak”) and the latest detected “R” peak. For example, we regard the latest detected “R” peak before
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the “large peak” as a “left-base point”, denoted by (Plast, Alast), and let the threshold value decrease as
the interval |P0 − Plast| increases (the tendencies of the threshold value are illustrated as dashed lines in
Figure 7). Since the threshold value is dependent on the interval between the “large peak” and the “left-
base point”, we denote it as T1 (P0, Plast) and call it “left-side threshold” afterward. Using the “left-side
threshold”, the “R” peak at location (i) in Figure 7(a) will be detected since its amplitude exceeds the
threshold value, and the “noise” peak at location (i) in Figure 7(b) will be excluded since its amplitude
is lower than the threshold value. According to our preliminary experiments, by letting the threshold
value exponentially decrease as the interval |P0 − Plast| increases, the proposed algorithm can attain the
highest accuracy in MITDB.

With the proposed “left-side threshold” setting strategy, there is still a possibility that a “noise” peak
is wrongly detected as an “R” peak. As illustrated in Figure 7(c), the large peak (ii), which is located far
away from the left-base point, can be wrongly detected as an “R” peak if the left-side threshold is used.
To address the problem, we regard the “R” peak at location (iii) in Figure 7(c), which is on the right side
of the peak (ii), as a “right-base point”, and propose a “right-side threshold” to double check the peak
(ii). Similar to the “left-side threshold”, the value of the “right-side threshold” decreases exponentially
from the distance of the “right-base point”. Let us denote the “right-base point” as (Pnext, Anext), and
the “right-side threshold” value as T1 (P0, Pnext). For each “large peak”, (P0, A0), it is first checked by
the “left-side threshold”, T1 (P0, Plast). If the amplitude A0 exceeds T1 (P0, Plast), the “large peak” will be
regarded as a temporary “R” peak. When the next temporary “R” peak is detected, it will be regarded
as the “right-base point” of (P0, A0). The peak (P0, A0) will be checked against the right-side threshold
T1 (P0, Pnext). If A0 is greater then the right-side threshold, it will be changed from a temporary “R”
peak to an “R” peak.

We have observed that most of the “noise” peaks have extremely low amplitudes with occasional large
amplitude “noise” peaks as illustrated in Figure 7(a). Hence, a lower bound of the threshold T1 is set
between these peaks so that the “bilateral threshold” algorithm will exclude a large number of extremely
low “noise” peaks and focus on a small number of high “noise” peaks. We denote such a lower bound as
T1low below.

The lower bound of the threshold T1 is set by

T1low = EN +K0 (ER − EN) , (4)

where K0 is a constant parameter used to optimize the level of T1low. For a “large peak” positioned
at P0 and a detected “R” peak positioned at Pc (Pc can be Plast or Pnext), a bilateral threshold, i.e.,
T1 (P0, Plast) or T1 (P0, Pnext), is calculated using

T1 (P0, Pc) = T1low +K1 (ER − T1low) · exp

(

−|Pc − P0|

σ · LRR

)

, (5)

where K1 and σ are two parameters used to optimize the threshold value T1. To reduce the hardware
resources, we have replaced the negative exponential function exp(−τ) in (5) with the following formula:

exp(−τ) ≈ (1 + τ + 0.5τ2)−1, τ > 0. (6)

K1 is a constant parameter, which is optimized on MITDB, and the details can be found in Subsec-
tion 4.2.

Since the noise level on the left and the right sides of an “R” peak can be different, we allow σ in (5)
to take different values when calculating the left-side and right-side thresholds:

σ =

{

σ
(1)
l , P0 < Pc (left side threshold),

σ(1)
r , P0 > Pc (right side threshold).

(7)

The parameters σ
(1)
l and σ

(1)
r are optimized on MITDB, and the details can be found in Subsection 4.2.

As a result, the four constant parameters, K0, K1, σ
(1)
l , and σ

(1)
r , and the predicted values, LRR, ER, and

EN, determine the value of the bilateral threshold, T1. The decay rates of the “left-side threshold” and

the “right-side threshold” are decided by the constant parameters σ
(1)
l and σ

(1)
r , respectively. According

to (5), the upper bound of T1 is

T1high = T1low +K1 (ER − T1low) . (8)



Zhao K, et al. Sci China Inf Sci August 2021 Vol. 64 182401:9

(i) R peak with an 
extremely low amplitude

(ii) Left base point

0

ft

 pe
y

552 552.5 553 553.5 554 554.5 555 555.5 556

Time (s)

0

A
m

p
li

tu
d
e

Enhanced ECG

Original ECG

“R” peak

Figure 8 (Color online) Record ‘203’ in MITDB.

Eqs. (8) and (4) show that the upper and lower bounds of T1 are decided by the constant parameters K0

and K1.

3.2.3 The “QRS watchdog” algorithm

The “bilateral threshold” algorithm is effective in detecting “R” peaks, however, there might be scenarios
causing missing “QRS” complexes. To improve the robustness of the “bilateral threshold” algorithm, we
have also incorporated a “QRS watchdog” search-back function, where it tries to find out whether there
is a missing “R” peak.

As illustrated in Figure 8, there is a 2.5-s cardiac arrest in the original ECG. When the heartbeat is
restored at location (i) in Figure 8, its “R” peak has an extremely low amplitude. Since the previous “R”
peaks have a larger amplitude, the value of the “left-side threshold” will be higher than the amplitude
at location (i), which means the “R” peak cannot be detected by the “bilateral threshold” algorithm.
Based on the above observations, the “QRS watchdog” algorithm is enabled when no “R” peak is detected
during a long time-interval. Once the “QRS watchdog” algorithm is enabled, it initializes the search-back
threshold T2 and quickly lowers threshold T2, over time.

A counter TimerR is used to track the time interval, which starts from zero and increases for each new
sample. An upper bound Lmiss is set for the counter as follows:

Lmiss = Kmiss · LRR, (9)

where Kmiss is a constant parameter used to optimize the upper bound Lmiss. The algorithm tracks the
highest “large peak” at (Pm, Am) within the time interval (Plast, P0]. When TimerR exceeds Lmiss, “QRS
watchdog” algorithm is enabled. It begins to compare the amplitude Am to the search-back threshold T2

at each new sample. If Am exceeds T2, (Pm, Am) is marked as an “R” peak on the QRS-enhanced ECG.
TimerR needs to be adjusted when a new “R” peak is determined. Specifically, it is reset to zero if an

“R” peak is detected using the “left-side threshold”. It is set to P0 − Pnew if an “R” peak is detected
by search-back threshold T2, where P0 is the current time index. As a result, the count value of TimerR
always equals the time difference between the latest determined “R” peak and the current time index
P0. Whenever TimerR is reset or a new “noise” peak is found by the “bilateral threshold algorithm”, the
search-back threshold is reset to its initial value T1low.

To detect the “R” peaks whose amplitudes are arbitrarily small, the search-back threshold T2 decreases
at each new sample n using the following formula:

T2 [n] ⇐ T2 [n− 1] · exp

(

−
1

σ(2) · LRR

)

, (10)

where σ(2) is a constant parameter used to optimize the decay rate of T2. Again, the calculation of exp(·)
can be simplified using (6). The function of this operation is similar to the “right-side threshold” in the
“bilateral threshold” algorithm, i.e., ensuring that the highest peak, e.g., at location (iii) in Figure 7(c),
can be found instead of the adjacent minor peaks, e.g., at location (ii) in Figure 7(c).

The constant parameters in this algorithm, Kmiss and σ(2), are optimized on MITDB, and the details
can be found in Subsection 4.2.
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Figure 9 (Color online) “R” peaks of different widths lead to different numbers of high peaks in the enhanced ECG. (a) A narrow

“R” peak in the original ECG leads to a unique high peak in the enhanced ECG. (b) A wide “R” peak in the original ECG leads

to two high peaks (the “R” peak and the minor peak) in the enhanced ECG.

3.2.4 The “R-peak identifier” algorithm

The algorithm presented so far is for “R” peak detection from the enhanced ECG signal. To accurately
determine the “R” peak on the original ECG, the “R-peak identifier” algorithm first finds an approximate
location based on the “R” peak on the enhanced ECG, denoted as the “starting point”, then it searches
for the exact “R” peak location in the vicinity of the starting point.

Normally an “R” peak in the original ECG generates a unique high peak in the enhanced ECG signal,
as illustrated in Figure 9(a). However, if the “QRS” complex on the original ECG is wider than the
window used in the QRS enhancement (Subsection 3.1), the rising and falling edges of the original ECG
will generate twin peaks on the enhanced ECG, which are illustrated in Figure 9(b) at locations (i) and
(ii). In the case of Figure 9(b), if the detected “R” peak (i) is taken as the starting point, the location
of “Q” wave might be wrongly identified as the exact location of “R” peak since it is much closer to the
starting point than the true “R” peak. Hence, for an “R” peak on z[n] with time index and amplitude
(P0, A0), the “R peak identifier” algorithm searches for a second highest peak in a window [P0−80, P0+80]
ms, denoted by (Pminor, Aminor). If Aminor >

1
2A0, the case of Figure 9(b) is considered, and the algorithm

takes the midpoint between P0 and Pminor as the starting point. Otherwise, P0 is taken as the starting
point.

Normally the starting point in the original ECG is on a slope, so that the top and bottom of the
slope are taken as candidates for “R” peak. The direction of a “QRS” complex is usually upward in the
leads, but sometimes it becomes bidirectional in MITDB [40]. A “sharpness score” (SC) is calculated to
determine the likelihood of a candidate peak (the left or the right) is likely to be the accurate “R” peak:

SC (tc, ts) =











∣

∣

∣

∣

x(2) [tc]

ts − tc

∣

∣

∣

∣

, tc − ts 6= 0,

+∞, tc − ts = 0,

(11)

where ts and tc denote the time indexes of starting point and the candidate peak, respectively. x(2) [tc]
denotes the second-order derivative of the ECG signal at time tc, which is calculated by

x(2) [tc] =
1

2
x [tc + 1]− x [tc] +

1

2
x [tc − 1] . (12)

The candidate with the highest “SC” is determined as the accurate “R” peak. Since the second-order
derivative characterizes the peak’s sharpness, this method tends to mark the sharpest peak as the “R”
peak, as illustrated in Figure 10.
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Figure 10 (Color online) Examples of upward and downward “R” positions identified by the proposed “R-peak identifier” algo-

rithm, denoted by red circles.

To achieve a more robust “R-peak identifier” algorithm, we only consider the points in a smaller window
[ts − Fl, ts + Fr] that are marked as candidates, and if there is no candidate found in the window, the
starting point is marked as an “R” peak. The parameters, Fl and Fr , are optimized in a range between
0 and 95 ms, which is the duration of normal “QRS” complexes [51]. The optimization is presented in
Subsection 4.2.

In conclusion, the proposed “R” peak detection procedure can be written as the pseudo-code in Algo-
rithm 1.

Algorithm 1 Overall algorithm of dynamic “R” peak detection

Require: x, z. //The raw ECG signal and the QRS-enhanced ECG.

Ensure: The positions of the “R” peaks.

1: Parameters setup.

2: while New sample exists do

3: n ⇐ n + 1; //Increase time index.

4: (P0, A0) ⇐ PPS(z, n); //Peak pre-selection.

5: if P0 6= 0 then

6: //P0 6= 0 indicates that a “large peak” has been found.

7: if A0 > T1(Pc, P0) then

8: Find an “R” on x by R-peak identifier;

9: if the last “R” peak (Pc, Ac) was found by T1 rather than T2, and Ac 6 T1(P0, Pc) then

10: Treat (Pc, Ac) as an “noise” peak;

11: end if

12: else

13: Take A0 as a “noise” peak;

14: end if

15: Update parameters;

16: else

17: //“Large peak” not found;

18: Update QRS watchdog

19: if QRS watchdog find a missing peak on z then

20: Relocate missing “R” by QRS watchdog;

21: Find an “R” on x by R-peak identifier;

22: end if

23: end if

24: end while

4 Experimental results and discussions

4.1 Evaluation criteria

Five evaluation criteria are adopted to evaluate the performance of the proposed R-QRS algorithm on 9
PhysioNet databases and compare their performances against the state-of-the-art algorithms [31–39].

By comparing the detected “QRS” complexes to the annotations of the databases, we obtain the number
of correctly detected “QRS” complexes, TP; the number of wrong “R” labels given by the algorithm, FP;
and the number of “QRS” complexes that are not detected by the algorithm, FN. Three common criteria
(Definitions 1–3) are adopted based on TP, FP, and FN.

Definition 1 (Sensitivity (Se)). The ratio between the number of correctly detected “QRS” complexes
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TP to the total number of known “QRS” complexes [32]:

Se =
TP

TP + FN
. (13)

Definition 2 (Precision (+P )). The ratio between the number of correctly detected “QRS” complexes
to the total number of detected “QRS” marks [32]:

+P =
TP

TP + FP
. (14)

Definition 3 (Detection error rate (DER)). The ratio between the total number of incorrectly “QRS”
complexes to the total number of known “QRS” complexes [36]:

DER =
FN + FP

TP + FN
. (15)

As Se, +P , and DER criteria are unable to provide a good measurement for the accuracy of “R” peak
locations and “R-R” intervals, we have adopted a commonly-used time-domain method to measure HRV
(Definition 4) and proposed two new criteria (Definitions 5 and 6).

Definition 4 (Standard deviation of normal to normal (SDNN)). The standard deviation of the total
number of identified “R-R” intervals (the distance between each heartbeat, or the “R” of the QRS
complex) [12].

Definition 5 (Error of HRV (EHRV)). We denote the number of records in a given database as Nsub.
For each record in the database, there is an SDNN calculated using the “QRS” detection algorithm and
an RSDNN (reference SDNN) calculated based on the annotated “QRS” information of the database.
The Nsub SDNN and the Nsub RSDNN form two vectors respectively. EHRV is defined as the root mean
square distance between the two vectors:

EHRV =

√

√

√

√

1

Nsub

Nsub
∑

n=1

(SDNNn − RSDNNn)
2
. (16)

Definition 6 (Annotated-detected error (ADE)). The root mean square time difference between the
locations of the correctly detected “R” peak and the nearest annotated “R” peak:

ADE =

√

√

√

√

1

TP

TP
∑

n=1

(Kn −Dn)
2
. (17)

In the n-th correctly detected “QRS” complex, Kn and Dn are the locations of “R” peaks annotated in
the database and detected by the algorithm, respectively.

ADE is a non-negative value and it reaches zero if and only if the positions of all “R” peak locations
in the correctly detected “QRS” complexes completely match the annotated peak locations.

4.2 Parameters optimization

In the proposed R-QRS algorithm, we have optimized all parameters based on the MITDB [40]. The
optimized parameters are applied to the R-QRS algorithm to evaluate the performance of R-QRS on
the remaining eight databases [41–48]. The optimization procedure aims at achieving the lowest DER.
In total, there are 14 important parameters to be optimized, i.e., f1, f2, W , Amax, Ns, Ne, K0, K1,

Kmiss, σ
(1)
l , σ

(1)
r , Fl, and Fr , and we first initialize them empirically. Then, we set a step length for

each parameter: ∆f1 = 1 Hz, ∆f2 = 1 Hz, ∆W = 5 ms, ∆Amax = 0.05 (mV)2, ∆Ns = 1, ∆Ne = 1,

∆K0 = 0.01, ∆K1 = 0.01, ∆Kmiss = 0.1, ∆σ
(1)
l = 0.01, ∆σ

(1)
r = 0.01, ∆σ(2) = 0.01, ∆Fl = 10 ms, and

∆Fr = 10 ms. In each iteration, we create 28 parameters by adding/subtracting a step length to/from
each of them. The set of values that gives the lowest DER will be taken to the next iteration. Once the
difference of DER between two successive iterations is lower than 0.01%, we take that set of values as
the optimized ones. Finally, we have obtained the following values: f1 = 3 Hz, f2 = 25 Hz, W = 60 ms,

Amax = 1 (mV)2, Ns = 10, Ne = 1, K0 = 0.105, K1 = 1.250, Kmiss = 1.660, σ
(1)
l = 0.18, σ

(1)
r = 0.21,

σ(2) = 0.73, Fl = 80 ms, and Fr = 60 ms. We noticed that the optimization process is not sensitive to the
initial values and the step lengths. Different initial values and step lengths lead to the same optimized
parameters.
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Table 1 Evaluation of our “QRS” algorithm and state-of-the-art algorithms on nine open-source databases

Database Method Number of beats Se (%) +P (%) DER (%) EHRV (ms) ADE (ms)

Our work 109966 99.81 99.88 0.31 44.6 12.2

Pan and Tompkins [31] 109966 99.13 99.63 1.24 1.0 × 104 13.4

Pandit et al. [37] 109809 99.65 99.66 – – –

Elgendi et al. [32] 109966 99.71 99.85 0.44 77.2 32.3

Chen et al. [39] 109494 99.89 99.94 – – –

MITDB Lee et al. [33] 109481 99.69 99.88 – – –

Martinez et al. [34] 109428 99.80 99.86 – – –

Benitez et al. [35] 109456 99.13 99.31 – – –

Modified Benitez et al. [35] 109456 99.29 99.24 – – –

Hamilton and Tompkins [35] 109456 99.68 99.63 – – –

Modified Hamilton-Tompkins [35] 109456 99.57 99.58 – – –

Second derivative [35] 108228 98.08 99.18 – – –

Sahoo et al. [36] 44329 99.71 99.72 0.52 – –

Our work 86995 99.99 99.98 0.04 1.7 30.6

Pan and Tompkins [31] 86995 99.54 99.68 0.77 7.4 × 103 31.3

QTDB Pandit et al. [37] 86435 99.87 99.91 – – –

Elgendi et al. [32] 86995 99.97 99.57 0.45 76.5 50.1

Chen et al. [39] 114770 99.92 99.95 – – –

Martinez et al. [34] 86892 99.92 99.88 – – –

Our work 25590 99.32 85.99 16.87 614.0 33.1

NSTDB Pan and Tompkins [31] 25590 96.34 85.85 19.53 1.7 × 105 31.2

Elgendi et al. [32] 25590 97.70 86.74 17.24 472.3 43.7

Our work 18991 99.18 98.37 2.52 402.5 32.2

TWADB Pan and Tompkins [31] 18991 96.94 98.21 4.83 3.9 × 104 49.1

Elgendi et al. [32] 18991 98.69 96.66 4.71 773.1 44.2

Our work 73616 99.93 99.83 0.19 2.2 15.1

STDB Pan and Tompkins [31] 73616 99.82 99.88 0.30 122.5 28.0

Elgendi et al. [32] 73616 99.90 99.82 0.28 1.6 18.6

Our work 184583 99.93 99.87 0.20 5.0 21.9

SVDB Pan and Tompkins [31] 184583 99.82 99.88 0.30 10.4 29.3

Elgendi et al. [32] 184583 99.56 99.49 0.95 5.4 45.0

Our work 7591 98.85 99.44 1.70 2.6 18.9

AFTDB Pan and Tompkins [31] 7591 98.99 99.27 1.74 4.0 21.3

Elgendi et al. [32] 7591 98.56 99.23 2.20 4.5 30.5

Our work 285311 99.96 99.84 0.20 23.1 10.9

FANTASIADB Pan and Tompkins [31] 285311 82.70 99.86 17.42 5.1 × 108 14.2

Elgendi et al. [32] 285311 99.93 99.78 0.29 29.8 19.1

Our work 175906 98.72 95.52 5.92 169.5 21.0

INCARTDB Pan and Tompkins [31] 175906 94.45 96.10 9.37 4.1 × 106 22.1

Elgendi et al. [32] 175906 98.45 97.15 4.44 127.1 31.9

4.3 Experimental results

In this work, we have implemented two state-of-the-art “QRS” detection algorithms (Pan and Tompkins
algorithm [31, 52] and Elgendi et al. algorithm [32] in MATLAB R2018b), along with their optimized
parameters for a fair comparison. We did not implement algorithms that did not manage to identify all
the beats in the MITDB [40]. These algorithms [33–36,39] have excluded arrhythmia beats, resulting in
a significant improvement in their Se and +P performance.

The benchmark results are listed in Table 1. The number of beats (the third column in Table 1) is
the total number of beats being evaluated in each algorithm. It is worth noting that the number of beats
used in our experiment in QTDB is not the same as in Chen et al. [39] because we have excluded the
automatically determined ECG records according to the data description [41].

4.4 Discussions — performance on healthy subjects

For databases with healthy subjects, i.e., QTDB and FANTASIADB, the proposed R-QRS algorithm
has achieved the best performance with the highest Se, +P , and the lowest DER compared to the
state-of-the-art algorithms. Although our R-QRS algorithm is only optimized on the MITDB without
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Figure 11 (Color online) The representative original ECG signals (blue) and QRS-enhanced ECGs (red). The “R” peaks detected

by R-QRS algorithm are marked by red circles. Record (a) ‘104’, (b) ‘207’, and (c) ‘201’ from MITDB; (d) record ‘I29’ from

INCARTDB.

any exclusion of ECG records and ECG beats, we are still able to achieve very promising results with
other databases [41–48]. On the contrary, Pan and Tompkins algorithm [31,52] has missed a number of
“QRS” complexes on TWADB and FANTASIADB databases because its dynamic threshold value does
not decrease after a series of missing “QRS” complexes.

4.5 Discussions — performance on SDNN and R-peak locations

Criteria EHRV and ADE are used to evaluate the accuracies of the R-peak locations. In particular,
EHRV evaluates the accuracy in estimating the SDNN values, which is commonly used for evaluating
HRV of normal ECG. Therefore, the result based on QTDB and FANTASIADB healthy databases will be
the most important for our comparison on EHRV. As shown in Table 1, the proposed R-QRS algorithm
achieves a smaller EHRV in six databases [40, 41, 43, 45–47] including the two healthy databases as
compared to the state-of-the-art algorithms [31, 32]. Furthermore, our R-QRS algorithm has achieved
the smallest ADE in eight out of nine databases [40,41,43–48]. There are very large EHRV values of Pan
and Tompkins algorithm [31] in six databases [40–43,47,48], indicating that the SDNN strongly deviates
from the RSDNN, because a number of successive “QRS” complexes are missed by its dynamic threshold
and the search-back algorithms.

4.6 Discussions — performance on arrhythmia ECG signals

For six out of seven arrhythmia databases [40, 42–46], our algorithm has achieved lower DER values
compared to the algorithms [31,32]. The good performance is the result of the “bilateral threshold” algo-
rithm. We illustrate the advantages of “bilateral threshold” using several ECG segments from MITDB,
as shown in Figure 11.

A representative segment of MITDB record ‘104’ is illustrated in Figure 11(a) to show how the bilateral
threshold T1 helps to reduce the number of FNs and improve the robustness. “N” and “f” indicate the
normal beat and the fusion of paced and normal beat, respectively. The large peak was first identified as
an “R” peak because its amplitude exceeded the “left-side threshold” T1. Once the immediate next “R”
peak (marked as peak (iii) in Figure 11(a)) is detected, the “right-side threshold” is calculated based on
the positions of peaks (ii) and (iii). Since the amplitude of peak (ii) is less than the “right-side threshold”,
peak (ii) is declared as an invalid “R” peak.

We have observed that the ventricular flutter beats in MITDB record ‘207’ are hard to detect for the
algorithms [31,32]. In fact, we have obtained FN = 102 and FP = 6 using the algorithm [31], and obtained
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Table 2 Evaluation of the computational complexity of the proposed algorithm on MITDB

Method Our work Pan and Tompkins [31] Elgendi et al. [32]

Computation time (s) 8.57 8.35 4.62

FN = 241 and FP = 6 using the algorithm [32]. It is also worth noting that the ventricular flutter beats in
MITDB record ‘207’ have been excluded by Martinez et al. [34,39] from their experimental data. For the
proposed algorithm, it achieves a more accurate result of FN = 26 and FP = 11 in comparison to [31,32]
of FN = 102 and FP = 6. Although several “R” peaks’ amplitudes are lower than the left-side or right-
side threshold, the “QRS watchdog algorithm” picks up them successfully. A representative segment of
MITDB record ‘207’ is illustrated in Figure 11(b), where ‘!’ indicates ventricular flutter wave. Clearly,
our algorithm has detected most of the beats in Figure 11(b) using the combination of the “bilateral
threshold” and “QRS” watchdog algorithms.

We noticed that the proposed algorithm produces the highest FNs of 42 in record ‘201’ of MITDB. A
representative segment of MITDB record ‘201’ is illustrated in Figure 11(c), where four types of heartbeats
are marked. “N”, “V”, “A”, and “a” indicates NOR, PVC, APC, and aberrated atrial premature beats,
respectively. All FNs are aberrated atrial premature beat. Our proposed “QRS watchdog” algorithm did
not identify some of the missing “R” peaks in the aberrated atrial premature beat because the amplitudes
of these peaks are too small and the signal has a varying rhythm.

We also noticed that the proposed algorithm attains a slightly higher DER than that of [32]. This
is caused by record ‘I29’ in INCATDB, i.e., FN = 13 and FP = 690. The representative segment of
‘I29’ is shown in Figure 11(d). The large high frequency noises with comparable width to “R” peaks are
enhanced by the QRS enhancement, leading to large FP. The algorithm [32] has achieved the lowest DER
in INCARTDB because it tends to mark the uncertain peaks as “noise” peaks. Nevertheless, considering
that the parameters of the proposed R-QRS are optimized on MITDB, its performance on most other
databases is robust.

4.7 Discussions — computational complexity

To evaluate the computational complexity of the proposed algorithm, we have tested the R-QRS algo-
rithm and the two implemented algorithms [31,32] using MATLAB R2018b and an Intel Core i9-10900K
processor at 5 GHz. The test was performed on MITDB to cover most types of ECG. The time taken to
process all the records in MITDB are listed in Table 2. The R-QRS algorithm takes slightly longer time
than the algorithms [31,32] with enhanced performance across different databases. The extra time is due
to the use of the proposed “QRS enhancement” method and “R-peak identifier” to improve the accuracy
of “R” peaks.

5 Conclusion

We have presented an R-QRS algorithm, with the combined use of “peak pre-selection”, “bilateral thresh-
old”, and “R-peak identifier” algorithms, to detect the locations of “QRS” complexes and “R” peaks.
For a more robust detection under varying ECG signal condition, we have also incorporated the “QRS
watchdog” algorithm. We also proposed two criteria, ADE and EHRV, to evaluate the performance
of detected “R” peak locations, which has an impact to HRV accuracy. By optimizing the parame-
ters of the proposed R-QRS algorithm on MITDB and evaluating it on the remaining eight PhysioNet
databases, the proposed R-QRS algorithm achieves Se = 99.99%, +P = 99.98%, and DER = 0.04%
on the healthy database, QTDB, and it achieves Se = 99.81%, +P = 99.88%, and DER = 0.31% on
arrhythmia database, MITDB. For the rest of the databases, the proposed algorithm has shown better
or comparable performance, which highlights the robustness of the algorithm.
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