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Appendix A Proof of Proposition 1
From the definition of VN×N in Proposition 1, we have
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= IN×N . We have VH
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From (1) and (2), we can obtain
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Define PAD
k,l (θ, qTs) , PA

k,l(θ)P
D
k,l(qTs). For an arbitrary non-negative integer d, let nd , ⌊d/M⌋, md , ⟨d⟩M , rmd

, ⌊md/N⌋,
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where (a) follows from [A ⊗ B]i,j = [A]ni,nj
[B]mi,mj

for matrices A and B. Meanwhile, we have
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Since the power angle-delay spectrum is bounded [1], the limit in the first equation of (A5) exists. Since (A4) is equal to (A5),
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k can be obtained as (8). The proof of (9) is given by
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where (a) follows from (6) and (8), and (b) follows from the fact that
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Appendix B Proof of Proposition 2
Considering the non-negative property of the angle-delay domain channel power distribution, it is satisfied that in (19) the term
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Based on (19) and (20), we can obtain
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where (a) follows from the fact that when ε0
Ki,j

a ,p,m,q
is minimized, i.e., when the effect of pilot interference is eliminated, the

average operation accounting for all possible active patterns and all types of phase shift selection is the same as the average
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Appendix C Derivation of (30)
We can rewrite (29) as
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We have E
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interference is uncorrelated with the transmitted signal, i.e.,
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The variance of the interference term is represented as
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It follows from the independence between each of the zero-mean transmitted signals and the independence between signals and

channels. Taking the OFDM CP overhead and pilot overhead into account, according to Corollary 1.3 in [3], we can obtain the SE

lower bound as shown in (30).
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